
Artificial Intelligence for Artificial Artificial Intelligence

Peng Dai Mausam Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{daipeng,mausam,weld}@cs.washington.edu

Abstract

Crowdsourcing platforms such as Amazon Mechanical Turk
have become popular for a wide variety of human intelligence
tasks; however, quality control continues to be a significant
challenge. Recently, we propose TURKONTROL, a theoret-
ical model based on POMDPs to optimize iterative, crowd-
sourced workflows. However, they neither describe how to
learn the model parameters, nor show its effectiveness in a
real crowd-sourced setting. Learning is challenging due to
the scale of the model and noisy data: there are hundreds of
thousands of workers with high-variance abilities.
This paper presents an end-to-end system that first learns
TURKONTROL’s POMDP parameters from real Mechanical
Turk data, and then applies the model to dynamically opti-
mize live tasks. We validate the model and use it to control
a successive-improvement process on Mechanical Turk. By
modeling worker accuracy and voting patterns, our system
produces significantly superior artifacts compared to those
generated through nonadaptive workflows using the same
amount of money.

Introduction

Within just a few years of their introduction, crowdsourc-
ing marketplaces, such as Amazon Mechanical Turk1, have
become an integral component in the arsenal of an online
application designer. These have spawned several new com-
panies such as CrowdFlower, CastingWords, and led to cre-
ative applications, e.g., helping blind people shop or localize
in a new environment (Bigham et al. 2010). The availability
of hundreds of thousands of workers allows a steady stream
of output. Unfortunately, the workers also come with hugely
varied skill sets and motivation levels. Thus, quality control
of the worker output continues to be a serious challenge.

To work around the variability in worker accuracy, peo-
ple design workflows, flowcharts connecting sequences of
primitive steps, where a step may be performed by multiple
workers, thus improving overall quality. For example, Cast-
ingWords employs a proprietary workflow for the task of au-
dio transcription. Recently, Little et al. (2009) achieve im-
pressive results using a workflow of iterative improvement

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Amazon uses the tagline “Artificial Artificial Intelligence”

Figure 1: Flowchart for the iterative text improvement task,
reprinted from (Little et al. 2009).

for several tasks such as handwriting recognition and writ-
ing a text description for an image. In this workflow (see
Figure 1), the work by one worker goes through several im-
provement iterations; each iteration comprising an improve-
ment phase (where previous work is improved by a worker)
and an evaluation phase (where voters choosing between the
improved work and the previous work through ballots – the
‘vote’ step in Figure 1). In essence, these workflows embody
a novel type of collaboration between workers; one that gen-
erates high quality work.

These workflows typically have several decision points,
e.g., for iterative improvement one must decide how many
evaluation votes to obtain and whether to repeat the im-
provement loop. From an AI perspective, this offers a new,
exciting and impactful application area for intelligent con-
trol. Recently we (Dai, Mausam, and Weld 2010) propose
a POMDP formulation of the workflow control problem and
show that TURKONTROL, the decision-theoretic controller,
obtains higher quality outputs in a simulated environment.
However, our previous work is primarily theoretical and pro-
vides no methods to learn the several distributions in the
POMDP model. Nor does it provide strong evidence that
the approach actually works in a real crowdsourced environ-
ment.

In this paper, we implement an end-to-end system that
first learns parameters for TURKONTROL using real data
from Mechanical Turk. This learning is challenging because
of a large number of parameters and sparse and noisy train-
ing data. To make our problem feasible we choose specific
parametric distributions to reduce the parameter space, and
learn the improvement and ballot parameters independently.
We validate the learned parameters in a simple voting task
and observe that the model needs only half the votes com-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1153

pared to the commonly used majority baseline. This sug-
gests the effectiveness of the model and our parameters.

We then employ TURKONTROL with our learned param-
eters to control the iterative improvement workflow for the
image description task on Mechanical Turk. TURKONTROL
can exploit knowledge of individual worker accuracies;
however, it does not need such information and incremen-
tally updates its model of each worker as she completes
each job. We compare our AI-controlled, dynamic work-
flows with a nonadaptive workflow that spends the same
amount of money. The results demonstrate that our system
obtains an 11% improvement in the average quality of im-
age descriptions. Our results are statistically significant with
p < 0.01. More interestingly, to achieve the same quality, a
nonadaptive workflow spends 28.7% more money, as quality
improvement is not linear in the amount of cost.

Background

Iterative Improvement Workflow. Little et al. (Little et
al. 2009) design the iterative improvement workflow to get
high-quality results from the crowd. As shown in Figure 1,
the work created by the first worker goes through several im-
provement iterations; each iteration comprising an improve-
ment and a ballot phase. In the improvement phase, an im-
provement job, solicits α′, an improvement of the current
artifact α (e.g., the current image description). In the ballot
phase, several workers respond to a ballot job, in which they
vote on the better of the two artifacts (the current one and
its improvement). Based on majority vote, the better one is
chosen as the current artifact for next iteration. This process
repeats until the total cost allocated to the particular task is
exhausted.
POMDP. A partially-observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1998) is a
widely-used formulation to represent sequential decision
problems under partial information. An agent, the decision
maker, tracks the world state and faces the decision task
of picking an action. Performing the action transitions the
world to a new state. The transitions between states are prob-
abilistic and Markovian, i.e., the next state only depends on
the current state and action. The state information is un-
known to the agent, but she can infer a belief, the probability
distribution of possible states, from observing the world.
Controlling A Crowd-Sourced Workflow. There are var-
ious decision points in executing an iterative improvement
process, such as which artifact to select, when to start
a new improvement iteration, when to terminate the job,
etc. We recently (Dai, Mausam, and Weld 2010) introduce
TURKONTROL, a POMDP based agent that controls the
workflow, i.e., makes these decisions automatically. The
world state includes the quality of the current artifact, q ∈
[0, 1], and q′ of the improved artifact; true q and q′ are hid-
den and the controller can only track a belief about them.
Intuitively, the extreme value of 0 (or 1) represents the ide-
alized condition that all (or no) diligent workers will be able
to improve the artifact. We use Q and Q′ to denote the ran-
dom variables that generate q and q′.

Different workers may have different skills in improving

n

m

Figure 2: A plate model of ballot jobs; b represents the ballot
outcome; γ, a worker’s individual error parameter; d, the difficulty
of the job and w, truth value of the job. Γ is the prior on workers’
errors. Shaded nodes represent observed variables.

an artifact. A conditional distribution function, fQ′
x|q , ex-

presses the probability density of the quality of a new arti-
fact when an artifact of quality q is improved by worker x.
The worker-independent distribution function, fQ′|q , acts as
a prior in cases where a previously unseen worker is encoun-
tered. The ballot job compares the two artifacts; intuitively,
if the two artifacts have qualities close to each other then the
ballot job is harder. We define intrinsic difficulty of a ballot
job as d = 1 − |q − q′|M , where M is a trained constant.
Given the difficulty d, ballots of two workers are condition-
ally independent to each other. We assume that the accuracy
of worker x follows a(d, γx) = 1

2 [1 + (1− d)γx], where γx
is x’s error parameter; higher γx signifies that x makes more
errors.

Previously we discuss several POMDP algorithms to con-
trol the workflow including limited look-ahead, UCT, etc.
While simulation results suggest benefits of our model, we
do not discuss any approaches to learn these complex distri-
butions, nor implement our techniques on a real platform to
prove that the simplifying assumptions, formulae, and sim-
ulated gains hold in practice.

Model Learning

In order to estimate TURKONTROL’s POMDP model, one
must learn two probabilistic transition functions. The first
function is the probability of a worker x answering a ballot
question correctly, which is controlled by the error param-
eter γx of the worker. The second function estimates the
quality of an improvement result, the new artifact returned
by a worker.

Learning the Ballot Model

Figure 2 presents our generative model of ballot jobs; shaded
variables are observed. We seek to learn the error parame-
ters �γ where γx is parameter for the xth worker and use the
mean γ̄ as an estimate for future, unseen workers. To gen-
erate training data for our task we select m pairs of artifacts
and post n copies of a ballot job which asks the workers
to choose between these pairs. We use bi,x to denote xth

worker’s ballot on the ith question. Let wi = true(false) if
the first artifact of the ith pair is (not) better than the second,
and di denote the difficulty of answering such a question.

We assume the error parameters are generated by a ran-
dom variable Γ. The ballot answer of each worker directly
depends on her error parameter, as well as the difficulty of

1154

the job, d, and its real truth value, w. For our learning prob-
lem, we collect w and d for the m ballot questions from the
consensus of three human experts and treat these values as
observed. In our experiments we assume a uniform prior of
Γ, though our model can incorporate more informed priors2.
Our aim is to estimate γx parameters – we use the standard
maximum likelihood approach. We use vector notation with

bi,x denoting xth worker’s ballot on the ith question and ��b
denotes all ballots.

P (�γ|��b, �w, �d) ∝ P (�γ)P (
��b|�γ, �w, �d) (1)

Under the uniform prior of Γ and conditional indepen-
dence of different workers given difficulty and truth value of
the task, Equation 1 can be simplified to

P (�γ|��b, �w, �d) ∝ P (
��b|�γ, �w, �d)

= Πm
i=1Π

n
x=1P (bi,x|γx, di, wi). (2)

Taking the log, the Maximum likelihood problem is:

Constants : d1, . . . , dm, w1, . . . , wm, b11, . . . , bm,n

Variables : γ1, . . . , γn
Maximize :

∑m
i=1

∑n
x=1 log[P (bi,x|γx, di, wi))]

Subject to : ∅
Experiments on Ballot Model. We evaluate the effective-
ness of our learning procedure on the image description task.
We select 20 pairs of images (m = 20) and collect sets of
ballots from 50 workers. We detect spammers and drop them
(n = 45). We spend $4.50 to collect this data. We solve the
optimization problem using the NLopt package.3

Once the error parameters are learned they can be evalu-
ated in a five-fold cross-validation experiment as follows:
take 4/5th of the images and learn error parameters over
them; use these parameters to estimate the true ballot answer
(w̃i) for the images in the fifth fold. Our cross-validation
experiment obtains an accuracy of 80.01%, which is barely
different from a simple majority baseline (with 80% accu-
racy). Indeed, we doublecheck that the four ballots fre-
quently missed by the models are those in which the mass
opinion differs from our expert labels.

We also compare the confidence, degree of belief in the
correctness of an answer, for the two approaches. For the
majority vote, we calculate the confidence by taking the ra-
tio of the votes with the correct answer and the total num-
ber of votes. For our model, we use the average posterior
probability of the correct answer. The average confidence
values of using our ballot model is much higher than the
majority vote (82.2% against 63.6%). This shows that even
though the two approaches achieve the same accuracy on all
45 votes, the ballot model has superior belief in its answer.

2We also tried priors that penalize extreme values but that did
not help in our experiments.

3http://ab-initio.mit.edu/wiki/index.php/NLopt

While the confidence values are different the ballot model
seems to offer no distinct advantage over the simple major-
ity baseline. In hindsight, this is not surprising, since we
are using a large number of workers. In other work re-
searchers have shown that a simple average of a large num-
ber of non-experts often beats even the expert opinion (Snow
et al. 2008).

60.00

65.00

70.00

75.00

80.00

1 3 5 7 9 11

Ac
cu

ra
cy

 (%
)

Number of ballot answers

Ballot Model
Majority Vote

Figure 3: Accuracies of using our ballot model and majority vote
on random voting sets with different size, averaged over 10,000
random sample sets for each size. Our ballot model achieves sig-
nificantly higher accuracy than the majority vote (p < 0.01).

However, one will rarely have the resources to dou-
blecheck each question by 45 voters, so we study this further
by varying the number of available voters. For each image
pair, we randomly sample 50,000 sets of 3-11 ballots and
compute the average accuracies of the two approaches. Fig-
ure 3 shows that our model consistently outperforms the ma-
jority vote baseline. With just 11 votes, it is able to achieve
an accuracy of 79.3%, which is very close to that using all
45 votes. Also, the ballot model with only 5 votes achieves
similar accuracy as a majority vote with 11. This shows
the value of the ballot model – it significantly reduces the
amount of votes needed for the same desired accuracy.

Estimating Artifact Quality

In order to learn the effect of a worker trying to improve an
artifact (next section), we need labeled training data, and this
means determining the quality of an arbitrary artifact. While
it may seem a somewhat amorphous and subjective term,
Following (Dai, Mausam, and Weld 2010), we define quality
of an artifact to be the probability that an average diligent
worker fails to improve it. Thus, an artifact with quality
0.5 is just as likely to be hurt by an improvement attempt
as actually enhanced. Since quality is a partially-observable
statistical measure, we consider three ways to approximate
it: simulating the definition, direct expert estimation, and
averaged worker estimation.

Our first technique simply simulates the definition. We
ask k workers to improve an artifact α and as before use
multiple ballots, say l, to judge each improvement. We de-
fine quality of α to be 1 minus the fraction of workers that
are able to improve it. Unfortunately, this method requires
k+kl jobs in order to estimate the quality of a single artifact;
thus, it is both slow and expensive in practice. As an alter-
native, direct expert estimation is less complex. We teach
a statistically-sophisticated computer scientist the definition

1155

of quality and ask her to estimate the quality to the nearest
decile.4 Our final method, averaged worker estimation, is
similar, but averages the judgments from several Mechanical
Turk workers via scoring jobs. These scoring jobs provide a
definition of quality along with a few example; the workers
are then asked to score several more artifacts.
Experimental Observations. We collect data on 10 images
from the Web and use Mechanical Turk to generate multi-
ple descriptions for each. We then select one description
for each image, carefully ensuring that the chosen descrip-
tions span a wide range of detail and language fluency. We
also modified a description to obtain one that, we felt, was
very hard to improve, thereby accounting for the high qual-
ity region. When simulating the definition, we average over
k = 22 workers.5 We use a single expert for direct expert
estimation and an average of 10 worker scores for averaged
worker estimation.

Our hope, following (Snow et al. 2008), was that averaged
worker estimation, definitely the cheapest method, would
prove comparable to expert estimates and especially to the
simulated definition. Indeed, we find that all three meth-
ods produce similar results. They agree on the two best and
worst artifacts, and on average both expert and worker esti-
mates are within 0.1 of the score produced by simulating the
definition. We conclude that averaged worker estimation is
equally effective and additionally easier and more econom-
ical (1 cent per scoring job); so we adopt this method to
assess qualities in subsequent experiments.

Learning the Improvement Model

Finally, we describe our approach for learning a model for
the improvement phase. Our objective is to estimate the
quality q′ of a new artifact, α′, when worker x improves
artifact α of quality q. We represent this using a conditional
probability density function fQ′

x|q . Moreover, we also learn
a prior distribution, fQ′|q , to model work by a previously
unseen worker.

There are two main challenges in learning this model:
first, these functions are over a two-dimensional continuous
space, and second, the training data is scant and noisy. To
alleviate the difficulties, we break the task into two learning
steps: (1) learn a mean value for quality using regression,
and (2) fit a conditional density function given the mean. We
make the second learning task tractable by choosing para-
metric representations for these functions. Our full solution
follows the following steps:

1. Generate an improvement job that contains u original ar-
tifacts α1, . . . , αu.

2. Crowd-source v workers to improve each artifact to gen-
erate uv new artifacts.

3. Estimate the qualities qi and q′i,x for all artifacts in the
set (see previous section). qi is the quality of αi and q′i,x
4The consistency of this type of subjective rating has been care-

fully evaluated in the literature; see e.g. (Cosley et al. 2003).
5We collected 24 sets of improvements, but two workers im-

proved less than 3 artifacts, so they were tagged as spammers and
dropped from analysis.

denotes the quality of the new artifact produced by worker
x. These act as our training data.

4. Learn a worker-dependent distribution fQ′
x|q for every

participating worker x.

5. Learn a worker-independent distribution fQ′|q to act as a
prior on unseen workers.

We now describe the last two steps in detail: the learn-
ing algorithms. We first estimate the mean of worker x’s
improvement distribution, denoted by μQ′

x
(q).

We assume that μQ′
x

is a linear function of the quality of
the original artifact, i.e., the mean quality of the new arti-
fact linearly increases with the quality of the original one.6
By introducing μQ′

x
, we separate the variance in a worker’s

ability in improving all artifacts of the same quality from the
variance in our training data, which is due to her starting out
from artifacts of different qualities. To learn this we perform
linear regression on the training data (qi, q

′
i,x). This yields

q′x = axq + bx as the line of regression with standard error
ex, which we truncate for values outside [0, 1].

To model a worker’s variance when improving artifacts
with the same quality, we consider three parametric repre-
sentations for fQ′

x|q: Triangular, Beta, and Truncated Nor-
mal. While clearly making an approximation, restricting at-
tention to these distributions significantly reduces the pa-
rameter space and makes our learning problem tractable.
Note that we assume the mean, μ̂Q′

x
(q), of each of these

distributions is given by the line of regression, axq+ bx. We
consider each distribution in turn.

Triangular: The triangular-shaped probability density
function has two fixed vertices (0, 0) and (1, 0). We set the
third vertex to μ̂Q′

x
(q), yielding the following density func-

tion:

fQ′
x|q(q

′
x) =

{ 2q′x
μ̂Q′

x
(q) if q′x < μ̂Q′

x
(q)

2(1−q′x)
1−μ̂Q′

x
(q) if q′x ≥ μ̂Q′

x
(q).

(3)

Beta: We wish the Beta distribution’s mean to be μ̂Q′
x

and
its standard deviation to be proportional to ex. Therefore,
we train a constant, c1, using gradient descent that maxi-
mizes the log-likelihood of observing the training data for
worker x.7 This results in fQ′

x|q = Beta(c1ex × μ̂Q′
x
(q), c1

ex
×

(1− μ̂Q′
x
(q))). The error ex appears in the denominator be-

cause the two parameters for the Beta distribution are ap-
proximately inversely related to its standard deviation.

Truncated Normal: As before we set the mean to μ̂Q′
x

and the standard deviation to be c2 × ex where c2 is a con-
stant, trained to maximize the log likelihood of the training
data. This yields fQ′

x|q = Truncated Normal(μ̂Q′
x
(q), c22e

2
x)

where the truncated interval is [0, 1].
We use similar approaches to learn the worker-

independent model fQ′|q , except that training data is of the

6While this is obviously an approximation, we find it is surpris-
ingly close; R2 = 0.82 for the worker-independent model.

7We use Newton’s method with 1000 random restarts. Initial
values are chosen uniformly from the real interval (0, 100.0).

1156

form (qi, q̄′i) where q̄′i is the average improved quality for
ith artifact, i.e., the mean of q′i,x (over all workers). The
standard deviation of this set is σQ′

i|qi . As before, we start
with linear regression, q′ = aq + b. The Triangular dis-
tribution is defined exactly as before. For the other two
distributions, we have their standard deviations depend on
the conditional standard deviations, σQ′

i|qi . We assume that
the conditional standard deviation σQ′|q is quadratic in q,
therefore an unknown conditional standard deviation given
any quality q ∈ [0, 1] can be inferred from existing ones
σQ′

1|q1 , . . . , σQ′
v|qv using quadratic regression. As before,

we use gradient descent to train variables c3 and c4 for Beta
and Truncated Normal respectively.
Experimental Observations. We seek to determine which
of the three distributions best models the data, and we em-
ploy leave-one-out cross validation. We set the number of
original artifacts and number of workers to be ten each. It
costs a total of $16.50 for this data collection. The algorithm
iteratively trains on nine training examples, e.g. {(qi, q̄′i)}
for the worker-independent case, and measures the proba-
bility density of observing the tenth. We score a model by
summing the ten log probability densities.

Our results show that Beta distribution with c1 = 3.76 is
the best conditional distribution for worker-dependent mod-
els. For the worker-independent model, Truncated Normal
with c4 = 1.00 performs the best. We suspect this is the case
because most workers have average performance and Trun-
cated Normal has a thinner tail than the Beta. In all cases,
the Triangular distribution performs worst. This is prob-
ably because Triangular assumes a linear probability den-
sity, whereas, in reality, workers tend to provide reasonably
consistent results, which translates to higher probabilities
around the conditional mean. We use these best perform-
ing distributions in all subsequent experiments.

TurKontrol on Mechanical Turk

Having learned the POMDP parameters, our final evaluation
assesses the benefits of the dynamic workflow controlled
by TURKONTROL versus a nonadaptive workflow (as origi-
nally used in TurKit (Little et al. 2009)) under similar set-
tings, specifically using the same monetary consumption.
We aim at answering the following questions: (1) Is there a
significant quality difference between artifacts produced us-
ing TURKONTROL and TurKit? (2) What are the qualitative
differences between the two workflows?

As before, we evaluate on the image description task,
in particular, we use 40 fresh pictures from the Web and
employ iterative improvement to generate descriptions for
these. For each picture, we restrict a worker to take part
in at most one iteration in each setting (i.e., nonadaptive or
dynamic). We set the user interfaces to be identical for both
settings and randomize the order in which the two conditions
are presented to workers in order to eliminate human learn-
ing effects. Altogether there are 655 participating workers,
of which 57 take part in both settings.

We devise automated rules to detect spammers. We re-
ject an improvement job if the new artifact is identical to
the original. We reject ballot and scoring jobs if they are

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Q
ua

lit
y

by
 T

ur
Ki

t 6
7

Quality by TurKontrol

y=x

Figure 4: Average qualities of 40 descriptions generated by
TURKONTROL and by TurKit respectively, under the same
monetary consumption. TURKONTROL generates statistically-
significant higher-quality descriptions than TurKit.

returned so quickly that the worker could not have made a
reasonable judgment.

Note that our system does not need to learn a model for a
new worker before assigning them jobs; instead, it uses the
worker-independent parameters γ̄ and fQ′|q as a prior. These
parameters get incrementally updated as TURKONTROL ob-
tains more information about their accuracy.

Recall that TURKONTROL performs decision-theoretic
control based on a user-defined utility function. We use
U(q) = $25q for our experiments. We set the cost of an
improvement job to be 5 cents and a ballot job to be 1
cent. We use the limited-lookahead algorithm from (Dai,
Mausam, and Weld 2010) for the controller, since that per-
formed the best in their simulation. Under these parameters,
TURKONTROL-workflows run an average of 6.25 iterations
with an average of 2.32 ballots per iteration, costing about
46 cents per image description on average.

We use TurKit’s original fixed policy for ballots, which
requests a third ballot if the first two voters disagree. We
compute the number of iterations for TurKit so that the total
money spent matches TURKONTROL’s. Since this number
comes to be 6.47 we compare against three cases: TurKit6
with 6 iterations, TurKit7 with 7 iterations and TurKit67 a
weighted average of the two that equalizes monetary con-
sumption.

For each final description we create a scoring job in which
multiple workers score the descriptions. Figure 4 com-
pares the artifact qualities generated by TURKONTROL and
by TurKit67 for the 40 images. We note that most points
are below the y = x line, indicating that the dynamic
workflow produces superior descriptions. Furthermore, the
quality produced by TURKONTROL is greater on average
than TurKit’s, and the difference is statistically significant:
p < 0.01 for TurKit6, p < 0.01 for TurKit67 and p < 0.05
for TurKit7, using the student’s t-test.

Using our parameters, TURKONTROL generates some of
the highest-quality descriptions with an average quality of
0.67. TurKit67’s average quality is 0.60; furthermore, it gen-
erates the two worst descriptions with qualities below 0.3.
Finally, the standard deviation for TURKONTROL is much
lower (0.09) than TurKit’s (0.12). These results demonstrate
overall superior performance of decision-theoretic control

1157

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

Av
er

ag
e

of

 B
al

lo
ts

Iteration Number

TurKontrol

Turkit

Figure 5: Average number of ballots for the nonadaptive and dy-
namic workflows. TURKONTROL makes and intelligent use of bal-
lots.

on live, crowd-sourced workflows.
While the 11% average quality promotion brought by

TURKONTROLis statistically significant, some wonder if it
is material. To better illustrate the importance of quality,
we include another experiment. We run the nonadaptive,
TurKit policy for additional improvement iterations, until
it produces artifacts with an average quality equal to that
produced by TURKONTROL. Fixing the quality threshold,
the TurKit policy has to run an average of 8.76 improve-
ments, compared to the 6.25 improvement iterations used by
TURKONTROL. As a result the nonadaptive policy spends
28.7% more money than TURKONTROL to achieve the same
quality results. Note that final artifact quality is neither lin-
ear in the number of iterations nor total cost. Intuitively, it
is much easier to improve an artifact when its quality is low
than when it is high.

We also qualitatively study TURKONTROL’s behavior
compared to TurKit’s and find an interesting difference in
the use of ballots. Figure 5 plots the average number of
ballots per iteration number. Since TurKit’s ballot pol-
icy is fixed, it always uses about 2.45 ballots per itera-
tion. TURKONTROL, on the other hand, uses ballots much
more intelligently. In the first two improvement iterations
TURKONTROL does not bother with ballots because it ex-
pects that most workers will improve the artifact. As iter-
ations increase, TURKONTROL increases its use of ballot
jobs, because the artifacts are harder to improve in later it-
erations, and hence TURKONTROL needs more information
before deciding which artifact to promote to the next itera-
tion. The eighth iteration is an interesting exception; at this
point improvements have become so rare that if even the first
voter rates the new artifact as a loser, then TURKONTROL
often believes the verdict.

Besides using ballots intelligently we believe that
TURKONTROL adds two other kinds of reasoning. First,
six of the seven pictures that TURKONTROL finished in 5
iterations have higher qualities than TurKit’s. This sug-
gests that its quality tracking is working well. Perhaps
due to the agreement among various voters, TURKONTROL
is able to infer that a description already has quality high
enough to warrant termination. Secondly, TURKONTROL
has the ability to track individual workers, and this also af-
fects its posterior calculations. For example, in one instance
TURKONTROL decided to trust the first vote because that
worker had superior accuracy as reflected in a low error pa-

Figure 6: An image description example.
It took TURKONTROL 6 improvement HITs and 14 ballot HITs to
reach the final version: “This is Gene Hackman, in a scene from
his film “The Conversation,” in which he plays a man paid to se-
cretly record people’s private conversations. He is squatting in a
bathroom gazing at tape recorder which he has concealed in a blue
toolbox that is now placed on a hotel or motel commode (see paper
strip on toilet seat). He is on the left side of the image in a gray
jacket while the commode is on the right side of the picture. His
fingertips rest on the lid of the commode. He is wearing a black
court and a white shirt. He has put on glasses also.”
It took the nonadaptive workflow 6 improvement HITs and 13 bal-
lot HITs to reach a version: “A thought about repairing : Image
shows a person named Gene Hackman is thinking about how to re-
pair the toilet of a hotel room. He has opened his tool box which
contains plier, screw diver, wires etc. He looks seriously in his tool
box & thinking which tool he willuse. WearING a grey coat he sits
in front of the toilet seat resting gently on the toilet seat”.

rameter. We expect that for repetitive tasks this will be an
enormously valuable ability, since TURKONTROL will be
able to construct more informed worker models and take su-
perior decisions.

We present one image description example in Figure 6. It
is interesting to note that both processes managed to find out
the origin of the image. However, the TURKONTROL ver-
sion is consistently better in language, factuality and level
of detail. In retrospect, we find the nonadaptive workflow
probably made a wrong ballot decision in the sixth iteration,
where a decision was critical yet only three voters were con-
sulted. TURKONTROL on the other hand, reached a decision
after 6 unanimous votes at the same stage.

Related Work

Since crowd-sourcing is a recent development, few have
tried using AI or machine learning to control such platforms.
Ipeirotis et al. (Ipeirotis, Provost, and Wang 2010) observe
that workers tend to have bias on multiple-choice, annota-
tion tasks. They learn a confusion matrix to model the error
distribution of individual workers. However, their model as-
sumes workers’ errors are completely independent, whereas,
our model handles situations where workers make correlated
errors due to the intrinsic difficulty of the task.

Huang et al. (Huang et al. 2010) look at the problem of
designing a task under budget and time constraints. They il-

1158

lustrate their approach on an image-tagging task. By wisely
setting variables, such as reward per task and the number
of labels requested per image, they increase the number of
useful tags acquired. Donmez et al. (Donmez, Carbonell,
and Schneider 2010) observe that workers’ accuracy often
changes over time (e.g., due to fatigue, mood, task similarity,
etc.). Based on their model, one can predict which worker is
likely to be most accurate for task at any time. As these ap-
proaches are orthogonal to ours, we would like to integrate
the methods in the future.

Shahaf and Horvitz (Shahaf and Horvitz 2010) develop an
HTN-planner style decomposition algorithm to find a coali-
tion of workers, each with different skill sets, to solve a task.
Some members of the coalition may be machines and others
humans; different skills may command different prices. In
contrast to our work, Shahaf and Horvitz do not consider
methods for learning models of their workers.

Similar to our approach of deciding the truth value of a
ballot question from ballot results, Whitehill et al. (White-
hill et al. 2009) study the problem of integrating image an-
notations of multiple workers. Their proposed model also
integrates a worker model and a difficulty measure. They
use unsupervised EM for learning, whereas we use gold
standard annotations. Their results align well with our
findings that integrating labels through an intelligent model
achieves higher accuracy than the majority vote. Welinder
et al. (Welinder et al. 2010) extend Whitehill et al.’s work
by modeling tasks and workers as multi-dimensional enti-
ties. Their model is more general so can capture other use-
ful factors, such as personal bias, error tolerance level etc.
However, both of these use unsupervised learning, and the
learned models can be erroneous if there are hard tasks in
the mix (e.g.the four hard training tasks in our ballot model
learning). Also, they do not use a decision-theoretic frame-
work to balance cost-quality tradeoffs.

Conclusions
Complex, crowd-sourcing workflows are regularly em-
ployed to produce high-quality output. Our work conclu-
sively demonstrates the benefits of AI, specifically decision-
theoretic techniques, in controlling such workflows. We
present an efficient and cheap mechanism to learn the pa-
rameters of a POMDP model that enables this control. Next,
we validate the parameters independently and show that our
learned model of worker accuracy significantly outperforms
the popular majority-vote baseline when resources are con-
strained. Thirdly, we demonstrate the effectiveness of the
decision-theoretic techniques, using an end-to-end system
on a live crowd-sourcing platform for the task of writing
image descriptions. With our learned models guiding the
controller, the dynamic workflows are vastly superior than
nonadaptive workflows utilizing the same amount of money.
Our results are statistically significant. Finally, we investi-
gate the qualitative behavior of our agent, illustrating inter-
esting characteristics of iterative workflows on Mechanical
Turk.

We believe that decision-theoretic control, when powered
by our learned models, has the potential to impact the thou-
sands of requesters who use crowd-sourcing today, making

their processes significantly more efficient. We plan to re-
lease a toolkit implementing our techniques for wide use.

Acknowledgments
This work was supported by the WRF / TJ Cable Professor-
ship , Office of Naval Research grant N00014-06-1-0147,
and National Science Foundation grants IIS 1016713 and
IIS 1016465. We thank Mimi Fung for technical help in set-
ting up the web server for TURKONTROL. We thank Greg
Little and Rob Miller for providing the TurKit code and an-
swering many technical questions. Comments from Andrey
Kolobov, Raphael Hoffman, Andrey Kolobov, and Micheal
Toomim significantly improved the paper.

References
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; Miller, A.; Miller,
R. C.; Miller, R.; Tatarowicz, A.; White, B.; White, S.; and
Yeh, T. 2010. Vizwiz: nearly real-time answers to visual
questions. In UIST, 333–342.
Cosley, D.; Lam, S. K.; Albert, I.; Konstan, J. A.; and
Riedl, J. 2003. Is seeing believing?: how recommender
system interfaces affect users’ opinions. In Proceedings of
the SIGCHI conference on Human factors in computing sys-
tems, 585–592.
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. In AAAI.
Donmez, P.; Carbonell, J. G.; and Schneider, J. 2010. A
probabilistic framework to learn from multiple annotators
with time-varying accuracy. In SIAM International Confer-
ence on Data Mining (SDM), 826–837.
Huang, E.; Zhang, H.; Parkes, D. C.; Gajos, K. Z.; and Chen,
Y. 2010. Toward automatic task design: A progress report.
In Proceedings of the ACM SIGKDD Workshop on Human
Computation, 77–85.
Ipeirotis, P. G.; Provost, F.; and Wang, J. 2010. Quality
management on amazon mechanical turk. In Proceedings of
the ACM SIGKDD Workshop on Human Computation, 64–
67.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artif. Intell. 101(1-2):99–134.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2009. Turkit: tools for iterative tasks on mechanical turk. In
KDD Workshop on Human Computation, 29–30.
Shahaf, D., and Horvitz, E. 2010. Generlized markets for
human and machine computation. In AAAI.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008.
Cheap and fast - but is it good? evaluating non-expert anno-
tations for natural language tasks. In EMNLP, 254–263.
Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010.
The multidimensional wisdom of crowds. In In Proc. of
NIPS, 2424–2432.
Whitehill, J.; Ruvolo, P.; Wu, T.; Bergsma, J.; and Movellan,
J. 2009. Whose vote should count more: Optimal integration
of labels from laberlers of unknown expertise. In In Proc. of
NIPS, 2035–2043.

1159

