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Abstract

The flourishing of online labor markets such as Amazon Me-
chanical Turk (MTurk) makes it easy to recruit many work-
ers for solving small tasks. We study whether information
elicitation and aggregation over a combinatorial space can
be achieved by integrating small pieces of potentially im-
precise information, gathered from a large number of work-
ers through simple, one-shot interactions in an online labor
market. We consider the setting of predicting the ranking
of n competing candidates, each having a hidden underly-
ing strength parameter. At each step, our method estimates
the strength parameters from the collected pairwise compari-
son data and adaptively chooses another pairwise comparison
question for the next recruited worker. Through an MTurk ex-
periment, we show that the adaptive method effectively elic-
its and aggregates information, outperforming a naı̈ve method
using a random pairwise comparison question at each step.

1 Introduction
Decision making often relies on collecting small pieces of
relevant information from many individuals and aggregating
such information into a consensus that forecasts some event
of interest. Such information elicitation and aggregation is
especially challenging when the outcome space of the event
is large, due to the inherent difficulties in reasoning over and
propagating information through the large outcome space in
a consistent and efficient manner.

In recent years, online labor markets, such as Amazon
Mechanical Turk (MTurk), have become a burgeoning plat-
form for human computation (Law and von Ahn 2011).
MTurk provides easy access to an ever-growing workforce
that is readily available to solve complex problems such
as image labeling, translation, and speech-to-text transcrip-
tions. One salient feature of MTurk is that the tasks typi-
cally offer small monetary rewards (e.g. 10 cents) and in-
volve simple, one-shot interactions. This leads to a natural
problem solving approach where a complex problem is de-
composed into many simple, manageable subtasks, such that
each worker can make a small, relatively independent con-
tribution towards the overall solution. The algorithm then
takes care of integrating the solutions to the subtasks into a
coherent final solution to the entire problem.
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In this paper, we examine whether we can leverage on-
line labor markets’ easy access to participants to effectively
solve the information elicitation and aggregation problem
for an event with an exponentially large outcome space. Our
proposed algorithm, through simple, one-shot interactions,
adaptively collects many small pieces of potentially impre-
cise information from a large number of participants re-
cruited through an online labor market, and integrates these
information together into an accurate solution.

We consider a setting with n competing candidates, each
characterized by a hidden strength parameter. Our goal is
to predict a ranking of these candidates by producing accu-
rate estimates of their strength parameters. Participants have
noisy information about the strengths of the candidates. We
design an adaptive algorithm that at each step estimates the
strength parameters based on collected pairwise comparison
data and presents another pairwise comparison question that
myopically maximizes the expected information gain to a re-
cruited participant. We then evaluate our algorithm through
an MTurk experiment for a set of candidates for which we
know the underlying true ranking. Our experimental results
show that the adaptive method can gradually incorporate
small pieces of collected information and improve the esti-
mates of the strength parameters over time. Compared with
presenting a random pairwise comparison question at each
step, adaptive questioning has the advantage of reducing the
uncertainty of the estimates and increasing the accuracy of
the prediction more quickly. Interestingly, this is achieved
by asking more pairwise comparison questions that are less
likely to be answered correctly.

2 Related Work
Many elaborate approaches have been developed for event
forecasting. For example, prediction markets (Wolfers and
Zitzewitz 2004) allow participants to wager on the outcomes
of uncertain events and make profits by improving market
predictions. There have been several attempts to design ex-
pressive prediction markets (Chen et al. 2008; Abernethy,
Chen, and Wortman Vaughan 2011; Xia and Pennock 2011;
Pennock and Xia 2011), especially for forecasting an event
with a combinatorial outcome space (e.g. permutation of n
candidates). However, these combinatorial prediction mar-
kets can be computationally intractable to operate, and it is
more complicated for humans to interact with the markets

122

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence



than participate in simpler elicitation mechanisms such as
surveys. A study by Goel et al. (2010) showed that, for pre-
dicting outcomes of binary sports events, the relative advan-
tage of using prediction markets instead of polls was very
small. This suggests that methods requiring simple interac-
tions with participants may still provide accurate results for
the purpose of eliciting and aggregating information.

There is a rapidly evolving human computation literature
on designing workflows for solving complex problems us-
ing crowdsourcing platforms. The simpler approaches either
allow for participants to iteratively improve the solution, or
to work on the same problems in parallel (Little et al. 2009;
2010). More complex workflows attempt to break a prob-
lem down into small chunks so that the participants can
make relatively independent contributions to the final so-
lution (Kittur et al. 2011; Liem, Zhang, and Chen 2011;
Noronha et al. 2011). Our method can be seen as a workflow
that aggregates pairwise comparison results from many par-
ticipants using an adaptive algorithm, and integrates these
results into an accurate total ordering of the candidates.

Our adaptive algorithm characterizes the participants’
noisy information on the strength parameters using the
Thurstone-Mosteller model (Thurstone 1927; Mosteller
1951), which is a special case of the well known random
utility model (RUM) (McFadden 1974) in economics with
Gaussian noise. The Thurstone-Mosteller model has a long
history in psychology, econometrics, and statistics, and has
been used in preference learning (Brochu, de Freitas, and
Ghosh 2007; Houlsby et al. 2011) and rating chess play-
ers (Elo 1978). Carterette et al. (2008) demonstrate from
an information retrieval perspective that pairwise compar-
isons such as used in the Thurstone-Mosteller model are
more natural and effective for human preference elicitation
than absolute judgments. When the noise follows a Gum-
bel distribution, the RUM model becomes the Plackett-Luce
model (Plackett 1975; Luce 2005). For pairwise comparison,
the Plackett-Luce model reduces to the well known Bradley-
Terry model (Bradley and Terry 1952). We choose to use
the Thurstone-Mosteller model because of the tractability in
model estimation when using Gaussian noise.

The way our algorithm selects the next pair of candi-
dates takes an active learning approach. Interested read-
ers can refer to Settles (2009) for a comprehensive sur-
vey on active learning. Our approach is in the same spirit
as those that maximize information gain according to an
information-theoretic metric. The metric we use is the ex-
pected Kullback-Leibler divergence between the current and
updated estimated parameter distributions. Glickman and
Jensen (2005) also used this metric to optimally find pairs
for tournaments using the Bradley-Terry model. There ex-
ists some work on predicting rankings using active learn-
ing and pairwise comparison data (Long et al. 2010; Ailon
2011); however, these assume that the labeled data are accu-
rate, whereas our method allows for erroneous answers from
the participants.

3 Method
We are interested in predicting the ranking of n competing
candidates, where the true ranking is determined by hidden

strength parameters si for each candidate. If si > sj , can-
didate i is ranked higher than candidate j. Participants have
noisy information on the strength parameters.

Our method presents simple pairwise comparison ques-
tions to participants and elicits information only on the pre-
sented pair of candidates. Based on the data collected, we
estimate the strength parameters of all the candidates. As it
is costly to poll the participants, we adaptively choose (in
each iteration) the next pair of candidates that can provide
the largest expected (myopic) improvement to the current
estimation.

Let M be a n × n nonnegative matrix used to record the
pairwise comparison results. Mi,j denotes the number of
times candidate i has been ranked higher than candidate j.
Let Mi,i = 0,∀i. Then, a high-level summary of our method
with T iterations is presented in Algorithm 1 below.

Algorithm 1 Adaptive Information Polling and Aggregation
1. Initialize M to a nonnegative, invertible matrix, with
value 0 on the diagonal.
2. t = 1.
while t ≤ T do

3. Estimate the strength parameters based on M. We
use the Thurstone-Mosteller model to capture the nois-
iness of participants’ information and obtain the max-
imum likelihood estimates of the strength parameters.
See Sections 3.1 and 3.2 for details.
4. Select a pair of candidates that maximizes the ex-
pected information gain of the parameter estima-
tion. See Section 3.3 for details.
5. Obtain the answer to the pairwise comparison
question from an participant and update the matrix
M.
6. t = t+ 1.

end while

In Section 3.1, we introduce the Thurstone-Mosteller
model adopted for modeling the noisiness of the partici-
pants’ information. We discuss the method for estimating the
strength parameters of candidates in Section 3.2. Together,
these two parts detail how step 3 of Algorithm 1 is carried
out. Finally, we explain step 4 of Algorithm 1 in Section 3.3.

3.1 Noisy Information Model
To model the noisiness of the participants’ information, we
adopt the Thurstone-Mosteller model or the Probit model
with Gaussian noise. One may also adopt the Bradley-Terry
model, also called the Logit model, by setting P(ri > rj) to

1
1+esj−si

, the cdf of the logistic distribution. The difference
between the two models is very slight, but the Gaussian dis-
tribution of the Thurstone-Mosteller model is more tractable
for the adaptive approach in our algorithm.

Let s′ = (s′1, s
′
2, . . . , s

′
n) represent the absolute strength

of the n candidates. We model a random participant’s per-
ceived absolute strength of candidate i as a random vari-
able: r′i = s′i + ε′i, where the noise term is Gaussian,
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ε′i ∼ N (0, σ2) with unknown σ2. Thus, the probability for
the participant to rank candidate i higher than candidate j is

P(r′i > r′j) = P(ε′j − ε′i < s′i − s′j) = Φ

(
s′i − s′j√

2σ

)
(1)

where Φ(·) is the cumulative distribution function (cdf) of
the standard Gaussian distribution N (0, 1).

We note that the σ2 term only affects scaling. Further-
more, with a fixed number of parameters n, only their dif-
ferences affect the probabilities. Without loss of generality,
let

si =
1√
2σ

(s′i − s′k), (2)

and
ri =

1√
2σ

(r′i − s′k), (3)

where k is an arbitrary reference candidate. We then have
sk = 0, and ri = si+ εi, where εi ∼ N (0, 1/2). Effectively
we only have n − 1 unknown parameters. The probability
that a participant ranks candidate i higher than candidate j
can be written as

P(ri > rj) = Φ(si − sj). (4)

From now on, for simplicity, we will call s the strength pa-
rameters of the candidates and r the perceived strength of
the candidates.

3.2 Maximum Likelihood Estimation
Given the pairwise comparison results M, we will obtain
the maximum likelihood estimates of the strength parame-
ters for the Thurstone-Mosteller model introduced above.

The log likelihood given M is

L(s|M) =
∑
i,j

Mi,j log(Φ(si − sj)). (5)

The maximum likelihood estimators, ŝ, are the strength
parameters that maximize the log likelihood, i.e. ŝ ∈
arg maxs L(s|M).

Let φ(x) be the probability density function (pdf) of the
standard Gaussian distribution: φ(x) = 1√

2π
e−

x2

2 . Note that
φ(x) is log-concave, that is, log φ(x) is concave. According
to Bagnoli and Bergstrom (1989), the cdf of a log-concave
and differentiable pdf is also log-concave. This means that
log Φ(x) is concave in x. Thus, the log likelihood function
L(s|M) in (5) is a concave function of s and we only need to
consider the first order conditions to solve the optimization
problem.

The derivatives of L(s|M) are

∂L(M|s)

∂si
=
∑
j

Mi,j
φ(si − sj)
Φ(si − sj)

−
∑
j

Mj,i
φ(sj − si)
Φ(sj − si)

for all i. Hence, ŝ is the solution to the equation system
∂L(M|s)
∂si

= 0,∀i. This does not have a closed-form solution,
but can be solved using numerical methods.

The maximum likelihood estimators ŝ asymptotically fol-
low a multivariate Gaussian distribution. The variance and

covariance of ŝ can be estimated using the Hessian matrix
of the log likelihood evaluated at ŝ. The Hessian matrix has
elements

∂2L

∂sj∂si
= Mi,j

φ(si − sj)
Φ(si − sj)

(
si − sj +

φ(si − sj)
Φ(si − sj)

)
+ Mj,i

φ(sj − si)
Φ(sj − si)

(
sj − si +

φ(sj − si)
Φ(sj − si)

)
for i 6= j, and

∂2L

∂s2i
= −

∑
j:j 6=i

∂2L

∂sj∂si

for all i. Let H(ŝ) be the Hessian matrix at s = ŝ. Then, the
estimated covariance matrix of ŝ is the inverse of negative
H(ŝ), i.e.

Σ̂ = (−H(ŝ))−1.

Therefore, given M, our knowledge on s can be approxi-
mated by the multivariate Gaussian distribution N (ŝ, Σ̂).

3.3 Adaptive Approach
At each iteration, the most valuable poll to present to a par-
ticipant is on a pair of candidates that can best improve our
current knowledge of the strength parameters.

Let Mc be the matrix of observations, ŝc be the esti-
mation of s, and Σ̂c be the estimated covariance matrix
of ŝc in the current round. Because ri = si + εi, where
εi ∼ N (0, 1/2) is independent Gaussian noise, the pre-
dicted perceived strength of candidates by a random par-
ticipant follows a multivariate Gaussian distribution: r̂c ∼
N (ŝc, Σ̂c + Σε), where Σε is the covariance matrix of the
εi and has value 1/2 on the diagonal and 0 everywhere else.
Hence, given a pair of candidates i and j, the predicted prob-
ability that a random participant will rank candidate i higher
than candidate j is

p̂ci,j = P(r̂ci > r̂cj) = Φ

(
ŝci − ŝcj

1 + Σ̂c(i, i) + Σ̂c(j, j)− 2Σ̂c(i, j)

)

where Σ̂c(i, j) is the element of Σ̂c at row i and column j.
This means that at each iteration, for each pair of candidates
i and j, we can predict how likely a random participant will
rank i higher than j and similarly will rank j higher than i.

Suppose we present the pair of candidates i and j to a par-
ticipant. If the participant ranks i higher than j, our matrix
of observations will become Mij , which is identical to Mc

everywhere except Mij(i, j) = Mc(i, j) + 1. We denote the
approximate distribution obtained from the maximum like-
lihood estimation given Mij as N (ŝij , Σ̂ij). Intuitively, if
N (ŝij , Σ̂ij) is very different from our current estimation
N (ŝc, Σ̂c), the extra observation has a large information
value. Thus, we use the Kullback-Leibler divergence, also
called relative entropy, to measure the information value.
The Kullback-Leibler divergence between the two multivari-
ate normal distributions is

DKL(N (ŝij , Σ̂ij)‖N (ŝc, Σ̂c)) =
1

2

[
tr
(

(Σ̂c)−1Σ̂ij
)

(6)

+
(
ŝc − ŝij

)>
(Σ̂c)−1(ŝc − ŝij)− log

(
|Σ̂ij |
|Σ̂c|

)
− n

]
,
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Figure 1: Two example pictures. The left picture has 342 dots, and the right one has 447 dots.

where n is the dimension of the random vectors, which
equals the number of candidates, and |Σ̂ij | is the determi-
nant of Σ̂ij . Similarly, if the participant ranks j higher than i,
our matrix of observations will become Mji, which is iden-
tical to Mc everywhere except Mji(j, i) = Mc(j, i) + 1. The
new approximate distribution becomes N (ŝji, Σ̂ji). The
Kullback-Leibler divergenceDKL(N (ŝji, Σ̂ji)‖N (ŝc, Σ̂c))
can be calculated analogously to (6).

Putting all pieces together, for each pair of candidates i
and j, we can calculate the expected information gain of
polling an participant on the pair as

g(i, j) =p̂ci,jDKL(N (ŝij , Σ̂ij)‖N (ŝc, Σ̂c)) (7)

+ p̂cj,iDKL(N (ŝji, Σ̂ji)‖N (ŝc, Σ̂c)).

At each iteration, we pick the pair with the maximum ex-
pected information gain and present it to another participant.

4 Experiment
We experimentally evaluate the effectiveness of our method
in polling and aggregating information through many sim-
ple, one-shot interactions with participants recruited from
MTurk. In our experiment, each candidate was a picture
containing a relatively large number of dots (Horton 2010).
We generated 12 different pictures, each having 318, 335,
342, 344, 355, 381, 383, 399, 422, 447, 460, and 469 non-
overlapping dots respectively. The number of dots x in each
picture was independently drawn according to a distribu-
tion such that P(x) ∝ 1/x for x ∈ [300, 500]. Figure 1
presents two example pictures used in the experiment. The
goal was to use the method introduced in the previous sec-
tion to estimate the relative number of dots in these 12 pic-
tures in order to correctly rank these pictures in decreasing
number of dots. There are several reasons that we chose pic-
tures with dots as the candidates for our experiment: (1) we
know the correct ranking and can more objectively evaluate
the proposed method; (2) the number of dots in each picture
is large enough that counting is not an option for partici-
pants, introducing uncertainty; (3) the differences in number
of dots across pictures vary and some pairs are more difficult
to compare than others; for example, pictures in some adja-
cent pairs differ by only 2 dots, while those in some other
adjacent pair are separated by 26 dots.

We ran our experiment on MTurk. For each HIT (Hu-
man Intelligence Task in MTurk’s terminology), we pre-
sented a pair of pictures, randomly placing one on the left
and the other on the right, and asked a MTurk user (Turker)
to choose the picture that contained more dots. The base re-
ward for completing a HIT was $0.05. If the Turker correctly
selected the picture with more dots, we provided another
$0.05 as a bonus. Using the adaptive method described in
the previous section, we compute an estimate of the strength
parameters which reflect the relative differences between the
number of dots in the pictures, and decide which pair of pic-
tures to present to the next Turker.

The matrix M was initialized to have value 0 on the diag-
onal and 0.08 everywhere else. The effect of this was that
our initial estimate of the strength parameter wasN (0,Σ0),
where Σ0 had value 1.64 on the diagonal and value 0.82 ev-
erywhere else. This can be interpreted as our prior belief of
the strength parameters without any information.

For adaptive polling, we ran 6 trials. For each trial, we
recruited 100 participants assuming that the budget is only
enough for collecting 100 correct answers. To evaluate the
advantage of our adaptive approach, we ran another 6 trials
(with 100 HITs in each trial) of the random polling method,
where the pair in each HIT was randomly selected. In our
experiment, each HIT was completed by a Turker with a
unique ID. In other words, we interacted with each partic-
ipating Turker only once.

5 Results
In our setting, we consider the number of dots in each pic-
ture as its absolute strength parameter s′i, the value of which
we know as the experimenter. However, in order to evalu-
ate our method, we need to establish a “gold standard” for
the strength parameters, which are relative to the strength
sk = 0 of a reference candidate k, as defined in equa-
tion (2). Thus, we need to transform the number of dots in
each picture into their strength parameters, which means that
we need a good estimate of 1√

2σ
according to equation (2),

si = 1√
2σ

(s′i − s′k). We run a Probit regression (McCullagh
and Nelder 1989) on the 1200 pairwise comparison results
collected from all 12 trials. Specifically, let Y be 1 if the left
picture is selected and 0 if the right picture is selected. Let
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Figure 2: Frequency of the left picture being selected in the
1200 pairwise comparisons of all 12 trials. The x-axis repre-
sents the difference in number of dots between the left and
right pictures (left − right). The observations are grouped
into 7 buckets according to the difference in dots. Each
bar represents the empirical frequency for the correspond-
ing bucket.The curve is Φ(0.017x).

X be the number of dots in the left picture minus the number
of dots in the right picture. Then, P(Y = 1|X) = Φ(Xβ),
where β = 1√

2σ
, and we have 1200 observations for (X,Y ).

The Probit regression gives us an estimate β̂ = 0.017. Multi-
plying (s′i−s′k) by β̂, we obtain the “gold standard” strength
parameters -0.41, -0.12, 0, 0.03, 0.22, 0.66, 0.7, 0.97, 1.36,
1.79, 2.01, and 2.16 for the 12 pictures. The picture with
342 dots (the third lowest) is used as the reference picture
and hence has a strength parameter of 0. Since we only per-
form a linear transformation, a picture with more dots has a
larger “gold standard” strength parameter.

A fair concern with our model is whether the Thurstone-
Mosteller model accurately characterizes the participants’
information in our setting. To evaluate this assumption, we
compare the empirical frequencies of the Turkers’ responses
with those predicted by the Thurstone-Mosteller model. By
equation (1), the probability for a participant to select pic-
ture i in a pairwise comparison between pictures i and j is
Φ
(
s′i−s

′
j√

2σ

)
, and we estimated 1√

2σ
= 0.017 using all the

collected data. Thus, the Thurstone-Mosteller model pre-
dicts that the empirical frequencies of the Turkers’ responses
should closely follow the distribution Φ(0.017(s′i − s′j)).
Figure 2 plots the empirical frequency of the left picture be-
ing selected in our experiment for seven brackets of differ-
ences in dots between the left and right pictures. The em-
pirical frequency matches the cdf well, indicating that our
setting does not significantly deviate from the Thurstone-
Mosteller model. We notice that Turkers have a slight bias
toward selecting the picture on the right, because when the
difference in number of dots is around 0, the frequency of

Figure 3: The dynamics of the estimated strength parame-
ters for an adaptive polling trial. The x-axis is the number of
iterations. The y-axis is the value of the estimated strength
parameters. The rightmost part of the figure labels the value
of the “gold standard” strength parameter for each picture.

the left picture being selected is about 40%, in contrast to
the 50% predicted by the model.

Next, we look into whether our method effectively incor-
porates information over time. Figure 3 shows the dynamics
of the estimated strength parameters for one of the adap-
tive polling trials 1. Since the strength parameter for the pic-
ture with 342 dots is set to 0, the estimates are for the other
11 pictures. The lines are colored in grayscale such that the
lightest color corresponds to the picture with the most dots
and the darkest line corresponds to the picture with fewest
dots. We can see that all pictures start with an estimated
strength parameter of 0. As more pairwise comparisons are
polled, the estimated strength parameters diverge. The over-
all trend is that the estimated strength parameters of pictures
with more dots increase and those of pictures with less dots
decrease, showing that information is aggregated into the es-
timates over time. The right side of Figure 3 labels the value
of the “gold standard” strength parameter for each picture.
At the end of 100 iterations, the estimated strength parame-
ters are close to the gold standard strength parameters. The
produced ranking is generally correct, except that two adja-
cent pairs are flipped. A closer look reveals that these two
flipped pairs have the smallest difference in dots among all
adjacent pairs of the 11 pictures, with 381 and 383 dots and
344 and 355 dots respectively.

Finally, we compare the performance of adaptive polling
with that of random polling. In addition to our collected data,
we also run 100 trials of simulation for each method using
the “gold standard” strength parameters to understand what
we should expect to see if our model perfectly captures the
noisiness of the setting and we know the strength parame-

1The other 5 adaptive polling trials exhibit similar dynamics.
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Figure 4: Performance comparison between adaptive polling and random polling. Black lines are for adaptive polling while grey
lines are for random polling. Each thin line corresponds to an experimental trial. The thick lines are the average value of 100
simulations using the “gold standard” strength parameters. The two dashed lines of the same color give the 20%-80% range of
the simulated values. The x-axes are the number of iterations. Figure A plots the entropy of the estimated distributionN (ŝ, Σ̂).
Figure B shows the log score — the logarithm of the pdf of N (ŝ, Σ̂) evaluated at the “gold standard” strength parameters.
Figure C presents the fraction of the pairwise comparison questions that are correctly answered.

ters. Figure 4 presents the results of the MTurk experiments
and our simulations.

Intuitively, we expect the adaptive method to reduce the
entropy of the estimated distribution more quickly than the
random method, since the adaptive method is optimized for
quickly reducing the uncertainty of the probabilistic esti-
mates of the strength parameters. In Figure 4.A, we show
a plot of the entropy of the estimated distribution N (ŝ, Σ̂),

which is calculated as log

√
(2πe)n|Σ̂| where |Σ̂| is the de-

terminant of Σ̂. This figure confirms that the entropy of the
estimated distribution indeed decreases faster for the adap-
tive polling than for the random polling. The difference be-
tween the two methods in terms of entropy is statistically
significant by two-tailed t-test (p = 0.01).

Next, Figure 4.B presents a comparison of the log score
of the estimated distributions for the two methods. The log
score is often used to measure the accuracy of a probabilistic
prediction, so it is a good indicator for how well our method
performs in estimating the strength parameters. Having a
high log score means that our method produces accurate es-
timates of the strength parameters. Given an estimated distri-
butionN (ŝ, Σ̂) and the “gold standard” strength parameters
s, the log score is the logarithm of the pdf ofN (ŝ, Σ̂) evalu-
ated at s. Figure 4.B shows that the log scores for both adap-
tive and random polling increase over time. The log scores
for adaptive polling are higher but the variation is large. The
differences between the two methods in terms of log score
is statistically significant by two-tailed t-test (p = 0.016).

Interestingly, according to Figure 4.C, the fraction of pair-
wise comparison questions that are answered correctly is
lower for adaptive polling than for the random polling, and
the difference is statistically significant by two-tailed t-test
(p = 0.005). This observation suggests that adaptive polling
tends to ask relatively difficult comparison questions. The

answers to these questions are more valuable for improv-
ing the estimates of the strength parameters, even though the
participants are less likely to answer them correctly. More-
over, since we pay Turkers a bonus only for correct answers,
this implies that the cost of adaptive polling is lower than
that of random polling. For our experiment, an average of
10% in bonus payment is saved per trial by using adaptive
polling instead of the random method.

6 Discussion and Conclusion
Although the Thurstone-Mosteller model suitably captures
the noisiness of participants’ information in our experi-
ments, it has some limitations. The model implicitly as-
sumes that participants are ex-ante equally informed and
their mistakes are independent. These may not hold in some
settings where some participants are better informed than
others and mistakes of participants are correlated. In future
work, we are interested in studying how our approach per-
forms in such settings and developing suitable methods for
them.

Even though we only evaluated our method for a set-
ting with a known underlying ranking of the candidates, our
method can be easily adapted for settings when the underly-
ing ranking is unknown. In this case, it is crucial to decide
on a suitable termination condition for our algorithm. Since
our model produces probabilistic estimates of the strength
parameters, we could, for instance, choose to stop the algo-
rithm once a desired entropy of the estimated distribution is
reached. It is an interesting future direction to explore dif-
ferent termination conditions for applying our algorithm to
such settings.

In conclusion, we demonstrate that eliciting and aggre-
gating information about the ranking of n competing candi-
dates can be effectively achieved by adaptively polling par-
ticipants recruited from an online labor market on simple
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pairwise comparison questions and gradually incorporating
the collected information into an overall prediction. Our ex-
periments demonstrate that this method is robust against the
unpredictable noise in the participants’ information and it is
effective in eliciting and aggregating information while re-
quiring only simple interactions with the participants.
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