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Abstract

Recently crowdsourcing services are often used to col-
lect a large amount of labeled data for machine learn-
ing, since they provide us an easy way to get labels at
very low cost and in a short period. The use of crowd-
sourcing has introduced a new challenge in machine
learning, that is, coping with the variable quality of
crowd-generated data. Although there have been many
recent attempts to address the quality problem of multi-
ple workers, only a few of the existing methods consider
the problem of learning classifiers directly from such
noisy data. All these methods modeled the true labels as
latent variables, which resulted in non-convex optimiza-
tion problems. In this paper, we propose a convex opti-
mization formulation for learning from crowds without
estimating the true labels by introducing personal mod-
els of the individual crowd workers. We also devise an
efficient iterative method for solving the convex opti-
mization problems by exploiting conditional indepen-
dence structures in multiple classifiers. We evaluate the
proposed method against three competing methods on
synthetic data sets and a real crowdsourced data set and
demonstrate that the proposed method outperforms the
other three methods.

Introduction
Machine learning approaches have been the majority in var-
ious areas such as natural language processing, computer vi-
sion, and speech recognition. To reduce the time and finan-
cial costs to collect a large amount of labeled data for apply-
ing machine learning methods, it is becoming increasingly
popular to use crowdsourcing services such as the Amazon
Mechanical Turk1 (AMT), which makes it easy to ask the
general public to work on relatively simple tasks at very low
cost through the Internet. For example, Snow et al. (2008)
validated the use of crowdsourcing services for natural lan-
guage processing tasks by using the AMT to collect annota-
tions by non-experts.

However, a new problem has been introduced in machine
learning by using crowdsourcing, the quality control prob-
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lem for crowd workers. The quality of the data obtained
from crowd workers is often much lower than that of data
collected in the ordinary controlled environments. In crowd-
sourcing services, some workers are highly skilled and pro-
vide high quality data, while some are unskilled and often
give almost random responses. In the worst case, a spam-
mer intentionally produces random data to earn easy money.
Welinder and Perona (2010) pointed out the existence of
sloppy workers in their data set whose labels did not con-
tain any information, and Snow et al. (2008) also reported
that the labels given by some workers were almost random.

One promising solution to deal with such noisy workers
is repeated labeling (Sheng, Provost, and Ipeirotis 2008).
This involves obtaining multiple labels to each instance from
multiple workers and estimating the true labels from the
noisy labels. This solution is widely used in the context of
learning from crowds. The existing approaches followed this
approach and modeled various parameters such as the abil-
ity of workers and the difficulty of instances (Whitehill et al.
2009; Welinder et al. 2010; Yan et al. 2011). Since the goal
of supervised learning is not only to estimate true labels for
training data but to obtain predictive models for future data,
Raykar et al. (2010) proposed a method which jointly esti-
mates both the true labels and a classifier. Yan et al. (2011)
also used such a policy and introduced active learning frame-
work. The existing work about learning from crowds is sum-
marized in Table 1.

These methods addressed the label uncertainty problem
in various ways, but there is a serious problem of non-
convexity in the prior approaches. Since most of the existing
methods model the true labels as latent variables, the result-
ing optimization problems are not convex. Therefore most of
them use EM-style inference methods, and there is no guar-
antee of obtaining optimal solutions. In fact, these methods
depend on their initial states, which sometimes causes poor
performance with high variance.

In this paper, we propose a new approach to address this
problem. Instead of introducing latent variables to estimate
the true labels, which is the source of the non-convexity, we
introduce a personal classifier for each of the workers, and
estimate the base classifier by relating it to the personal mod-
els. This model naturally takes account into the ability of
each worker and the instance difficulty for each worker, and
this idea leads to a convex optimization problem, Further-
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Table 1: Comparison between existing methods and our method. The proposed method is the first to formulate learning from
crowds as a convex optimization problem. All methods modeled the variable ability of workers (worker ability), and some
methods also modeled the variable difficulty of instances (instance difficulty).

inference
worker
ability

instance
difficulty

convex
formulation comment

Dawid and Skene (1979) label X
Sheng, Provost, and Ipeirotis (2008) label X active learning

Whitehill et al. (2009) label X X
Donmez, Carbonell, and Schneider (2009) label X X active learning

Welinder et al. (2010) label X X
Welinder and Perona (2010) label X online learning

Raykar et al. (2010) label & model X
Yan et al. (2010) label & model X X semi-supervised
Yan et al. (2011) label & model X X active learning

Proposed model X X X

more, we exploited the problem structure to devise an effi-
cient iterative optimization algorithm. Finally, we perform
experiments using several data sets including a real data set
and demonstrate the advantage of the proposed model over
the model of Raykar et al. (2010), which is one of the state-
of-the-art models.

Although the resulting convex optimization problem is
similar to that for the multi-task learning model proposed
by Evgeniou and Pontil (2004), our model differs from the
model of Evgeniou and Pontil (2004) in two ways. One is
that our model gives a new interpretation to the centroid of
the parameters of multiple tasks, which doesn’t have an ob-
vious meaning in the model of Evgeniou and Pontil. Another
is that the main goals of our method and the method of Ev-
geniou and Pontil are different. In a multi-task context, the
main goal is to estimate a parameter for each task, while the
main goal in a crowdsourcing context is to get the centroid,
which is interpreted as the parameter of the base classifier.

In summary, this work makes two main contributions: (i)
We formulated the learning-from-crowds problem as a con-
vex optimization problem by introducing personal models,
and (ii) we devised an efficient iterative method for solving
the convex optimization problem by exploiting the condi-
tional independence relationships among the models.

Learning from Crowds
We first define the problem of learning from crowds. For
simplicity, we focus on a binary classification problem in
this paper. However, the proposed approach can be directly
applied to more general cases, including multi-class classi-
fication and regression problems.

The problem of learning from crowds is defined as a gen-
eralized case of supervised learning in that we have multi-
ple noisy labels for each instance. Let us assume that we
have N problem instances X = {xi}N

i=1 where xi ∈ RD is a
D-dimensional real-valued feature vector, and that there are
J workers who can give labels to the instances via crowd-
sourcing. Let I j ⊆ {1, . . . ,N} be the index set of instances
that the j-th worker gives labels. Let yi j ∈ {0,1} be a noisy
label that the j-th worker gives to the i-th instance xi, let

Y j = {yi j | i ∈ I j} be the set of labels given by the j-th
worker, and let Y =

⋃J
j=1 Y j be the set of all labels acquired

by using crowdsourcing.
Our goal is to estimate a binary classifier f : RD→{0,1}

given (X ,Y ) as a training data set.

A Convex Formulation for
Learning from Crowds

We first model the labeling processes of the multiple work-
ers by introducing personal classifiers, which leads to a con-
vex optimization problem. We also propose an efficient it-
erative optimization algorithm by exploiting the conditional
independence structure in multiple classifiers.

Labeling Process Using Personal Classifiers
The basic idea to avoid a non-convex optimization problem
is to bring in a personal classifier for each worker instead of
using latent variables to represent the true labels.

Let us represent the base model as the logistic regression
model parameterized by w0,

Pr[y = 1 | x,w0] = σ(w>0 x) = (1+ exp(−w>0 x))−1,

where σ denotes the sigmoid function. We also model the
labeling process of each worker j as a logistic regression
model parameterized by w j as

Pr[y j = 1 | x,w j] = σ(w>j x) ( j ∈ {1, . . . ,J}).

Our assumption is that the personal models are related
with the base model. Therefore, we associate the base model
and the personal models with the relation

w j = w0 +v j ( j ∈ {1, . . . ,J}), (1)

where v j models the differences in ability and characteristics
of the individuals.

One may notice that this model looks very similar to the
multi-task learning model proposed by Evgeniou and Pon-
til (2004) if we consider each worker as a task. However, it
is the objective of each method that distinguishes our model
from their model. The goal of multi-task learning is to obtain
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the model parameters {w j}J
j=1 for different tasks (which are

the personal models in our context), while our goal is to ob-
tain the base model with w0. This point clearly distinguishes
the semantics of the models.

Convex Objective Function
To solve the estimation problem of the model parameters
{w j}J

j=0 as statistical inference, we consider a generative
process.

We assume that the parameter of the base classifier is gen-
erated from a prior distribution Pr[w0], and the parameter of
the j-th worker is generated from Pr[w j | w0]. Specifically,
we define them as Gaussian distributions,

Pr[w0 | η] = N (0,η−1I),

Pr[w j | w0,λ] = N (w0,λ
−1I),

where η and λ are positive constants. After {w j}J
j=1 are de-

termined, each label yi j is generated from Pr[yi j | xi,w j].
By denoting W = {w j | j ∈ {1, . . . ,J}}, the posterior dis-

tribution of w0 and W given the training data (X ,Y ) can be
written as

Pr[W,w0 | X ,Y ,η,λ]

∝Pr[Y |W,X ]Pr[W | w0,λ]Pr[w0 | η].

Let F(w0,W) be the negative log-posterior distribution of
w0 and W omitting the constants, which is written as

F(w0,W) =−
J

∑
j=1

∑
i∈I j

l(yi j,σ(w>j xi))

+
λ

2

J

∑
j=1
‖w j−w0‖2 +

1
2

η‖w0‖2

where l(s, t)= s log t+(1−s) log(1−t). Note that the objec-
tive function F(w0,W) is convex. Therefore, the maximum-
a-posteriori (MAP) estimators of W and w0 are obtained by
solving an optimization problem:

minimize F(w0,W) w.r.t. w0 and W.

Algorithm
Noticing the conditional independence relationships among
the model parameters {w j}J

j=0, we can devise the following
alternating optimization algorithm, where we repeat the two
optimization steps, one with respect to w0 and the other with
respect to {w j}J

j=1, until convergence.

Step 1. Optimization w.r.t. w0
Given {w j}J

j=1 fixed, the optimal w0 is easily obtained as
a closed form solution:

w?
0 =

λ∑
J
j=1 w j

η+ Jλ
.

Step 2. Optimization w.r.t. W
Given w0 fixed, the parameters {w j}J

j=1 are independent
of each other. Therefore, we can work on the indepen-
dent optimization problem for a particular j ∈ {1, . . . ,J}.

This implies that a large problem can be decomposed into
relatively small problems, which leads to an efficient al-
gorithm. To solve each optimization problem, we can use
any numerical optimization method. In our implementa-
tion, we employ the Newton-Raphson update,

wnew
j = wold

j −α ·H−1(wold
j )g(wold

j ,w0),

where α > 0 is the step length, and the gradient g(w j,w0)
and the Hessian H(w j) are given as

g(w j,w0)

=−

(
∑
i∈I j

(yi j−σ(w>j xi))xi

)
+λ(w j−w0),

H(w j)

=

[
∑
i∈I j

(1−σ(w>j xi))σ(w>j xi)xikxil

]
k,l

+λId ,

where xik represents the k-th elements of xi, and [ak,l ]k,l is
a D×D matrix with the (k, l)-element equal to ak,l .

Experiments
We conducted three types of experiments to assess the pro-
posed method using a synthetic data set without spammers, a
synthetic data set with spammers, a benchmark data set, and
a real data set called microblogging message data set, and
we demonstrate the advantage of the proposed method over
the existing method of Raykar et al. (2010) and two other
baseline methods.

Competing Methods
Baseline Methods. First we introduce two baseline meth-
ods. One is called the Majority Voting method that uses a
majority voting strategy to estimate the true labels. The other
is called the All-in-One-Classifier method that abandons all
of the worker IDs and merges all of the acquired labels into
one classifier.
• Majority Voting Method (MV method)

This is a typical heuristic in the context of learning from
crowds. Given labels {yi j}J

j=1 for an instance xi, the true
label yi for the instance xi is estimated using majority vot-
ing as

yi =


1 if ∑

J
j=1 yi j > J/2,

0 if ∑
J
j=1 yi j < J/2,

random otherwise.

• All-in-One-Classifier Method (AOC method)
This method is also a popular heuristic that considers
(X ,Y ) as training data for one classifier, i.e., we forget
the worker IDs and use all labels to learn one classifier.

Latent Class Model (LC model). We review the method
proposed by Raykar et al. (2010) as one of the state-of-the-
art methods, calling it the latent class model in this paper.
Similar to our model, they also assume a logistic regression
model for the classification model as

Pr[yi = 1 | xi,w0] = σ(w>0 xi).
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To model the labeling process of each worker, they introduce
the two-coin model{

α j = Pr[yi j = 1 | yi = 1],
β j = Pr[yi j = 0 | yi = 0]. (2)

If the true label is 1, the j-th worker gives the true label
1 with probability α j and 0 with probability 1−α j. If the
true label is 0, the j-th worker gives the true label 0 with
probability β j and 1 with probability 1−β j.

By using the EM algorithm2, we obtain an approximation
of the maximum-likelihood estimators of model parameters.

Data Sets
We set up four types of data sets, synthetic data sets with
and without spammers, a benchmark data set, and a mi-
croblogging message data set. The former three data sets
are simulated data sets and the last data set is a real data
set. For the simulated data sets, we evaluated the predictive
performance with the average and the standard deviation of
the AUCs over 100 runs and the number of instances each
worker gives was fixed as |I j| = N, i.e., each worker gave
labels to all instances. For the real data set, we evaluated the
predictive performance with the precision, the recall, and the
F-measure.

Synthetic Data Sets without Spammers. We tested two
sets of synthetic data; one was generated with the proposed
model, and the other with the LC model.

(i) Data generation with the proposed model (Our data)
The parameter of the j-th worker w j was generated from
Pr[w j | w0,λ]. We assigned the label yi j = 1 with prob-
ability Pr[yi j = 1 | xi,w j] and yi j = 0 with probability
Pr[yi j = 0 | xi,w j].

(ii) Data generation with the LC model (Raykar’s data)
For each instance xi ∈ X , if Pr[yi = 1 | xi,w0] ≥ γ, we
assigned the true label yi = 1 to xi, else yi = 0 to xi, where
γ was a positive constant. Then we flipped the true label
by using the rule of Eq. (2) to simulate the j-th worker’s
label.

Instances {xi ∈ R2}N
i=1 were sampled from the uniform

distribution U([−20,20]× [−20,20]). We set the model pa-
rameters α j = β j = 0.55 ( j ∈ {1, . . . ,J}), w0 = [1,0]>,σ =

1and λ = 10−3 to generate the data sets. The initial values
were generated from the Gaussian distribution N (0,I). We
varied the number of instances N from 10 to 50 by 10s, and
the number of workers J from 10 to 100 by 10s. We calcu-
lated the AUC by generating 100,000 test instances.

Synthetic Data Sets with Spammers. In real-world situ-
ations, some workers act as spammers, who simply seek to
make money with little effort. It is important to exclude the
effect of such noisy labels because learning from noisy data
can contaminate the results. We simulated a data set that in-
cluded labels by spammers, especially random workers who
gave random labels. Instances {xi ∈ R2}N

i=1 were sampled

2We added a regularization term for w0 to avoid over-fitting in
our experiments.

from the uniform distribution U([−20,20]× [−20,20]) and
labels were generated from the LC model. We assumed two
types of workers: skilled workers and spammers. We set the
ability of the skilled workers to be α j = β j = 0.85 and that
of the spammers to be α j = β j = 0.5. We varied the ra-
tio of the number of skilled workers to the total number
of workers from 0 to 1 by steps of 0.1 (where the ratio is
r = (#skilled workers)/(#workers)).

Benchmark Data Set. We used a benchmark data set,
“Wine Quality” (Cortez et al. 2009), from the UCI Machine
Learning Repository (Frank and Asuncion 2010). We sim-
ulated multiple noisy workers by following the latent class
model, because the UCI Machine Learning Repository had
no data set with multiple workers. We used the data of red
wine in the “Wine Quality” data set, which had 4,898 in-
stances with 11-dimensional feature vectors. The multi-class
labels of this data set were binarized to be used as training
labels. The data were randomly divided into a training set
(70%) and a test set (30%) in each run. We fixed the number
of instances N and varied the number of workers J and the
ability of the workers {α j}J

j=1,{β j}J
j=1.

Microblogging Message Data Set. We used a data set for
a Named Entity Recognition (NER) task, which deals with
the identification of the names of persons, organizations, lo-
cations, and similar entities in sentences. Finin et al. (2010)
created a Twitter data set3 where each token in tweets (texts)
was labeled by workers of the AMT, and we used this data
as a training and test set. Unlike standard data sets for NER,
the segment boundary of each entity was not given in the
data set. Therefore we simply considered the task as a bi-
nary classification problem to identify whether each token
was in a named entity (yi = 1) or not (yi = 0). The number
of the labeled tokens was 212,720, and each token was la-
beled by two workers. The data set had 269 workers in total.
We constructed a training set, which contained 120,968 in-
stances and 135 workers. There were also gold standard la-
bels which contained 8,107 instances, and we used them as
a test set. We omitted the named entity labels for the @user-
names4 in the same way as the paper of Ritter, Clark, and
Etzioni (2011), because it was too easy to identify them.
The feature representation for each token was the same as
that for the named entity segmentation of tweets in the pre-
vious work (Ritter, Clark, and Etzioni 2011). To reduce the
number of the model parameters, we selected the features
that appeared more than once in the training set, and we ob-
tained 161,903-dimensional feature vectors. We evaluated
the performance of classifiers by calculating the precision,
recall, and F-measure on the test set.

Results
The averages of the AUCs are summarized in Figs. 1–4 and
the averages and the standard deviations of the AUCs in Ta-
ble 2 for all of the data sets. We experimentally show that

3The data set is available at http://sites.google.com/site/
amtworkshop2010/data-1

4The @ symbol followed by their unique username is used to
refer to other users.
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the proposed method and the AOC method outperformed
the other two methods with homogeneous workers in Syn-
thetic Data Sets without Spammers, the proposed method
outperformed the other three methods with heterogeneous
workers in Synthetic Data Sets with Spammers and Mi-
croblogging Message Data Set, and all the methods per-
formed almost equally in Benchmark Data Set.

Synthetic Data Sets without Spammers. We plot the av-
erages of the AUCs on our, Raykar’s, and the two baseline
methods in Figs. 1 and 2 and the averages and the standard
deviations for specific parameters are extracted in Table 2.
For almost all values of J and N, the AUCs of the proposed
method and the AOC method were higher than those of the
MV method and the LC model. Interestingly, even on syn-
thetic data generated by the LC model (Raykar’s Data), our
method and the AOC method were better than the LC model.
The advantage of our method and the AOC method were
also seen in Table 2, where the standard deviations of these
methods were smaller than those of the other methods in the
experiments on Raykar’s data. These facts suggest that the
convexity of the objective function contributed to the high
average of the AUCs, because there is no dependency on
initial conditions and the probability that a poor classifier is
obtained is eliminated. However, there was almost no dif-
ference between the results of the proposed method and the
AOC method in this setting. This is because all of the work-
ers are homogeneous in their ability. In the next experiment
with spammers, these two methods behaved differently.

Synthetic Data Sets with Spammers. We plot the aver-
ages of the AUCs on our, Raykar’s, and the two baseline
methods in Fig. 3. In this setting, the proposed method out-
performed the other three methods in both the averages and
the standard deviations. In particular, when the number of
experts was small (r < 0.4), the difference between the pro-
posed method and the AOC method became large. In addi-
tion, looking at the results of the LC model in Table 2, its
AUC increases and the standard deviation decreases rapidly
as r increases. This suggests an important property of the
LC model in that it works well as long as there are a certain
number of skilled workers.

Benchmark Data Set. We also summarize the result of
the experiments on the benchmark data set in Fig. 4. For
almost all values of α j, β j, and J, the performance of the
four methods was almost the same. This suggests that if the
number of instances is large, the classifier can be estimated
well with any method.

Microblogging Message Data Set. The results of experi-
ments on this data set are summarized in Table 3. For each
model, we chose the result of the highest F-measure for each
method. This table clearly shows that our model is superior
to the other methods in the F-measure and the recall.

Related Work
Research on learning from multiple noisy workers without
true labels started in the context of aggregating diagnoses
by multiple doctors to make more accurate decisions. In the

Table 3: Precision, Recall, and F-measure comparisons on
the Microblogging Message Data Set

Precision Recall F-measure
Our Model 0.651 0.766 0.704

Raykar’s Model 0.761 0.553 0.640
AOC Model 0.571 0.700 0.629
MV Model 0.575 0.701 0.632

seminal work by Dawid and Skene (1979), they modeled
the ability and bias of the workers, and used the EM algo-
rithm to estimate the true labels considered as latent vari-
ables. Most of the existing research in this field followed
their model and extended it in various ways. For example,
Smyth et al. (1995) dealt with the problem of inferring true
labels from subjective labels of Venus images.

Around 2005, the appearance of crowdsourcing services
based on the Web such as the AMT kindled research in-
terests in this field. Sheng, Provost, and Ipeirotis (2008)
showed that accuracy of classifiers could be improved by
using the repeated labeling technique and the repeated la-
beling required lower costs compared to the single labeling
even if the cost of acquiring labels was expensive.

However they made a strong assumption that all of the
workers were of the same ability. To address the prob-
lem, some extended the method proposed by Dawid and
Skene (1979) to model the ability of workers and the dif-
ficulty of instances. Raykar et al. (2010) modeled the abil-
ity of each worker, and Whitehill et al. (2009) and Welin-
der et al. (2010) also modeled the difficulty of each in-
stance. Moreover, recent efforts introduced many other as-
pects into machine learning such as cost-sensitive learning.
Sheng, Provost, and Ipeirotis (2008), Donmez, Carbonell,
and Schneider (2009), and Yan et al. (2011) used active
learning approaches to this problem, and Welinder and Per-
ona (2010) used online learning approach. These approaches
are summarized in Table 1.

An inference target is one of the important aspects which
categorizes the existing research into two groups: the one
aiming to infer the true labels and the other aiming to in-
fer mainly predictive models. Most of the existing meth-
ods are categorized into the former group, while the meth-
ods of Raykar et al. (2010), Yan et al. (2011) and our pro-
posed method are categorized into the latter group. Raykar
et al. (2010) and Yan et al. (2011) modeled a classifier as
a model parameter and the unobserved true labels as latent
variables and inferred them using the EM algorithm, while
we infer only the models without estimating the true labels,
which enables us to formulate the problem as a convex opti-
mization problem. Also the method proposed by Dekel and
Shamir (2009) aimed to infer only predictive models. In the
method, low-quality workers and labels provided by them
were excluded to improve the quality of classifiers.

The purpose of using crowdsourcing is not limited to the
construction of labeled data sets. Recently, crowdsourcing
has been used to realize human computation, which is a new
paradigm to unify machine-power and man-power to solve
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Figure 1: AUC comparisons on the synthetic data without
spammers. Given constant N = 30, we varied J from 10 to
100 by steps of 10. The horizontal axis corresponds to J, and
the vertical axis to the AUC. (Left) The results for the data
set generated with the LC model. (Right) The results for the
data set generated with our model.

Figure 2: AUC comparisons on the synthetic data without
spammers. Given constant J = 20, we varied N from 10 to
50 by steps of 10. The horizontal axis corresponds to N, and
the vertical axis to the AUC. (Left) The results for the data
set generated with the LC model. (Right) The results for the
data set generated by our model.

Figure 3: AUC comparisons on synthetic data with spam-
mers. We varied r from 0 to 1 by steps of 0.1. The horizontal
axis corresponds to r, and the vertical axis to the AUC. (Left)
The results given constants J = 10 and N = 30. (Right) The
results given constants J = 20 and N = 40.

Figure 4: AUC comparisons on “Wine Quality”. The hori-
zontal axis corresponds to α j = β j, and the vertical axis to
the AUC. (Left) The results with constant J = 20, and we
varied {α j}J

j=1 and {β j}J
j=1 from 0.55 to 0.95 by steps of

0.1. (Right) The results with constant α j = β j = 0.65, and
we varied J from 10 to 50 by steps of 10.

difficult computational problems. For examples, Tamuz et
al. (2011) used crowdsourcing to construct kernel functions,
and Gomes et al. (2011) performed clustering via crowd-
sourcing. Both approaches used crowdsourcing to identify
the similarity between two objects, which is a relative easy
task for human beings but difficult for machines.

Multi-task learning is a learning task for simultaneously
estimating multiple predictive models from multiple related
tasks. The ideas of multi-task learning date back to the mid-
dle ’90s. One of the most representative studies in the early
stages of multi-task learning is the study by Caruana (1997),
which proposed to share a hidden layer of artificial neu-
ral networks among multiple tasks. There is much existing
research on multi-task learning, so we refrain from listing
them, but the most relevant work to ours is that by Evgeniou
and Pontil (2004). Their formulation is very similar to our
formulation (Eq. (1)). However, the proposed model is dis-
tinguished clearly from their model in that they have totally
different objectives. Learning from crowds aims to estimate
the parameter for the base model, while multi-task learning
aims to estimate the parameters for different T tasks.

Conclusions
In this paper, we proposed a new approach to deal with mul-
tiple noisy workers. The proposed method is formulated as a
convex optimization problem by introducing personal clas-
sifiers. Experiments on the synthetic data set with and with-
out spammers, the benchmark data set, and the real data set
demonstrated that our approach showed the same or better
performance than that of the existing method of Raykar et
al. (2010) and the two baseline methods.
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