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Abstract
The recent popularization of social web services has
made them one of the primary uses of the World Wide
Web. An important concept in social web services is so-
cial actions such as making connections and commu-
nicating with others and adding annotations to web re-
sources. Predicting social actions would improve many
fundamental web applications, such as recommenda-
tions and web searches.
One remarkable characteristic of social actions is that
they involve multiple and heterogeneous objects such
as users, documents, keywords, and locations. However,
the high-dimensional property of such multinomial rela-
tions poses one fundamental challenge, that is, predict-
ing multinomial relations with only a limited amount of
data.
In this paper, we propose a new multinomial relation
prediction method, which is robust to data sparsity. We
transform each instance of a multinomial relation into
a set of binomial relations between the objects and the
multinomial relation of the involved objects. We then
apply an extension of a low-dimensional embedding
technique to these binomial relations, which results in
a generalized eigenvalue problem guaranteeing global
optimal solutions. We also incorporate attribute infor-
mation as side information to address the “cold start”
problem in multinomial relation prediction.
Experiments with various real-world social web service
datasets demonstrate that the proposed method is more
robust against data sparseness as compared to several
existing methods, which can only find sub-optimal so-
lutions.

Introduction
Rise of social data – Multinomial relations facilitate
information flow on the contemporary web
The recent rapid popularization of social web services such
as Twitter, Facebook, Tumblr, and Google+ has made them
one of the major uses of the World Wide Web, along with
web searches. One of the important concepts in social web
services is social actions. Annotation is one of the typical
social actions in social web services. Users can annotate var-
ious web resources, such as webpages, photos, and scientific
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literature, with keywords, and then share them with other
users through social web services such as del.icio.us, flickr,
and CiteULike. Users also forward resources to their friends
or repeat information, for example, by “retweet”ing on Twit-
ter and “reblogging” articles on Tumblr. Such actions reflect
user preferences (Nori, Bollegala, and Ishizuka 2011a), per-
spectives (Sigurbjörnsson and van Zwol 2008), trust (Mat-
suo and Yamamoto 2009), and so on. An action by a user,
such as informing his or her social network of some news,
could trigger others’ actions, such as commenting on it or
forwarding it to others through their social networks. Such
chains of actions facilitate information flow in the users’ so-
cial networks. Understanding the context of users’ actions,
that is, how they are related to other users, their actions,
and available resources, is the clue to understanding various
tasks related to social web services (Lin et al. 2009).

Social actions also provide useful information to improve
many web applications. For example, user annotations en-
hance (personalized) searches (Bao et al. 2007; Heymann,
Koutrika, and Garcia-Molina 2008; Xu et al. 2008), infer-
ence of social relations (Schifanella et al. 2010), and the dis-
covery of emerging ontologies (Mika 2005). Moreover, if we
can predict such social actions, it would further extend their
applicability. For example, a tag recommendation is one of
the typical prediction tools for social actions, which suggests
personalized tags with which each user can annotate each
web resource. Tag recommendation automatically enriches
resource information (Sigurbjörnsson and van Zwol 2008;
Song et al. 2008) and improves the quality of information re-
trieval (Guan et al. 2009). Naveed et al. (2011) also reported
that the accurate prediction of “retweet” actions improved
search quality on Twitter.

In contrast with hyperlinks on the ordinary World Wide
Web that connect two resources, social actions often involve
more than two objects, such as multiple users, documents,
keywords, and locations. This introduces complications and
makes prediction tasks difficult.

A challenge in multinomial relation prediction: data
sparsity
We address the multinomial relation prediction problem,
which aims to predict relations involving multiple heteroge-
neous objects. Despite the increasing importance of multi-
nomial relation prediction, a fundamental challenge faced in
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addressing this problem is prediction with sparse observa-
tions. Since the number of possible combinations of objects
increases exponentially with respect to the number of ob-
jects involved in the relations, the number of observed re-
lations is much smaller than the number of possible com-
binations in many social web applications. In fact, Cai et
al. (2011) reported that the widely used datasets from social
tagging services such as Last.fm, MovieLens, and del.icio.us
are quite sparse, that is, less than 0.01% of the possible
combinations of users, URLs, and tags are observed. They
also pointed out that most objects are involved in only a
small number of relations and that their numbers follow
power-low distributions. In particular, we often encounter
the latter sparseness in “cold start” situations, which is re-
garded as an important problem in recommender systems
research (Schein et al. 2002).

Therefore, we need a precise relation prediction method
that is robust to data sparseness. Recently, tensor decompo-
sition methods (Kolda and Bader 2009) have often been used
for relation prediction. However, they are usually formulated
as non-convex optimization problems that suffer from local
optimal solutions (especially when observations are sparse).

Proposed solution: binomial reduction, dimension
reduction, and use of side information
We propose a new relation prediction method that is robust
to data sparseness. Our proposed method is based on two
ideas: (1) reduction from multinomial relations to sets of bi-
nomial relations, and low-dimensional embedding of the bi-
nomial relations for guaranteeing global optimal solutions,
and (2) the use of attribute information of objects to cope
with highly sparse data situations.

First, we transform each observed multinomial relation of
K objects into a set of K binomial relations between the ob-
jects and the instance of the multinomial relation involving
the objects. Figure 1 shows the transformation of a multi-
nomial relation instance (Alice, aaa.com, Bob) into three
binomial relations between the multinomial relation instance
and the three objects (that are, Alice, aaa.com, and Bob).
This transformation corresponds to the incidence matrix rep-
resentation of a hypergraph (Voloshin 2009).

Next, we apply a nonlinear dimensionality reduction tech-
nique (Belkin and Niyogi 2003) to the binomial relations
to embed the heterogeneous objects into a common latent
space, so that each object and its participating relations are
placed in close proximity in the latent space. The resultant
optimization problem is formulated as a generalized eigen-
value problem that guarantees global optimal solutions. This
results in robustness against data sparseness.

In addition, we exploit various attributes of the objects
to tackle the “cold start” problem in the multinomial rela-
tion prediction problem. For example, a user might be rep-
resented by attributes such as age, gender, and occupation,
whereas a URL might be associated with its domain and file-
type. These attributes are helpful in situations where most of
the objects are involved in only a small number of relations.

Finally, we empirically demonstrate the robustness of our
proposed method using three real-world data sets, namely,
the “retweet” and “favorite” actions on Twitter and tags for

Figure 1: Transformation from a multinomial relation in-
volving three (K = 3) different objects into a set of three
binomial relations, which is further represented as elements
of incidence matrices.

web pages on del.icio.us. The proposed method outperforms
standard tensor decomposition methods in prediction accu-
racy in sparse data situations, such as (1) when only a small
number of relations are available in the training phase or (2)
when there exist a large number of new objects in the pre-
diction phase.

Relation prediction problem
We consider the problem of estimating the likelihood that
a certain kind of relationship occurs among different kinds
of objects, such as people and webpages, given some ob-
served relations. For example, let us assume that we want
to predict the preference of people to webpages recom-
mended by someone. The goal is to predict the likelihood
that the relation “person1 likes the webpage at URL rec-
ommended by person2” holds for each combination of
(person1, URL, person2), given several known facts, such
as that the relation holds for (Alice, aaa.com, Bob).

Let us assume we have K sets of objects
S(1),S(2), . . . ,S(K), each of which contains N(k) (1 ≤ k ≤ K)
objects. In the previous example, we can take S(1) and
S(3) as people1 and S(2) as a set of URLs. We denote the
i-th object s(k,i) ∈ S(k) by s(k,i). For example, s(1,1) can
be Alice. We are also given O ⊂ S(1) × S(2) × ·· · × S(K),
which is a set of M observed relation instances. Each
observed relation instance indicates that a certain relation
(such as the like relation mentioned above) holds for a
particular combination of objects. For example, o(1) ∈ O
can be (Alice, aaa.com, Bob). Now, our goal is to
predict the likelihood that the relation holds for each
combination of objects not included in O. In other words,
we require a ranked list of object combinations included in
(S(1)×S(2)×·· ·× . . .S(K))\O.

In many realistic situations, each object is associated with
information about itself. For example, each person has his
or her demographic information and each webpage has its

1We consider person1 and person2 belong to different object
sets, because they have different role in the relation. We can con-
sider they belong to a same set when we model symmetric relations
such as friendship relation in social networks.
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content. Hence, we associate s(k,i) with a D(k)-dimensional
attribute vector x(k,i), and summarize these as a design ma-
trix given by

Φ
(k) ≡ (x(k,1),x(k,2), . . . ,x(k,N

(k)))>

for each k = 1,2, . . . ,K.
The multinomial relation prediction problem that we

focus on in this paper is summarized as follows.

Problem: Multinomial relation prediction
• INPUT:

- S(1),S(2), . . . ,S(K): K sets of objects
- O (⊂ S(1)×S(2)×·· ·× . . .S(K)): a set of M observed re-
lation instances
- Φ

(1),Φ(2), . . . ,Φ(K): K design matrices representing ob-
ject attributes

• OUTPUT: A ranked list of object combinations not in-
cluded in O, i.e., included in (S(1)×S(2)×·· ·× . . .S(K))\
O, sorted according to the likelihood of the relation

Proposed solution
One of the standard approaches to analyzing multinomial
relation is to use tensor decomposition (Kolda and Bader
2009). However, most of the existing methods for ten-
sor decomposition iteratively apply eigen-decomposition or
gradient-based optimization, which do not guarantee global
optimal solutions.

In this section, we propose a new multinomial relation
prediction method using a dimension reduction technique,
which can obtain global optimal solutions by solving a gen-
eralized eigenvalue problem only once. We then extend the
proposed method to handle the attribute information of ob-
jects.

Multinomial relation prediction using dimension
reduction
We start with the case where there is no attribute informa-
tion. Our first key idea to guarantee global optimal solutions
is to reduce multinomial relations to binomial relations. We
create one binary matrix for each of the K types of objects to
obtain K matrices in total. The matrices represent relations
between the objects and the relation instances. Each element
of the matrix indicates whether a particular object belongs to
a particular relation instance. Let A(k) be an N(k)×M binary
matrix summarizing the participation of the objects in S(k) in
the relation instances in O. Each element in A(k) is defined
as

[A(k)]n,m ≡
{

1 (if s(k,n) ∈ S(k) participates in o(m) ∈ O)

0 (otherwise).

Figure 1 depicts an example of this transformation.
Our second key idea is the low-dimensional embedding

of the binomial relations represented by the K matrices.
Using a similar idea to that in bipartite graph prediction
using dimension reduction (Yamanishi 2009), we embed

both the objects and relation instances into a common low-
dimensional latent space to ensure close proximity between
each object and its participating relations.

Let us first consider one-dimensional embedding. The ob-
jects S(1) of size N(1) are embedded as a vector f (1) of length
N(1). Similarly, the objects S(2),S(3), . . . ,S(K) are embedded
as f (2), f (3), . . . , f (K), respectively. The observed relations O
(of size M) are also embedded in the same one-dimensional
latent space as f̄ (of length M).

If an object s(k,n) ∈ S(k) participates in a relation instance
o(m) ∈ O, we attempt to bring their embeddings [ f (k)]n and
[ f̄ ]m close to each other, i.e., to make the Euclidean distance
([ f (k)]n− [ f̄ ]m)2 small. Therefore, the total objective func-
tion to be minimize is defined as

J({ f (k)}K
k=1, f̄ ) (1)

= ∑
k

∑
i

∑
j
[A(k)]i, j

(
[ f (k)]i− [ f̄ ] j

)2

= ∑
k

(
f (k)
>

D(k) f (k)+ f̄> f̄ −2 f (k)
>

A(k) f̄
)
,

where D(k) is a diagonal matrix, whose (i, i)-th element is
defined as [D(k)]i,i ≡ ∑ j[A

(k)]i, j, which is the number of re-
lation instances that the object s(k,i) participates in.

Since this objective function can easily be minimized by
taking f (k) ≡ 0 and f̄ ≡ 0, we impose the following addi-
tional scaling constraints to avoid the undesired solution.

K

∑
k=1

f (k)
>

D(k) f (k) = 1. (2)

The minimum of the objective function (1) with respect to f̄
is obtained as

f̄ =
1
K

K

∑
k=1

A(k)> f (k). (3)

Plugging Eq. (3) into the negative of Eq. (1) results in the
maximization of

− J({ f (k)}K
k=1) (4)

=
1
K

K

∑
k,`=1

f (k)
>

A(k)A(`)> f (`)−
K

∑
k=1

f (k)
>

D(k) f (k).

Therefore, by maximizing the Lagrangian defined as

L({ f (k)}K
k=1,λ) =

− J({ f (k)}K
k=1)−λ

(
K

∑
k=1

f (k)
>

D(k) f (k)−1

)
,

we obtain

∑
`

A(k)A(`)> f (`) = K (λ+1)D(k) f (k).

By taking λ̃ ≡ K(λ+ 1), a generalized eigenvalue problem
can be obtained:

AA> f = λ̃D f ,
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where A, D, and f are defined as

A≡


A(1)

A(2)

...
A(K)



D≡

D(1) 0
. . .

0 D(K)


f ≡ ( f (1)

>
, f (2)

>
, . . . , f (K)>)>.

The generalized eigenvector (GEV) f , corresponding to
the largest generalized eigenvalue (GE), is the optimal
one-dimensional embedding of the objects. To obtain R-
dimensional embeddings, f 1, f 2, . . . , f R, we select the top-R
GEs and GEVs.

Finally, the optimal embeddings of the relations (3) im-
plies that the r-th dimension of the embedding of a com-
bination of objects o ≡ (s(1,i1),s(2,i2), . . . ,s(K,iK)) is given as
1
K ∑

K
k=1[ f

(k)
r ]ik , and the likelihood of a relation existing for o

should be inversely proportional to
R

∑
r=1

K

∑
k=1

(
[ f (k)r ]ik −

1
K

K

∑
k′=1

[ f (k
′)

r ]ik′

)2

.

Therefore, a ranked list of combinations not included in O is
obtained by sorting the scores.

It is notable that the optimization problem is reduced
to the GE problem. Since GE problems are solved exactly
despite its non-convex objective functions, we can obtain
global optimal solutions. This is in contrast with the other
tensor decomposition methods, which provide only locally
optimal solutions. In addition, our method requires solv-
ing the GE problem only once, while most of the existing
methods (Kolda and Bader 2009) require multiple calls to
an eigensolver (and optimal solutions are not guaranteed).

Incorporating attribute information
Next, we consider incorporating the attribute information
{Φ(k)}K

k=1 into relation prediction. This is particularly im-
portant because using only the observed relations is insuffi-
cient for accurately predicting relations, especially in cases
where observations are sparse. For example, some objects
participate in none or only a few relations. In addition, we
must sometimes make predictions about new objects not in-
cluded in the original object sets.

Let us consider the linear projection model:

f (k) ≡Φ
(k)w(k),

where w(k) is a D(k)-dimensional parameter that projects a
D(k)-dimensional attribute vector to one-dimensional latent
space. Similar to the case with only relation information, we
obtain

∑
`

Φ
(k)>A(k)A(`)>

Φ
(`)w(`)

= K (λ+1)Φ
(k)>D(k)

Φ
(k)w(k),

which is summarized as the following GE problem:

Φ
>AA>Φw = λ̃Φ

>DΦw, (5)

where

Φ≡

Φ
(1) 0

. . .
0 Φ

(K)


w≡ (w(1)>,w(2)>, . . . ,w(K)>)>.

When the dimensionality of the attribute vectors is large,
the predictive performance sometimes suffers because of the
over-fitting of the data owing to the “curse of dimensional-
ity” effect. To avoid this, it is common to add small regular-
ization terms with a positive regularization parameter σ > 0.
In our case, the GE problem (5) is modified to

Φ
>AA>Φw = λ

(
Φ
>DΦ+σI

)
w. (6)

Experiments
Here, we show experimental results on multinomial rela-
tion prediction by using several datasets from social web
services. Overall, the results demonstrate that our proposed
method is quite robust against data sparsity.

Experimental Settings
Datasets. We used three datasets obtained from the two
social web services summarized in Table 1, which details
their relation types, numbers of observed relation instances,
types of objects involved in the relations, and available ob-
ject attributes and their dimensionality.

The first two datasets2 were collected from the Twitter mi-
croblogging service: one for the prediction of “retweet” ac-
tions, and the other, for “favorite” actions. On Twitter, users
can post short texts called tweets. “Retweet” is a function
used to re-post other users’ tweets, and users can also mark
tweets as their “favorite”. We used the “retweet” and “fa-
vorite” actions in our experiments. Each action consists of
three objects: the user, the URL, and the original user, where
the subject of the action is the user and the target is the URL
posted by the original user. Starting from a specific user, we
identified other users whose distances from the initial user
were less than three in his or her social network. We identi-
fied the actions of users with time stamps between August 1
and 30, 2010. More details about crawling condition is de-
scribed in our previous work (Nori, Bollegala, and Ishizuka
2011b; 2011a).

The other dataset, named “Delicious”, deals with tagging
actions carried out with the del.icio.us social tagging service,
where a tagging action is represented as a tuple of a user, a
tag, and a URL. This dataset is called “hetrec2011-delicious-
2k”3. We extracted tagging actions with time stamps of Au-
gust, 2010.

2Available from http://nozomi.shi-ba.org/datasets.html“
#TwitterActions2011.

3Available from http://www.grouplens.org/node/462“
#attachments.
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In addition to the relation data, our method can deal with
object attributes such as keywords that users have used in
their tweets on Twitter. Table 1 summarizes the attributes we
created for each object type. Except for “friends in contact”
on Delicious, we extracted the top five attributes for each
object. When constructing feature vectors, we used TF-IDF
and scaled the ranges to fit into [0.0,1.0] for all the attributes.

Two data sparsity assumptions: relation-wise sparsity
and object-wise sparsity. The main challenge we focus
on in this paper is multinomial relation prediction in data-
sparse situations, where only a small number of relation in-
stances are available among numerous potential candidates.
In our experiments, we consider two kinds of sparsity as-
sumptions: one is relation-wise sparsity and the other is
object-wise sparsity.
• Relation-wise sparsity assumes that some relation in-

stances are missing at random.
• Object-wise sparsity assumes that all relation instances in-

volving particular objects are completely missing.
The latter situation is known as the “cold start” problem in
recommender systems. When a new user first joins an online
shopping site, very little (or no) information about the user’s
actions is available. Hence it becomes quite difficult to make
predictions for the user.

For the relation-wise sparsity setting, observed relations
were randomly sampled from the entire dataset for model
estimation, and the remaining data were used for perfor-
mance evaluation. For the object-wise sparsity setting, we
randomly sampled some objects, and all relations that did
not involve the sampled objects were used as an evaluation
dataset, with the remaining relation instances used for model
estimation. In both the situations, we varied the sampling
ratio, and we repeated the experimental procedure of sam-
pling, prediction, and evaluation 10 times for each sampling
ratio.

As an evaluation metric for predictive performance, we
used the AUC (area under the ROC curve), which is widely
used because it does not depend on the decision threshold.

Competing methods. We compared our proposed method
with two standard tensor decomposition methods widely
used for high-order relation analysis (Kolda and Bader
2009). One is PARAFAC/CANDECOMP which decom-
poses a tensor as a sum of rank-one tensors. The other
is Tucker decomposition which decomposes a tensor into
a core tensor and several factor matrices. We used Tensor
Toolbox4 as their implementations.

Parameter Settings. We optimized the hyperparameters
in terms of the AUC by using a development dataset for each
sampling ratio. For our method, we tuned R among 6 candi-
dates, {16,32,64,128,256,512}. For the proposed method
with attributes, we tuned σ among {10−2,10−3,10−4}, but
the results were quite stable against this parameter, so we
fixed σ as 10−3 in the experiments. For the competing meth-
ods, we tuned R among 10 candidates, {1,2, . . . ,10}.

4Available from http://csmr.ca.sandia.gov/˜tgkolda/
TensorToolbox/.

Results
Our results show that the proposed methods (with and with-
out attributes) are quite robust to data sparseness in relation-
wise sparse situations and that the use of attributes is partic-
ularly effective in the object-wise sparse cases.

Relation-wise sparse situations. Figure 2 shows the aver-
aged AUCs with standard deviations for the three datasets in
relation-wise sparse situations with various observation ra-
tios. For all the datasets, our proposed method showed the
highest robustness against data sparseness. The small stan-
dard deviation of the proposed method shows the stability of
its formulation guaranteeing globally optimal solutions.

Object-wise sparse situations. Figure 3 shows the results
in object-wise sparse situations. Since we have no relational
information for the test objects, the proposed method with-
out attribute information performed poorly, while the pro-
posed method with attribute information maintained rela-
tively high performance, even with low observation ratios.
The results show that the use of object information can miti-
gate the “cold start” problem in multinomial relation predic-
tion.

Related Work
Tensor analysis is a popular approach for dealing with multi-
nomial relations. In various tensor analysis tasks, includ-
ing tensor completion, target tensors are often assumed to
be of low rank, and various low-rank tensor decomposition
models with efficient algorithms (Kolda and Bader 2009)
have been proposed. In web mining research, Symeonidis et
al. (2008) and Rendle et al. (2009; 2010) proposed tag rec-
ommendation methods using tensor decomposition. How-
ever, most of the existing methods guarantee only local opti-
mal solutions and their quality depends highly on their initial
values. On the other hand, our proposed method can obtain
global optimal solutions by solving a generalized eigenvalue
problem only once. This property of the proposed method,
added to the incorporation of the attribute information of ob-
jects, makes it more robust and stable against data sparsity.

Conclusion
In this paper, we proposed a method to predict multino-
mial relations among heterogeneous objects using both re-
lation information and object attribute information. In con-
trast with the existing relation prediction methods based on
tensor decomposition, the proposed method is highly robust
to observation sparsity because it deals with object attributes
as well as relation information and because its formulation
guarantees globally optimal solutions.
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Table 1: Summary of the datasets used in the experiments.
Dataset # of observations Objects # of objects Attributes # of attributes
Twitter 14,221 subjective user 1,144 keywords extracted from the user’s tweets 4,896

mentioned user 7,935 followers of the user 2,586
(retweet) URL 11,335 keywords extracted from subjective users co-occurring with the URL 4,757
Twitter 22,755 subjective user 1,125 keywords extracted from the user’s tweets 4,107

mentioned user 10,049 followers of the user 2,586
(favorite) URL 18,244 keywords extracted from subjective users co-occurring with the URL 4,107
Delicious 33,414 user 768 friends in contact 1,098

tag 8,280 URLs co-occurring with the tag 15,088
(tagging) URL 6,860 users co-occurring with the URL 1,185

(a) “Retweet” actions on Twitter (microblogging)

(b) “Favorite” actions on Twitter (microblogging)

(c) Tagging actions on Delicious (social tagging)

Figure 2: Comparison of predictive performance in relation-
wise sparse situations. The proposed method showed high
robustness against data sparseness.

(a) “Retweet” actions on Twitter (microblogging)

(b) “Favorite” actions on Twitter (microblogging)

(c) Tagging actions on Delicious (social tagging)

Figure 3: Comparison of predictive performance in object-
wise sparse situations. The proposed method using at-
tribute information maintains relatively high performance
even with many missing objects.
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