
Predictive Mining of Comparable Entities from the Web

Myungha Jang, Jin-woo Park, Seung-won Hwang
Pohang University of Science and Technology (POSTECH), Korea, Republic of

{myunghaj, jwpark85, swhwang}@postech.edu

Abstract

Comparing entities is an important part of decision making.
Several approaches have been reported for mining compara-
ble entities from Web sources to improve user experience in
comparing entities online. However, these efforts extract only
entities explicitly compared in the corpora, and may exclude
entities that occur less-frequently but potentially comparable.
To build a more complete comparison machine that can infer
such missing relations, here we develop a solution to predict
transitivity of known comparable relations. Named CLIQUE-
GROW, our approach predicts missing links given a compa-
rable entity graph obtained from versus query logs. Our ap-
proach achieved the highest F1-score among five link predic-
tion approaches and a commercial comparison engine pro-
vided by Yahoo!.

1 Introduction
To assist decision making, it is useful to compare entities
that share a common utility but have distinguishing periph-
eral features. For example, when deciding on a new mobile
device to purchase, a customer benefits from knowing prod-
ucts with similar specifications, e.g., iPhone, Nexus One and
Blackberry.

One possible approach is comparable entity mining,
which extracts comparable pairs that are explicitly compared
on the Web corpus. However, these techniques are limited
by their ability to mine only entities explicitly compared in
Web sources, excluding entities that are potentially compa-
rable but are not currently explicitly compared in the cor-
pora. However, for a fully-functional comparison sugges-
tion system, such comparisons should not be disregarded.
In fact, such missing links for comparable entities are in-
evitable even with large datasets.

An orthogonal approach is predictive mining, which
can complement existing mining approach. It expands the
known comparable relations using transitivity to infer the
unknown relations. We stress that the two approaches are
clearly different: for the task of classifying missing links
into comparable and non-comparable ones, the former leads
to zero precision and recall, whereas the predictive min-
ing can classify them with reasonable accuracy 1. We first

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our proposed scheme achieved precision 83% and recall 19%.

Figure 1: Two different sub-graphs of “fruit” and “IT Com-
pany” are connected by a bridge node “Apple”; (o) – com-
parable edge, (x) – non-comparable edge

consider a comparable entity graph (CE-graph) contain-
ing these comparable entities and binary relations. It is an
undirected graph G = (V,E) where V is a set of named-
entities, E is a set of edges where (vi,v j) ∈ E indicates that
vi and v j are comparable. An initial CE-graph can be con-
structed with entity pairs that are explicitly compared and
mined by using techniques and resources proposed in com-
parable entity mining (Jindal and Liu 2006; Li et al. 2010;
Jain and Pantel 2011). For an unconnected pair of nodes in
a CE-graph, we should next determine the comparability of
the pair, i.e., we should predict a link between the nodes if
the pair is comparable.

To infer such transitivity, two challenges must be over-
come. First, ambiguous entities may serve as bridge nodes in
a graph, which connect two semantically different subgraphs
in a CE-graph. For example, Apple is the bridge node that
connects two subgraphs, (Fruit: Apple, Banana, Orange) and
(IT company: Apple, Microsoft, Google) (Fig. 1). Bridge
nodes may cause an incorrect prediction deduced from a
graph topology, such as (Orange, Google).

Second, the sparseness of an initial CE-graph offers lit-
tle structural information for link prediction. For example,
in a CE-graph obtained from Microsoft Live Search versus
query logs collected over one month, the number of entity
pairs explicitly compared is only 0.03% of all possible pairs
of entities in the versus query logs (i.e., 5,129 pairs among
about 14 million possible pairs of 5,368 entities). Later we
empirically show that applying generic link prediction algo-

66

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

rithms to such a sparse graph achieves very low recall for
prediction.

To predict the missing links considering these challenges,
the three criteria listed below are required for a possible so-
lution to properly expand known relations using transitivity.

• Graph structure: To infer transitivity of links in the given
graph, graph structure should be considered to reflect how
likely the two nodes are to be connected via neighbors.

• Attributes: To determine whether two nodes are compa-
rable, attributes (e.g., semantics) of nodes should be con-
sidered.

• Disambiguation: Graphs inevitably include ambiguous
nodes, which should be disambiguated to prevent genera-
tion of heterogenous clusters.

In this paper, we present CLIQUEGROW, a new clustering
algorithm that satisfies the three criteria.

2 Related Work
We survey two research areas related to our work: (1) com-
parable entity mining that complements our prediction work
and (2) link prediction methods that compete with ours
work.

2.1 Comparable Entity Mining
Several approaches exist to extract comparable entities from
various web corpus. Jindal and Liu proposed supervised
mining of comparable entities from comparative sentences
(Jindal and Liu 2006); their method uses a class sequential
rule (CSR) to classify sentences into comparative or non-
comparative. This method requires a comparative keyword
set for training sequential rules; but keyword sets should be
manually defined. To overcome this drawback, Li et al. pro-
posed a weakly-supervised bootstrapping method to identify
comparative questions and extract comparable entities (Li
et al. 2010). Recently, Jain and Pennacchiotti used pattern
learning methods to extract comparable entities from both
query logs and web documents. Their experiments showed
that query logs are superior to web documents as resources
from which to extract comparable entities (Jain and Pennac-
chiotti 2010).

The above entity mining techniques focus on mining com-
parable pairs readily observed in the web corpus, but our
work focuses on predicting pairs that cannot be observed
from it. Our prediction work thus complements existing
comparable entity mining; when used together, both ap-
proaches achieve the goal of obtaining a comparable entity
set.

2.2 Link Prediction
In this section, we describe two main link prediction
approaches–(1) using graph structure and (2) using cluster-
ing.

Using graph structure This approach uses graph struc-
ture to solve link prediction problems. The type of graph
structure used includes node neighbors and the ensemble of
all possible paths. We do not cover these methods in detail,

Table 1: Characteristics of clustering algorithms sorted by
the three criteria

Method Structure Attribute Disambiguation
MC-Cluster

√ √

TP-Cluster
√ √

SA-Cluster
√ √

Our method
√ √ √

since they have been well-studied and evaluated in a previ-
ous survey (Liben-Nowell and Kleinberg 2003).

Using clustering For this approach, we specifically dis-
cuss three methods that come closest to meeting the three
criteria listed above (Table 1).

MC-Cluster is a generic graph clustering that considers
the presence of bridge nodes (Scripps and Tan 2006). In the
given graph, MC-Cluster generates clusters in which every
pair of nodes in an Must-Link (ML) edge belong to the same
cluster, and any nodes in an Cannot-Link (CL) edge cannot
in the same cluster. A node is identified as a bridge node
when it is connected to two nodes by ML edges and the
two nodes are connected by a CL edge. The graph is disam-
biguated by cloning the bridge node to several nodes such
that each belongs to one cluster.

TP-Cluster was devised for a word sense induction prob-
lem that clusters semantically-similar words among a list
of words that co-occurred with a given word. (Bordag
2006). To disambiguate words, TP-Cluster creates all pos-
sible triplets from a list of words that the target word is co-
occurred with. Each triplet contains the intersection of the
co-occurrence list from each word; the intersection is used as
a feature of the triplet. Two triplets are merged if they share
similar features, until the algorithm converges. TP-Cluster
is a context-based algorithm, so when clustering it considers
node attributes, not graph structure.

SA-Cluster is a graph clustering algorithm that considers
both structural and attributal properties (Zhou, Cheng, and
Yu 2009). SA-Cluster converts attributes to structural prop-
erties by inserting attribute nodes that are connected to all
nodes that have the corresponding attribute. They exploit a
unified random walk distance on the augmented graph. We
discovered that SA-Cluster shows a poor performance for
our problem due to bridge nodes, and attribute nodes that
are commonly-shared by many nodes. As a result, the aug-
mented graph becomes very densely-connected, and may
become one big heterogenous cluster instead of several ho-
mogenous clusters.

3 Our Approach: CLIQUEGROW

In this section, we introduce CLIQUEGROW, which is a clus-
tering approach that is designed to meet the three criteria.
CLIQUEGROW contains two phases: (1) graph enrichment
and (2) clustering. In clustering, we aim to find clusters in
which all entities within the same cluster are comparable to
each other. Clustering is effective despite graph sparseness
because all possible links are automatically inferred when
an entity is included in the cluster.

67

Table 2: Types and Topic-indicative probabilities for the en-
tity “Apple”.

Types Collapsed Types TI Probability
(Step 1) (Step 2) (Step 3)

Company
Company 0.68Business

Organization
Computer Computer 0.20Electronics

Fruit Fruit 0.11
Artist Artist 0.01Person

3.1 Graph Enrichment
In this phase, a CE-Graph is enriched with semantic knowl-
edge, namely types. Types describe the domains to which
an entity belongs, and can be obtained from a taxon-
omy database (examples: Table 2). However, we cannot di-
rectly use such types to determine whether two entities are
comparable–One may argue if they have the same type, they
are comparable; but we find that this is not the case. Types
are defined in varying granularity such that some types cover
too broad a concept, so a pair having a common type might
not be always comparable (i.e., false positive). Alternatively,
some types are too narrow that a pair having different types
might be comparable (i.e., false negative). To illustrate, in
Freebase, 99% of non-comparable pairs would share the
same Freebase type and thus would be falsely predicted to
be comparable.

In this graph enrichment phase, we thus refine the type
data by sorting and ranking to estimate the probability that
two entities are comparable in clustering. The graph enrich-
ment has four steps: Step 1 obtains the type, Steps 2 and 3
sort and rank them, and Step 4 extends the coverage of types
in the graph.

Step 1: Adding Types to Entity Pairs We first obtain
types from a taxonomy such as Freebase 2, which is an open-
sourced web-scale taxonomy for over 41 million entities. On
average, each entity is associated with 15 types. We stress
that although we use Freebase, our approach is not specific
to this source and can be applied to other such resources.

We match an entity vi to the entries in Freebase whose
names are identical to that of entity vi. We use a lemmatizer
to cover the entities in several forms. An entity can have
many types because it may be used in several contexts, or
have several meanings (Table 2). A type set for each entity
vi in G is represented as a multi-dimensional binary vector
ti, in which tk

i = 1 if an entity vi has k-th type tk, and tk
i

= 0 otherwise. After obtaining the types in the graph, we
collapse dependent types (Step 2) and rank the most-likely
type for the intent of the entity (Step 3).

Step 2: Collapsing Dependent Types Types that are
highly dependent on other types do not offer extra informa-
tion, so we may collapse these dependent types to increase

2http://www.freebase.com

computational efficiency and efficacy. Highly-dependent
types include semantically-similar types (e.g., “company”,
“business”, and “organization”) and super-types (e.g., “com-
puter” and “electronics”) (Table 2).

We define a dependency score of t i for t j as:

dep(t i | t j) = co-occurence(t i, t j)/occurence(t j) (1)

where occurrence(t i, t j) is the number of entities that have
both t i and t j, and occurrence(t j) is the number of entities
that have t j. ti is said to be dependent on t j if dep(ti | t j) >
type removal threshold σ, which suggests all entities that
have t j also have ti with a high probability. In this case, the
existence of ti is implied by the existence of t j, which moti-
vates us to remove such t j (see 2nd column in Table 2).

Collapsing dependent types reduces computational cost
by avoiding unnecessary comparisons and increases efficacy
(Figure 3) by allowing the Topic-Indicative Probability (Step
3) to be properly calculated.

Step 3: Topic-Indicative Probability of Types The types
attached to each entity must be ranked by how representa-
tive they are to the user’s search objective. For example,
when “Apple” was compared with many entities such as
“Microsoft (in company)”, “Banana (in fruit)”, but not with
any entity in “Artist”, we can infer that “Apple” is likely to
be used as “company” or “fruit” but highly unlikely to be
used as “Artist” in the CE-graph.

For each type of entity in the CE-graph, we calculate
topic-indicative (T I) probability, which refers to the proba-
bility that the corresponding type is the representative intent
of the entity in the CE-graph.

In existing work, such probability has been computed for
a set of entities that belongs to the same concept, using a
naive Bayes model (Song et al. 2011). However, in our prob-
lem context, identifying such a set is our problem goal. We
thus modify the model to first infer the representative type
for a given edge, which contains the smallest set of entities
used in the same context:

P(tk | (vi,v j)) =
P((vi,v j)|tk)P(tk)

p((vi,v j))
(2)

P((vi,v j)|tk)P(tk) ∝
tk
i · tk

j ·W (vi,v j)

∑(vp,vq)∈E tk
p · tk

q ·W (vp,vq)
. (3)

where W (vi,v j) is the edge weight between vi and v j defined
as occurrences of (vi vs v j) in the query logs.

After defining the types for each edge, we can use the
probability of types in neighboring edges to infer the T I
probabilities of each entity, because the likelihood that a
type is a representative topic increases with the frequency
at which it is compared to its neighbors. T I probability of
type tk for entity pair (vi,v j) is defined as:

P(tk | vi) =
P(vi | tk)P(tk)

P(vi)
=

P(vi, tk)

P(vi)
, (4)

In Eq. 4, we infer P(vi | tk) from edges of vi:

P(vi, tk) = ∑
v j∈N(vi),(vi,v j)∈E

P(tk | (vi,v j))P((vi,v j)). (5)

68

P(tk|vi) is normalized such that the sum of the probabil-
ities for all types given the entity is one. To illustrate, T I
probabilities for edges around “Apple” were calculated (see
3rd column in Table 2).

Step 4: Type Propagation The CE-graph still includes
unlabeled entities, i.e., nodes that are not identified with any
type. Unlabeled entities are intrinsic due to the dynamic na-
ture of the Web whereby new entities are introduced con-
tinually. To propagate types, we adopt a state-of-the-art la-
bel propagation algorithm, Gaussian Random Field (GRF)
(Zhu, Ghahramani, and Lafferty 2003). A new challenge in
our problem context is that more than one types are propa-
gated; we straightforwardly address this by weighted propa-
gation using type probability. More specifically, probabilis-
tic label matrix Y is modified from a binary matrix in the
original matrix, to Yi j = P(t j | vi).

3.2 Clustering
Algorithmic Framework CLIQUEGROW is an agglomer-
ative algorithm that aims to group nodes into clusters of mu-
tually comparable entities, such that obtaining a transitive
closure of each cluster would complete the CE-graph. Once
clusters are identified, any two nodes belonging to the same
cluster are comparable.

CLIQUEGROW starts with seed unit clusters and itera-
tively merges other base structures, until they converge to
natural clusters. We use triangles (closed triplets) as initial
seeds because a triangle is the basic unit of transitive closure
that is observed. A triangle defines a unique topic among the
three pairs of comparable entities of a triangle.

Using triangles as seeds, we gradually grow clusters, by
connecting to neighboring entities. By the nature of an ag-
glomerative approach, the topic purity is diluted as the clus-
ter grows. We thus quantify the quality of triangles and pop-
ulate a priority queue H , to expand only high quality trian-
gles. The quality is quantified as the lowest edge weight of a
triangle, as a triangle with a high quality score corresponds
to the clique in which every pair co-occurs frequently.

In this process, bridge nodes are first automatically disam-
biguated by being split into several triangles in the seeds, in
which each triangle represents a single semantic. Link pre-
diction is done in this process as well, as the cluster grows–
When new entities are added, new links from all possible
pairs of entities are inferred. We define and utilize a metric
comparability power (CP), to quantify the comparability of
a a new base structure to the unit cluster that was grown from
an initial seed.

Let A and B be groups, represented by a set of nodes, that
have T I probability. CP is computed as:

CP (A,B) =
m

∑
i=1

m

∑
j=1

P(ti, t j) ·P(ti | A) ·P(t j | B), (6)

where m denotes the number of types, P(ti | A) is a T I prob-
ability of ti in a unit structure A, and P(ti, t j) is a probability
that ti and t j exist from each of comparable entities. In Eq. 6,
P(ti | A) is computed as:

P(ti | A) =
∑vk∈A P(ti | vk)

|A|
(7)

In Eq. 6, P(ti, t j) is computed as:

P(ti, t j) =
∑vi

p∧v j
q=1 W (vp,vq)

∑t i
r∨t j

s =1 W (vr,vs)
(8)

With this metric defined, CLIQUEGROW iteratively iden-
tifies the highest-quality triangle seed and grows it into a
cluster set by collecting qualifying neighboring base struc-
tures as follows:

1. Retrieve all triangle structures from the G and insert them
into a priority queue H , ordered by the minimum of the
edge weights.

2. Pick the top seed (a triangle) in the sorted H , and compute
its T I probability (Eq. 7).

3. Compute CP (S,B) for each neighboring base structure B
from seed S (Eq. 6). Include the corresponding structure
in the cluster, if CP (S,B) > clustering threshold (CT) δ.

4. Update the T I probability for the expanded cluster at this
iteration.

5. Go to Step 3 and repeat until expansion ceases.

6. Remove the clustered triangles from H go to Step 1 and
iterate until H =∅.

Algorithm Implementations Two implementations of
CLIQUEGROW are possible, one using an edge as a base
structure (CLIQUEGROW+E) and the other using a triangle
(CLIQUEGROW+T).

CLIQUEGROW+E For each neighboring edge of the clus-
ter (or seed at first), this algorithm calculates the CP be-
tween the edge and the cluster. Specifically, given a cluster
S and an edge ei, if CP (S,ei) > threshold δe, a new node on
the edge is included in the cluster.

CLIQUEGROW+T This algorithm inspects whether a
neighboring triangle ti is comparable to cluster S, such that
CP (S, ti) > threshold δt . However, triangle structures are
rare in sparse graphs, so we add Step 0, prior to Step 1, to
add triangles to the graph:

0. Retrieve all open triplets from graph G and calculate CP
between the two edges from the triplet. If CP> seed tran-
sitivity threshold γ, and add a new edge for the missing
link with a low weight (e.g., zero) such that these triangles
are considered after the original triangles are processed as
seeds in the sorted H .

4 Competing Algorithms
We compared our algorithms to six approaches: two from an
approach that use a graph structure to predict links (LPRE-
DICT, DLPREDICT), three that use a clustering approach
(MC-Cluster, TP-Cluster, SA-Cluster), and one from a com-
mercial service (Yahoo! versus query suggestion).

4.1 Link Prediction Algorithms using Graph
Structure

We compare CLIQUEGROW with LPREDICT and DLPRE-
DICT. LPREDICT is a generic link prediction algorithm that
uses graph structure. We choose AdamicAdar algorithm,

69

Figure 2: Receiver Operating Characteristics (ROC) of nine
generic link prediction algorithms

which our performance test showed had the best prediction
accuracy in among nine existing algorithms (AdamicAdar,
CommonNeighbor, PropFlow, RootedPageRank, IPageR-
ank, IVolume, Preferential Attachment,IDegree, and Jac-
cardCoefficient (Newman 2001; Liben-Nowell and Klein-
berg 2003; Lichtenwalter, Lussier, and Chawla 2010)). In
this test, we used 80% of the graph as the training example
and 20% as the test set, using an open-source solution for
link (Lichtenwalter and Chawla 2011) (Figure 2).

Since a generic link prediction algorithm does not con-
sider the presence of bridge nodes, we design DLPREDICT,
which combines graph disambiguation and a link prediction.
The purpose of this approach is to show that a link predic-
tion using only graph structure is not as efficient as CLIQUE-
GROW in our problem because the CE-graph is extremely
sparse.

DLPREDICT contains three phases: graph enrichment;
graph disambiguation; and link prediction.

Phase 1: Graph Enrichment A graph is first enriched
(Section 3.1) to be disambiguated.

Phase 2: Graph Disambiguation Once edges are curated
with T I probabilities in the enriched graph, we identify
bridge nodes. For this purpose, we first perform entity dis-
ambiguation on edges to assign a surface type for each, out
of many types associated with each edge. Then a bridge
node is identified as a node connected to heterogeneous sur-
face types. Existing entity disambiguation methods leverage
context of an entity to find its surface type (Cucerzan 2007;
Kulkarni et al. 2009), e.g., using Wikipedia disambiguation
page (Cucerzan 2007). Our work can be viewed as using
an open-source taxonomy (e.g., Freebase), as such context.
Our preliminary study suggests that using such taxonomy
achieves comparable accuracy to existing approaches that
require crawling of Wikipedia or a Web corpus, but we leave
an extensive analysis as future work.

The surface type t k̂ of edge (vi,v j) is defined with k̂:

k̂ = argmax
k

min(P(tk | vi),P(tk | v j)) (9)

Once the surface types are identified, a bridge node con-
nected to neighbors with m heterogeneous types can be split
into m clone nodes representing each type. The CE-graph
is thus disambiguated in the form a few homogenous sub-
graphs.

Phase 3: Link Prediction We apply a generic link predic-
tion algorithm to the disambiguated CE-graph.

4.2 Clustering Algorithms
How each clustering method works was described in Sec-
tion 2, so we only explain details relevant to implementa-
tion.

MC-Cluster We first sort edges by descending weight,
then set the top 10% edge weights as ML edges and the bot-
tom 10% edges as CL edges.

TP-Cluster was originally not graph-based but context-
based, which requires a list of co-occurrence words obtained
from external Web documents for each entity. However, we
do not have such contextual data in our problem, so we
modified TP-Cluster to be graph-based. Instead of a co-
occurrence list, we used the list of neighboring nodes as a
comparison list (Bordag 2006).

SA-Cluster We set k = 200 and density value = 0.06.

4.3 Commercial Service
We crawled the list of versus query suggestion for each en-
tity from Yahoo!, and compared the result with ours. Yahoo!
automatically suggests a list of comparable entities that are
extracted from various comparable queries when entity A is
typed in with ‘A versus ...’. Since Yahoo! suggests maximum
10 comparable entities, the complete set of comparable en-
tities is unknown when the number of comparable entities
is ≥ 10. Hence, we identified entities with < 10 compara-
ble entities; these comprise ∼20% of all entities, or ∼500
entities.

5 Algorithm Evaluation
5.1 Experiment Setup
Graph Construction We used versus query logs to con-
struct an initial CE-graph. Although more-sophisticated
techniques or proprietary resources can be used to obtain a
denser CE-graph, our focus is to show how we reinforce the
given CE-graph. Thus we use readily available resource that
does not require any complicated tool. These logs are Web
queries in several forms such as “A [versus/vs/v.s] B”. These
versus query logs represent explicit user intention to make
comparisons. We used Microsoft Live Search 2006 query
logs3, composed of 14.9×106 search queries collected over
one month. The number of versus queries in the logs was
0.7×106; from these we constructed an initial graph that
contained 9,574 entities and 15,287 edges.

3This log was awarded as a part of Microsoft Research Asia research award.

70

Figure 3: Clustering accuracy varies on TCT

Gold Standard We manually labeled a gold standard set
on comparable entities in the versus query logs. We labeled
7,233 pairs of entities in 447 clusters of mutually compara-
ble entities.

To validate our gold standard, we performed a user study
in which 10 human assessors were given 50 questions
that ask to determine whether or not each entity pair is
comparable. Twenty-five comparable and twenty-five non-
comparable pairs were randomly selected from the gold
standard. To qualitatively measure the agreement between
the gold standard and assessors’ answers, we use Cohen’s
kappa (K) (Cohen 1960). We obtained K = 0.9, which indi-
cates that human assessors reached a very good agreement
on our gold standard (Altman 1990).

Evaluation Metric We used two evaluation metrics de-
pending on the purpose of the each experiment. To com-
pare the effectiveness among DLPREDICT, CLIQUEGROW,
Commercial service, we use precision, recall and F1-score.
Precision is the number of correct links predicted divided by
the number of links predicted by the algorithm. Recall is the
number of correct links predicted divided by the number of
links to be predicted in the gold standard.

To compare the effectiveness of CLIQUEGROW and other
clustering algorithms, we adopted Extended-BCubed met-
rics (Amigó et al. 2009) that is designed to evaluate the qual-
ity of overlapping clusters. The correctness of the relation
between two entities e and e′ is defined as:

Correctness(e,e′) =
{

1 iff G(e) = G(e′)↔C(e) =C(e′)
0 otherwise

where G(e) denotes the gold-standard category and C(e) de-
notes the cluster to be evaluated. With this correctness func-
tion, BCubed precision and recall are:

BC Precision = Avge[Avge′.C(e)=C(e′)[Correctness(e,e′)]],

BC Recall = Avge[Avge′.G(e)=G(e′)[Correctness(e,e′)]]

Note that in our evaluation, we measure the recall only for
the predicted pairs that did not appear in the original query
graph (i.e., log).

Parameter setting We empirically set three types of pa-
rameters: (1) the type collapsing threshold (TCT) σ, (2) the
clustering threshold (CT) δe and δt , and (3) seed transitivity
threshold (STT) γ.

Table 3: Accuracy comparison of LPREDICT, DLPREDICT,
and CliqueGrow

Method Precision Recall F1-score
LPREDICT 0.6233 0.0246 0.0474

DLPREDICT 0.7721 0.0108 0.0213
CLIQUEGROW+E 0.8310 0.1941 0.3146
CLIQUEGROW+T 0.5234 0.2160 0.3059

(1) Choice of TCT (σ) We observed the change of accu-
racy as σ varied. The number of types collapsed increased as
σ decreased. When 0.7 ≥ σ ≥ 0.4, the precision was high;
(average 80%). When σ = 0.8, the precision dramatically
dropped to 26%. This shows that to achieve the best accu-
racy of the algorithm, the choice of an adequate type removal
parameter is important. Based on the experiment (Fig. 3), we
set σ = 0.7.

(2) Choice of CT (δ) and STT (γ) We observed similar
trade-offs between precision and recall for the remaining pa-
rameters, and similarly set the optimal parameters that gave
the highest F-scores, i.e., δe = 1.4, δt = 0.5, and γ = 3.0.

5.2 Evaluation Results
We performed two experiments to compare the effectiveness
between (1) LPREDICT, DLPREDICT and CLIQUEGROW
(2) CLIQUEGROW and other clustering algorithms, and (3)
CLIQUEGROW and the commercial service provided by Ya-
hoo!.

We did not compare ours with other comparable entity
mining work such as (Jain and Pennacchiotti 2010), because
we measured the number of correctly predicted edges that
did not appear in the original log, and these pairs cannot be
found from a mining-based approach (i.e., recall of Jain’s
work in this scenario will be zero).

In each experiment, we measured the prediction accuracy
by comparing results to the gold standard.

(1) LPREDICT, DLPREDICT vs CLIQUEGROW Among
the three methods, CLIQUEGROW showed notably higher
precision and recall than the other methods. Between LPRE-
DICT and DLPREDICT, DLPREDICT improved precision by
15% but decreased recall by 1%, compared to LPREDICT
(Table 3). Although graph disambiguation in DLPREDICT
led to precise prediction, it produced sparser graph by sepa-
rating a graph component into several sub-graphs than the
original graph, which resulted in a lower recall than in
LPREDICT.

(2) CLIQUEGROW vs Clustering algorithms We com-
pared CLIQUEGROW with MC-Cluster, TP-Cluster, SA-
Cluster. The two CLIQUEGROW methods gave better re-
sults than the the other algorithms (Table 4). Although MC-
Cluster showed the highest precision, it also showed the low-
est recall. SA-Cluster failed to give a high precision, be-
cause its augmented graph resulted in many components,
which were highly-connected by inserted type nodes that are
commonly shared by many entities. CliqueGrow+E gave a
higher precision but lower recall than did CliqueGrow+T .

71

Table 4: Comparison of six clustering methods by Extended
B-Cubed metrics

Method BC BC BC
Precision Recall F1-score

MC-Cluster 0.8132 0.2351 0.3647
TP-Cluster 0.3183 0.2662 0.2899
SA-Cluster 0.0209 0.7782 0.0407

CLIQUEGROW+E 0.6006 0.4496 0.5142
CLIQUEGROW+T 0.4994 0.4498 0.4733

Table 5: Comparison of CLIQUEGROW and Yahoo! query
suggestion for entities in the long-tail queries

Method Precision Recall F1-score
Yahoo! 0.3700 0.0637 0.1087

CLIQUEGROW+E 0.9394 0.1005 0.1816
CLIQUEGROW+T 0.7647 0.1265 0.2171

(3) CLIQUEGROW vs Commercial Service Both
CLIQUEGROW variants gave higher precision, recall, and
F1-score than query suggestions provided by Yahoo! (Table
5). The result shows that our approach especially has an
advantage when finding comparable entities in the long-tail
queries.

6 Conclusion
To predict missing links among a comparable entity graph
obtained from the query logs, we developed CLIQUEGROW.
CLIQUEGROW is a clustering algorithm that clusters a set
of comparable entities from the given graph, inferring the
missing links. CLIQUEGROW gave a higher F-measure than
did other link prediction approaches and Yahoo! search en-
gine. Our results are superior due to the predictive power
employed, namely the ability to infer missing links between
edges.

Acknowledgement
This research was supported by the MKE (The Ministry
of Knowledge Economy), Korea and Microsoft Research,
under IT/SW Creative research program supervised by the

NIPA (National IT Industry Promotion Agency) (NIPA-
2011-C1810- 1102-0008).

References
Altman, D. G. 1990. Practical Statistics for Medical Research
(Statistics texts). Chapman & Hall.
Amigó, E.; Gonzalo, J.; Artiles, J.; and Verdejo, F. 2009. A com-
parison of extrinsic clustering evaluation metrics based on formal
constraints. Inf. Retr.
Bordag, S. 2006. Word sense induction: Triplet-based clustering
and automatic evaluation. In ACL.
Cohen, J. 1960. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement.
Cucerzan, S. 2007. Large-scale named entity disambiguation based
on wikipedia data. In EMNLP and CNLL.
Jain, A., and Pantel, P. 2011. How do they compare? automatic
identification of comparable entities on the web. In IRI.
Jain, A., and Pennacchiotti, M. 2010. Open entity extraction from
web search query logs. In COLING.
Jindal, N., and Liu, B. 2006. Identifying comparative sentences in
text documents. In SIGIR.
Kulkarni, S.; Singh, A.; Ramakrishnan, G.; and Chakrabarti, S.
2009. Collective annotation of wikipedia entities in web text. In
KDD.
Li, S.; Lin, C.-Y.; Song, Y.-I.; and Li, Z. 2010. Comparable entity
mining from comparative questions. In ACL.
Liben-Nowell, D., and Kleinberg, J. 2003. The link prediction
problem for social networks. In CIKM.
Lichtenwalter, R. N., and Chawla, N. V. 2011. Lpmade: Link
prediction made easy. J. Mach. Learn. Res.
Lichtenwalter, R. N.; Lussier, J. T.; and Chawla, N. V. 2010. New
perspectives and methods in link prediction. In KDD.
Newman, M. E. J. 2001. Clustering and preferential attachment in
growing networks. Phys. Rev. E.
Scripps, J., and Tan, P.-N. 2006. Clustering in the presence of
bridge-nodes. In SDM.
Song, Y.; Wang, H.; Wang, Z.; Li, H.; and Chen, W. 2011. Short
text conceptualization using a probabilistic knowledgebase. In IJ-
CAI.
Zhou, Y.; Cheng, H.; and Yu, J. X. 2009. Graph clustering based
on structural/attribute similarities. Proc. VLDB Endow.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML.

72

