
Diagnosing Changes in An Ontology Stream:
A DL Reasoning Approach

Freddy Lécué
IBM Research, Smarter Cities Technology Centre

Damastown Industrial Estate, Dublin, Ireland
{(firstname.lastname)@ie.ibm.com}

Abstract

Recently, ontology stream reasoning has been introduced as
a multidisciplinary approach, merging synergies from Artifi-
cial Intelligence, Database and World-Wide-Web to reason on
semantics-augmented data streams, thus a way to answering
questions on real time events. However existing approaches
do not consider stream change diagnosis i.e., identification of
the nature and cause of changes, where explaining the log-
ical connection of knowledge and inferring insight on time-
changing events are the main challenges. We exploit the De-
scription Logics (DL)-based semantics of streams to tackle
these challenges. Based on an analysis of stream behavior
through change and inconsistency over DL axioms, we tack-
led change diagnosis by determining and constructing a com-
prehensive view on potential causes of inconsistencies. We
report a large-scale evaluation of our approach in the context
of live stream data from Dublin City Council.

Introduction
The Semantic Web (Berners-Lee, Hendler, and Lassila
2001), where the semantics of information is represented us-
ing machine-processable languages such as the Web Ontol-
ogy Language (OWL) (OWL Working Group 2009), is con-
sidered to provide many advantages over the current format-
ting only version of the World-Wide-Web. OWL, for exam-
ple, is underpinned by Description Logics (DL) (Baader and
Nutt 2003) to define web ontologies. While this allows auto-
matic processing of semantics-augmented data, most exist-
ing inference methods are designed for reasoning on static
ontologies. However, data, information and knowledge are
usually subject to change, even drastically in real world
applications. From ontology versioning (Noy and Musen
2002), semantics-empowered sensors (Sheth 2010) to social
semantic web (Auer, Dietzold, and Riechert 2006), all are
examples of potential scenarios where knowledge is evolv-
ing over time.

Continuous collection and processing of data streams
(streams for short) from sensors, actuators or social media
feeds are then natural challenges that need to be addressed to
answer questions on real time events. Initially tackled by the
Database community (Babu and Widom 2001), these chal-
lenges have been recently exposed in the semantic web as

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Stream (Ontology) Reasoning (Valle et al. 2009) where data
is semantics-tagged. Time annotated SPARQL (Rodriguez
et al. 2009) or C-SPARQL (Barbieri et al. 2009) among oth-
ers are potential approaches extending SPARQL, which is a
syntactically-SQL-like language for querying RDF graphs,
to process RDF-based data streams. Stream reasoning pro-
vides views on ontological knowledge bases, which are con-
tinuously and incrementally updated and materialized (Volz,
Staab, and Motik 2005). (Ren and Pan 2011) go beyond by
maintaining intermediate reasoning results and their logi-
cal relations through EL++ DL-annotated streams. These
relations, reflecting dependencies in streams, together with
changes are crucial to understand evolution of knowledge.

While they present efficient approaches by optimizing
management of dependencies, they do not address change
diagnosis over streams i.e., identification of the nature and
cause of changes. So determining logical relations of rea-
soning results and changes over time is not considered,
thus limiting explanation of their causes and impact. Even
though (Kifer, Ben-David, and Gehrke 2004) and (Aggar-
wal 2003) provide techniques for detecting and visualizing
changes, their results are subjects to interpretation and re-
quire deep analysis to identify possible logical relations be-
tween changes. Why is there a traffic jam in Dawson road
at 4PM? Is it due to a music concert in Canal road at 3PM?
These are general questions for which we envision change
diagnosis over streams as an approach to provide insights.

We exploit the DL-based semantics of streams to tackle
these challenges. Based on an analysis of stream behav-
ior through change and inconsistency over DL axioms, we
tackled change diagnosis by determining and constructing a
comprehensive view on potential causes of changes. Major
stream changes, modeled by axioms which are inconsistent
with others at different points of time, are diagnosed by (i)
identifying potential causes G , as inconsistent axioms, given
a specific window, and (ii) logically relating them by apply-
ing DL constructive reasoning G-guided subsumer.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the logic we adopt together with
stream ontology. In Section 3 we study behavior of streams
through their change and inconsistency. Section 4 presents
our change diagnosis approach. Section 5 reports some ex-
periment results regarding scalability. Section 6 briefly com-
ments on related work. Section 7 draws some conclusions.

80

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

Busv ∃id.DublinBusID u ∃loc.GPSLocation (1)
Road v ∃id.Name u ∃roadPoint.GPSSetPoint (2)

Bus u ∃partO f .GPSSetPoint v Road u ∃with.Bus (3)
partO f v roadPoint (4)
JammedRoad v Road

u (∃with.Bus u ∃in.HeavyTra f f ic) (5)
FreeRoad v Road

u (∃with.Bus u ∃in.LightTra f f ic) (6)
{C} v ∃id.{Canal} u ∃roadPoint.{(53.33,−6.27),

(53.33,−6.28),(53.33,−6.29)} (7)
{D} v ∃id.{Dawson} u ∃roadPoint.{(53.30,−6.25),

(53.31,−6.25),(53.32,−6.25)} (8)
LightTra f f ic u HeavyTra f f icv⊥ (9)
ActiveEvent u NoEvent v⊥ (10)
{concert} v ∃loc.{C} (11)

Figure 1: Sample of an EL++ TBox T .

Background
The model we consider to represent both static background
knowledge and semantics of stream data is provided by an
ontology. Dynamic knowledge is then captured by reasoning
on stream data descriptions in this ontology. We focus on
DL as a formal knowledge representation language to define
ontologies since this logic offers good reasoning support for
most of its expressive families and compatibility to current
W3C standards e.g., OWL 2. In the following we review (i)
DL basics of EL++ and (ii) ontology stream.

EL++ Description Logics
We illustrated our work with DL EL++ where satisfiabil-
ity and subsumption are decidable. The selection of this DL
fragment has been guided by the expressivity which was re-
quired to model semantics of data in our domain i.e., trans-
portation traffic and event data (Experimental Results Sec-
tion). The DL EL++ (Baader, Brandt, and Lutz 2005) is the
logic underpinning OWL 2 EL and the basis of many more
expressive DL. Adaptations of our approach to more expres-
sive DLs e.g., SR OI Q (OWL 2 DL) are possible but impact
decidability and complexity.

A signature Σ, defined by (CN ,R N ,I N), consists of
three disjoint sets of (i) atomic concepts CN , (ii) atomic
roles R N , and (iii) individuals I N . Given a signature, the
top concept >, the bottom concept ⊥, an atomic concept A,
an individual a, an atomic role r, EL++ concept expressions
C and D can be composed with the following constructs:

> | ⊥ | A |CuD | ∃r.C | {a}

We slightly abuse the notion of atomic concepts to include
>,⊥ and nominals (Horrocks and Sattler 2001) i.e., individ-
uals appearing in concept definitions of form {a}.

The particular DL-based ontology O .
=< T ,A > is com-

posed of a TBox T and ABox A . A TBox is a set of concept
and role axioms. For example, a JammedRoad denotes the
concept of ”a road with at least a bus in a heavy traffic”
with respect to the TBox fragment illustrated in Figure 1.
EL++ supports General Concept Inclusion axioms (GCIs,

e.g. C v D with C is subsumee and D subsumer1) and role
inclusion axioms (RIs, e.g., rv s, r1 ◦ · · ·◦ rn v s). An ABox
is a set of concept assertion axioms e.g., a : C, role assertion
axioms e.g., (a;b) : R, and individual in/equality axioms e.g.,
a 6= b or a = b. We will focus on T that supports concept-
based inference through TBox DL reasoning.

(Baader, Brandt, and Lutz 2005) present a completion-
based algorithm to classify an EL++ TBox T and entail
subsumption for any concept in CNT . Reasoning with such
rules (Table 1) is PTime-Complete (Baader, Brandt, and
Lutz 2008). We internalize ABox axioms into TBox axioms
(through) so rules in Table 1 can be applied on both ax-
ioms. Thus TBox reasoning (e.g., subsumption, satifiablil-
ity) can be also performed on internalized ABox axioms.

a : C {a} vC (a,b) : r {a} v ∃r.{b}
a .
= b {a} ≡ {b} a 6= b {a}u{b} v ⊥

Besides considering internalized ABox, we assume that
EL++ TBox is normalized, and all subsumption closures
are pre-computed (Baader, Brandt, and Lutz 2005).

R1 If X v A, Av B then X v B
R2 If X v A1, · · ·An, A1u·· ·uAn v B then X v B
R3 If X v A, Av ∃r.B then X v ∃r.B
R4 If X v ∃r.A, Av A′, ∃r.A′ v B then X v B
R5 If X v ∃r.A, Av⊥ then X v⊥
R6 If X v ∃r.A, r v s then X v ∃s.A
R7 If X v ∃r1.A, Av ∃r2.B, r1 ◦ r2 v r3 then X v ∃r3.B

Table 1: EL++ TBox Completion Rules (no datatypes).

Ontology Stream
Contrary to (Barbieri et al. 2009) who present a framework
for continuously and incrementally maintaining ontological
knowledge bases, we follow (Huang and Stuckenschmidt
2005) by studying stream reasoning over a dynamic and evo-
lutive version of ontologies i.e., ontology streams. These are
more appropriate for detecting changes among versions and
reasoning over their evolution. An ontology stream is con-
sidered as a sequence of ontologies (Definition 1).
Definition 1. (Ontology Stream)
An ontology stream On

m from point of time m to point
of time n is a sequence of ontologies (On

m(m),On
m(m +

1), · · · ,On
m(n)) where m,n ∈ N and m < n.

On
m(i) is a snapshot of an ontology stream (stream for

short) On
m at point of time i, referring to a set of axioms in a

DL L . A transition from On
m(i) to On

m(i+1) is an update.

Snapshot O9
0 (6) O9

0 (7) O9
0 (8)

GCI Subsumer J F J F J F
GCI Subsumee - {C},{D} {C} {D} {C} {D}

Completion Rule - R1-R3, R6

Required (1-4)

Axioms - (6-8), (5), (7), (6), (8) (5), (7) (6), (8)
(12-15) (19-20) (17-18) (24-25) (22-23)

Table 2: GCIs: T ∪O9
0 (i) |= Subsumeev Subsumer.

1For the sake of clarity we consider atomic subsumers in GCIs.

81

O9
0 (6) : Bus07v ∃id.{dub07} u ∃loc.{(53.30,−6.25)} (12)

: Bus07v ∃in.LightTra f f ic (13)
: Bus31v ∃id.{dub31} u ∃loc.{(53.33,−6.27)} (14)
: Bus31v ∃in.LightTra f f ic (15)
: {concert} v NoEvent (16)

O9
0 (7) : Bus07v ∃id.{dub07} u ∃loc.{(53.31,−6.25)} (17)

: Bus07v ∃in.LightTra f f ic (18)
: Bus31v ∃id.{dub31} u ∃loc.{(53.33,−6.28)} (19)
: Bus31v ∃in.HeavyTra f f ic (20)
: {concert} v NoEvent (21)

O9
0 (8) : Bus07v ∃id.{dub07} u ∃loc.{(53.32,−6.25)} (22)

: Bus07v ∃in.LightTra f f ic (23)
: Bus31v ∃id.{dub31} u ∃loc.{(53.33,−6.28)} (24)
: Bus31v ∃in.HeavyTra f f ic (25)
: {concert} v ActiveEvent (26)

Figure 2: Stream Snapshots: O9
0 (6), O9

0 (7), O9
0 (8).

Example 1. (Ontology Stream)
Figure 2 illustrates a partial ontology stream O9

0 through
some GCIs of snapshots O9

0 (6), O9
0 (7) and O9

0 (8).
By applying completion rules in Table 1 on both back-

ground knowledge T and streams On
m, we are able to infer

axioms which are specific to some snapshots.
Example 2. (Ontology Stream and Completion Rules)
Table 2 captures subsumption relations we can infer from
axioms in T (Figure 1), stream O9

0 (Figure 2) and rules in
Table 1. Inferred axioms are GCIs of the form T ∪O9

0 (i) |=
Subsumee v Subsumer. Table 2 depicts concepts that are
subsumed by FreeRoad (F for short) and JammedRoad (i.e.,
J). In other words we infer that {C} is a JammedRoad in
O9

0 (7), O9
0 (8) using axioms (1-4), (5), (7), (19-20) and (24-

25) while {D} is a FreeRoad from O9
0 (6) to O9

0 (8). Simi-
larly, {C} v F is entailed in O9

0 (6).

Capturing the Behavior of Streams
This section identifies core properties of streams which cap-
ture the behavior of streams (required for change diagnosis)
i.e., ontology stream change and inconsistency.

Ontology Stream Change
Snapshots are connected via change operations (Definition
2). Change operations from one snapshot to another one are
formalized through new, obsolete and invariant GCIs.
Definition 2. (GCIs-based Stream Changes)
Let L be a DL. On

m(i), On
m(j) be snapshots in On

m. T be a set
of axioms in L . GCIs-based stream changes occurring from
On

m(i) to On
m(j), denoted by On

m(j)\On
m(i), are GCIs C v D

being new (27), obsolete (28) and invariant (29).

{C v D | T ∪On
m(j) |=C v D ∧T ∪On

m(i) 6|=C v D} (27)

{C v D | T ∪On
m(j) 6|=C v D ∧T ∪On

m(i) |=C v D} (28)

{C v D | T ∪On
m(j) |=C v D ∧T ∪On

m(i) |=C v D} (29)

Definition 2 evaluates GCIs-based differences among
snapshots of streams. In particular it materializes knowledge
changes through GCIs. This definition is a generalization of

new, obsolete and invariantChildren introduced by (Huang
and Stuckenschmidt 2005) where GCIs are considered here.
Such a definition has been considered to detect more general
changes. This has been motivated by complex cases where
the identification of subsumption of conjuncts were required
(e.g., subsumees of jammed roads, longer than 1 km and
connected to more than 5 roads). (27) reflects further knowl-
edge we obtain by moving from On

m(i) to On
m(j) while (28)

denotes knowledge we sacrifice. (29) captures knowledge
that remains true in both snapshots and then identifies sta-
bility of knowledge. Identifying knowledge changes is im-
portant as they provide basic properties to understand how
knowledge is articulated and connected among snapshots of
streams, thus a first step towards change diagnosis.

Remark 1. (Heterogeneity of Stream Changes)
Although we focus on GCIs-based changes of the form C v
D in Definition 2, it is straightforward to extend it to sat-
isfiable conjunction ¬(CuD v ⊥), equivalence C ≡ D or
disjunction CuD v ⊥ (Li and Horrocks 2003). In the lat-
ter case, the identification of a new change from On

m(i) to
On

m(j) consists in finding C and D where CuD v ⊥ is true
in On

m(j) but not in On
m(i). This modifies the way we detect

changes, which could fit better to some applications e.g., in
case subsumption is a too strong assumption.

Example 3. (GCIs-based Stream Changes)
Table 3 illustrates changes (new, invariant, obsolete) occur-
ring from O9

0 (i) to O9
0 (j) by GCIs {C} v J, {C} v F and

{D} v F with 6≤ i < j≤ 8 e.g., {C} is a new JammedRoad
in O9

0 (7) and O9
0 (8) with respect to O9

0 (6).

Snapshot O9
0 (8)\O

9
0 (7) O9

0 (7)\O
9
0 (6) O9

0 (8)\O
9
0 (6)

Changes new inv obs new inv obs new inv obs
{C} v J X X X
{C} v F X X
{D} v F X X X

Table 3: GCIs-based Stream Changes O9
0 (j)\O9

0 (i).

We generalize invariance axioms (29) to capture k snap-
shots with common GCIs (Definition 3), thus snapshots
which share some knowledge. Axioms which remain true
over a sequence of k snapshots are then identified.

Definition 3. (GCIs-based K-Invariance)
Let L be a DL. C, D be two concepts in L . On

m be a stream.
T be a set of axioms in L . GCI C v D is k-invariant in On

m
with k ≤ m−n+1 iff ∃i ∈ [m,n+1− k], ∀l ∈ [0,k−1] :

T ∪On
m(i+ l) |=C v D (30)

GCIs (30) are k-invariant GCIs of On
m while concepts

C in (30), denoted by invariantk〈On
m,T ,D, i〉, are called k-

invariant subsumees of D. Definition 3, as a generaliza-
tion of (29) which captures 2-invariance, can be recast by
invariant(On

m(i+ l+1)\On
m(i+ l)) with same constraints on

variable i and l ∈ [0,k−1).

Example 4. (GCIs-based K-Invariance)
According to Table 3, {D} v F and {D} are respectively 3-
invariant GCIs and subsumee of F. In other words {D} is a
FreeRoad from O9

0 (6) to O9
0 (8).

82

Figure 3: Illustration of Algorithm 1.

Ontology Stream Inconsistency
As mentioned in previous sections, inferring new axioms is
one of the source of changes on streams (e.g., Table 2). It is
common that these axioms might be inconsistent with pre-
vious snapshots as they could reflect a major disruption be-
tween two snapshots. For instance, a free road may become
jammed from On

m(i) to On
m(j), but both jammed and f ree

road cannot co-exist as a common description for any road.
Such axioms are called inconsistent axioms (Definition 4) as
they make T ∪On

m(i)∪On
m(j) inconsistent.

Definition 4. (Stream-based Inconsistency of GCIs)
Let L be a DL. C, D, E be three concepts in L . On

m be a
stream. T be a set of axioms in L . GCIs C v D and C v E
are inconsistent in On

m iff ∃i, j ∈ [m,n], i 6= j:

T ∪On
m(i) |=C v D (31) T ∪On

m(j) |=C v E (32)

T |= DuE v⊥ (33)

Concepts C in Definition 4, noted sic(On
m,T ,D,E, i, j),

are called stream-based inconsistent concepts while On
m(i)

and On
m(j) are defined as inconsistent snapshots of On

m.
Theorem 1. (Inconsistency Detection over Changes)
Let L be a DL. Let C, D, E be three concepts in
L . Let T and On

m(k),m≤k≤n be consistent terminologies
and i, j ∈ [m,n] : j > i. C ∈ sic(On

m,T ,D,E, i, j) iff a)
GCI C v E ∈ new(On

m(j)\On
m(i)), b) GCI C v D ∈

obsolete(On
m(j)\On

m(i)) and c) (33).

Proof. [→] T ∪On
m(j) 6|= C v D due to consistent ontol-

ogy On
m(j), (32), (33). Similarly T ∪On

m(i) 6|= C v E be-
cause of consistency of On

m(i), axioms (31) and (33). There-
fore any concept in sic is in both new(On

m(j)\On
m(i),D) and

obsolete(On
m(j)\On

m(i),E). [←] Any concept C with prop-
erties a), b) and c) is in sic(On

m,T ,D,E, i, j) because C is
subsumed by concepts which satisfy sic.

Theorem 1 ensures that inconsistencies (Definition 4) can
be detected through basic stream changes (Definition 2).
Example 5. (Stream-based Inconsistency of GCIs)
Both GCIs {C} v F, {C} v J are identified as inconsistent
in O9

0 (6) and O9
0 (7) due to (5), (6), (9) in T and R5 in Table

1. Thus we detect a major disruption from O9
0 (6) to O9

0 (7)
i.e., free road {C} becomes jammed. In other words {C} ∈
sic(On

m,T ,F,J,6,7) and O9
0 (6) is inconsistent with O9

0 (7). In
the same way {concert} ∈ sic(On

m,T ,A,N,7,8) (where A, N
stands for ActiveEvent NoEvent) with respect to (10), (21),
(26).

Deciding k-invariance (Definition 3) of a GCI in On
m(i)

which is inconsistent with On
m(j) (Definition 4) is PTIME-

hard. Indeed deciding both properties are depending on

complexity of subsumption in EL++, which is PTIME-
hard (Baader, Brandt, and Lutz 2005). Computing the max-
imal number k of snapshots wherein GCIs remains true are
PSPACE-hard with respect to a polynomial k (due to a poly-
nomial k of space required to identify its maximal).

Diagnosing Changes
We study change diagnosis through interpretation of stream
inconsistency. In particular we focus on (i) determining their
causes (as GCIs) over a k-window and (ii) providing a justi-
fication, as a DL concept, by means of their combination.

Determining Causes of Stream Inconsistency
It is obvious that many inconsistent axioms could be iden-
tified among snapshots due to the nature of streams. Some
of them may have been caused by high-frequency sensors
(Sheth, Henson, and Sahoo 2008), which provide periodic
and inconsistent snapshots of the world in very short time
interval e.g., loops of green and red traffic lights. Other in-
consistencies may relate to GCIs that remain true over very
few snapshots, hence difficult to detect their nature. We fo-
cus on inconsistencies of k-invariant GCIs i.e., k-invariant
GCIs which turn out to be inconsistent in a given snapshot
of a stream. This condition ensures we operate under a win-
dow of k snapshots to determine underlying relevant cause
of inconsistencies, again as (inconsistent) GCIs.

Algorithm 1: Inconsistency Causes 〈T ,On
m,k,h,P〉.

1 Input: T : a terminology. On
m: a stream. Am+k,Am+k+1:

inconsistent axioms in On
m(m+ k),On

m(m+ k+1).
Am+k : k-invariant from On

m(m+1) to On
m(m+ k). h: a

minimal invariance (h≤ k). P: a set of Pair of concepts
(X ,Y) such that T |= X uY v⊥.

2 Result: Sol: a set of triple (G, i,h) with GCI G ∈ G being
h-invariant and inconsistent with On

m(i+1) and
i ∈ (m+1,m+ k].

3 begin
4 Sol← /0;
5 // k-window from On

m(m+1) to On
m(m+ k) is checked.

6 foreach snapshot On
m(i) with m+ k ≥ i > m+1 do

7 // Inconsistent Axioms Detection - ⊕ in Figure 3.
8 foreach (X ,Y) ∈ P do
9 // Inconsistency of On

m(i -1)∪On
m(i) wrt {x}.

10 if ∃{x} ∈ sic(On
m,T ,X ,Y, i -1, i) then

11 // {x} is h-invariant subsumee of X.
12 if {x} ∈ invarianth(On

m,T ,X , i -h) then
13 Sol← Sol∪ ({x} v Y, i,h);

14 return Sol;

Algorithm 1 (illustrated by Figure 3) determines poten-
tial causes of inconsistencies of any stream update from
On

m(m+ k) to On
m(m+ k + 1) (line 6, ⊗ in Figure 3), with

k in (0,n−m−1]. Causes are identified through GCIs Ai−1
and Ai which are inconsistent in any previous snapshots of
this k-window (line 10) i.e., i ∈ (m+1,m+ k]. Inconsisten-
cies are guided by P i.e., a set of inconsistent concepts (line
8, ⊕ in Figure 3). GCIs Ai−1 are constrained to remain true
over a minimum number of h snapshots, with h ≤ k (line
12). This restriction ensures Ai−1 to be h-invariant and GCIs

83

Figure 4: O9
0 (5) to O9

0 (9): Invariances and Inconsistencies.

that could be noisy sources of inconsistency are discarded.
Finally, h-invariant GCIs, which are inconsistent with snap-
shot i ≤ m+ k, are returned as potential causes of inconsis-
tencies of Am+k and Am+k+1 (line 13).

Computing a solution according to Algorithm 1 in a con-
text of polynomial input h,k and number of elements in P is
a PSPACE-hard problem due to the complexity of invariance
(Definition 3) and inconsistency (Definition 4) in EL++.
Example 6. (Inconsistency Causes)
Let O9

0 (5) be similar to O9
0 (6), and O9

0 (8) be inconsistent
with O9

0 (9) due to (9), (34), (35) (illustrated in Figure 4).

T ∪O9
0 (8) |= {D} v F (34) T ∪O9

0 (9) |= {D} v J (35)

Detecting causes of inconsistency of these GCIs in O9
0 con-

sists in applying Algorithm 1 with (i) invariance of (34)
which is 4, (ii) inconsistent concepts for variable P e.g., con-
cepts in (9), (10) and (iii) an initial h e.g., h ≥ 2. Then Al-
gorithm 1 identifies {C} v J in O9

0 (7) and {concert} v A
in O9

0 (8) as causes of inconsistency of O9
0 (8) and O9

0 (9). In
other words, {D} could turn jammed in O9

0 (9) because {C}
turned jammed in O9

0 (7) and a {concert} started in O9
0 (8).

Minimal Justification of Stream Inconsistency
We determine how causes of inconsistency, as GCIs, could
be related so they provide a justification for any inconsistent
GCI C v D. This justification is determined by constructing
a DL description E such that C v E, derived from GCIs G
(result of Algorithm 1) and axioms in T (Definition 5).

Definition 5. (GCIs G-Guided Subsumer Problem - GSP)
Let L be a DL. T be a set of axioms in L . G be GCIs in L .
C be a concept in L . A GCIs G-guided Subsumer Problem,
denoted as GSP〈L ,T ,G ,C〉 is finding a concept description
E in L such that (i) T 6|=C v E, (ii) T ∪G |=C v E.

Definition 5 establishes a relation between C and E, con-
structed with some causes of inconsistency G . Relation
means subsumption but one can imagine other binary re-
lations. Causes of inconsistency G ∈ G (captured by Algo-
rithm 1) are identified as irrelevant if T ∪(G\{G}) |=Cv E
for any solution E of a GCIs G-guided subsumer problem.
We use P as a symbol for a GSP〈L ,T ,G ,C〉 and denote
with SOLGSP(P) the set of all solutions as concepts to P .

Example 7. (GCIs G-Guided Subsumer Problem - GSP)
GCIs G , defined by {{C}v J,{concert}vA}, are identified
as causes of inconsistency of (34), (35) in Example 6. Let T ′
be defined by (11) and Dv∃ad jRoad.{concert} where D is
an adjacent road to {concert}. SOLGSP〈L ,T ′,G ,D〉 are (i)
∃ad jRoad.A and (ii) ∃ad jRoad.(∃loc.J). The reasons for D
to be congested in O9

0 (9) are: (i) D is adjacent to a road with

an active event and (ii) D is adjacent to a jammed road. Both
descriptions are derived from T ′∪G but not from T ′ only.

Proposition 1. (GCIs G-Guided Subsumer Complexity)
Let P be a GSP. If concept subsumption with respect to a
T ∪G in L is a problem C -hard for a complexity class C ,
then deciding whether a concept is in SOLGSP(P) is C -
hard.

Proof. Since T 6|= C v E and T ∪ G |= C v E iff E ∈
SOLGSP(P), such a problem is C -hard.

Thus, deciding if a concept is in SOLGSP(P) is PTIME-
hard in EL++. From an another analogy with subsumption,
constructing concepts in SOLGSP(P) is PSPACE-hard.

SOLGSP(P) is not necessarily a unique concept, espe-
cially in a context of several GCIs in T ∪G with C as sub-
sumee concept. Since all concepts of SOLGSP(P) provide
a generalization of concept C, we provide a minimal view
of inconsistency justification, as a DL concept, through Al-
gorithm 2. This approach aims at (i) computing their con-
junction (line 7), (ii) rewriting the result following (Baader,
Küsters, and Molitor 2000) (line 11) and (iii) returning its
minimal form (line 13). The first step is required to expose
various causes of inconsistency through a common descrip-
tion B. The second step rewrites B into an equivalent (≡T)
description through SOLRW 〈L ,T ,B,≡T 〉 by using some of
the names defined in T . The third step returns the shortest
description based on its size. Concept descriptions are or-
dered by size i.e., E � E ′ iff |E| ≤ |E ′|. The size |E| (Küsters
2001) of a concept description E is defined to be the number
of occurrences of concepts and role names in E (where >
and ⊥ are not counted).

Algorithm 2: Minimal Justification 〈L ,T ,G ,C〉.
1 Input: L : a DL. T : a terminology. G : a set of GCIs in L . C: a

concept in L
2 Result: Minimal justification J ∈ L of inconsistency C v D.
3 begin
4 // Initialization of a temporary concept B ∈ L .
5 B←>;
6 // Conjunction of existing SOLGSP〈L ,T ,G ,C〉.
7 foreach Si ∈ SOLGSP〈L ,T ,G ,C〉 do B← BuSi;
8 // Initialization of justification J.
9 J← B;

10 // Rewriting Problem.
11 foreach Si ∈ SOLRW 〈L ,T ,B,≡T 〉 do
12 // Minimal Solution.
13 if Si � J then J← Si;

14 return J;

Finding a minimal justification (Algorithm 2) is PSPACE-
hard due to PTIME-hardness of line 7 and PSPACE-
hardness of line 11 (Baader, Küsters, and Molitor 2000) in
EL++.

Example 8. (Minimal Justification)
According to Algorithm 2 and Example 7, a minimal justifi-
cation of 〈L ,T ′,G ,D〉 is ∃ad jRoad.(Au (∃loc.J)).

84

Figure 5: Computation Performance of Change Diagnosis.

Experimental Results
We report a large-scale evaluation for diagnosing changes
by evaluating performance of (i) identifying GCIs which
are responsible of stream inconsistencies (Algorithm 1: A.1)
and (ii) constructing their minimal justification (Algorithm
2: A.2). Based on a DL extension of InfoSphere Streams
(Biem et al. 2010) to process semantic streams, coupled with
CEL DL reasoner (http://lat.inf.tu-dresden.de/systems/cel/),
we study the impact of variables h and the number |P| of
inconsistent pairs of concepts e.g., axiom (10). The experi-
ments have been conducted on server of 4 Intel(R) Xeon(R)
X5650, 2.67GHz cores and 6GB RAM.
• Context: Stream data from the bus operator of

Dublin City has been enriched with an EL++ version
of the XML format SIRI (Service Interface for Real
Time Information) where GPS locations and delays of
1000 buses (updated every 20 seconds) were axiomatized
in 2000 GCIs. Events related to Dublin City were cap-
tured through Eventful (http://eventful.com) and EventBrite
(http://www.eventbrite.com) where an average of 187 events
a day have been described by 748 GCIs. Besides a core static
ontology of 55 concepts with 19 role descriptions (17 con-
cepts subsume the 38 remaining ones with a maximal depth
of 3), we inject 300 EL++ GCIs to describe 100 roads and
their interconnections in Dublin City.
• Results: Figure 5 illustrates the computation costs of

the important steps for diagnosing changes over streams of
k = 1,080 snapshots (6 hours). We considered a number of
|P| ∈ {5,10,15} inconsistent pairs of concepts within an ex-
act window of h ∈ 30,60,90 snapshots (i.e., 10, 20 and 30
minutes). Despite the large number of subsumption tests re-
quired in both algorithms, our approach performs in a suit-
able range of computation time: from 4.2 to 16.4 seconds.
Computation of Algorithm 1 represents 64% of the overall
approach. It is mainly impacted by h-invariance as it requires
to check subsumption over a window of up to 90 snapshots
in a stream of 1,080. It is also obvious that a higher num-
ber of h and |P| impacts performance of Algorithm 2. In-
deed the more solutions returned by Algorithm 1 over a h-
window the more inputs for Algorithm 2. The rewriting pro-
cess represents 75% of Algorithm 2 and 30% of the overall
approach (due to a large number of concept definition in T).
On contrary, GCIs-guided subsumption is 10% of our ap-
proach. We also note that computation time of the overall
approach is much more altered by window h rather than |P|
e.g., by tripling |h| the computation time is tripled while it is
doubled when |P| is tripled.
• Validation and Open Issues: The performance is

mainly impacted by the expressivity of the DL used, e.g.,

the latter results would have been altered using DL ALC
since deciding subsumption is NP-complete. However the
computation performance can be improved by reducing the
number of intermediate axioms in Figures 1 and 2 and (used)
rules in Table 1 which are required to infer stream-based
inconsistencies (Definition 4). For instance we could store
only jammed and free roads axioms as DL axioms, where
the latter could be ”directly” derived from raw data with-
out semantic-ization process. The size and the structure of
the ontology have a limited impact compared to variables k,
h and |P|. Besides altering computation performance, these
variables have a high impact on precision. Adding too much
irrelevant information i.e., noise (e.g., through too wide
or narrow windows h,k) decreases precision and increases
computation time. Similarly, the more data sources (mod-
eled as GCIs) the more specific the solution, so precision
and relevance of data sources are closely related.

Related Work
Continuously collected data streams are generated by dy-
namic processes through sensors, actuators or social media
feeds. Since data changes over time, even drastically in some
cases, catching the knowledge in such a dynamic environ-
ment and inferring new facts in real time are not straightfor-
ward tasks to achieve. This challenge, also known as contin-
uous processing of information flows (i.e. data streams), has
been widely investigated in the Database community (Biem
et al. 2010) and more recently in the context of the Semantic
Web (Valle et al. 2009). For instance, (Barbieri et al. 2009)
presents a stream data reasoning approach, as an extension
of SPARQL, to capture knowledge from multiple semantic-
tagged data sources in real time. Reasoning is processed on
both a rich background and evolving ontology, where the
latter is materialized at query time. However, this approach
is limited to relatively simple languages such as RDF and
RDFS, reducing expressivity of reasoning.

(Ren and Pan 2011) address this issue by presenting
a stream reasoning approach in the context of in EL++

DL. They consider streams of ontologies and focus on de-
tecting dependencies over time. Other approaches consider
changes over streams for continuously and incrementally
updating and materializing knowledge. (Volz, Staab, and
Motik 2005) extended the Delete and Re-derive (DRed) al-
gorithms (Gupta, Mumick, and Subrahmanian 1993) from
traditional data stream management systems for maintaining
up-to-date view of knowledge. When change occurs, they
overestimate the consequences of the deletion, then cash-
back the over-deleted consequences that can be derived by
other facts, and add entailments derived from new facts.
Even though some optimizations (Barbieri et al. 2010) have
been proposed to better support scalable reasoning within
fixed time windows, these approaches do not address change
diagnosis i.e., capturing the nature of change over streams.
In other context (Fanizzi, d’Amato, and Esposito 2008) ad-
dress change of concept description and novelty detection
using unsupervised machine learning techniques, which is
based on clustering of new individuals.

(Noy and Musen 2002) detect and display changes for
comparing ontology versions. In this context, changes are

85

likely to appear randomly in any part of the ontology,
making diagnosis difficult and irrelevant. Similarly, (Huang
and Stuckenschmidt 2005) address ontology versioning.
They develop a temporal logic-based approach for reason-
ing about commonalities and differences between versions.
Complying with existing DL reasoners, they are able to pre-
dict consequences of a change. However, elaborating rela-
tions between multiple changes over a large number of snap-
shots is out of their scope.

From the Database community perspective, changes de-
tection has been addressed due to its impact on data process-
ing algorithms. Indeed stable distribution of data is better
handled by stream processing. Various distance metrics have
been introduced for determining precisely when and how
the underlying distribution changes. (Aggarwal 2003) goes
further by addressing change diagnosis through understand-
ing, visualization and identification of trend in data streams.
They provide methods, based on velocity density estimation,
to visualize how the pattern of the data in various spatial lo-
cations has changed over time. However trend results are
then subjects to interpretation and require deeper analysis to
identify possible logical relations between changes.

Conclusion and Future Work
We studied ontology stream reasoning and addressed change
diagnosis i.e., identification of the nature and cause of
changes over stream. While the former is important for
(i) understanding how knowledge is evolving and (ii) an-
swering questions on real time events, the latter is cru-
cial for (iii) justifying logical connections of knowledge at
various points of time and (iv) providing insight on time-
changing events. Based on an analysis of stream behav-
ior through change and inconsistency over DL axioms, we
tackled change diagnosis by determining and constructing a
comprehensive view on potential causes of inconsistencies.

In future work, we will further evaluate the impact of
more data sources on precision and scalability. We will also
adapt our approach to the Linked Open Data-based semantic
web (Bizer, Heath, and Berners-Lee 2009), that will benefit
from a scalability point of view.

References
Aggarwal, C. C. 2003. A framework for change diagnosis
of data streams. In SIGMOD Conference, 575–586.
Auer, S.; Dietzold, S.; and Riechert, T. 2006. Ontowiki - a
tool for social, semantic collaboration. In ISWC, 736–749.
Baader, F., and Nutt, W. 2003. In The Description Logic
Handbook: Theory, Implementation, and Applications.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the el
envelope. In IJCAI, 364–369.
Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the el
envelope further. In OWLED.
Baader, F.; Küsters, R.; and Molitor, R. 2000. Rewriting
concepts using terminologies. In KR, 297–308.
Babu, S., and Widom, J. 2001. Continuous queries over data
streams. SIGMOD Record 30(3):109–120.

Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2009. C-sparql: Sparql for continuous querying.
In WWW, 1061–1062.
Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2010. Incremental reasoning on streams and
rich background knowledge. In ESWC (1), 1–15.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
semantic web. Scientific American 284(5):34–43.
Biem, A.; Bouillet, E.; Feng, H.; Ranganathan, A.; Riabov,
A.; Verscheure, O.; Koutsopoulos, H. N.; and Moran, C.
2010. Ibm infosphere streams for scalable, real-time, in-
telligent transportation services. In SIGMOD, 1093–1104.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked data
- the story so far. Int. J. Semantic Web Inf. Syst. 5(3):1–22.
Fanizzi, N.; d’Amato, C.; and Esposito, F. 2008. Conceptual
clustering and its application to concept drift and novelty
detection. In ESWC, 318–332.
Gupta, A.; Mumick, I. S.; and Subrahmanian, V. S. 1993.
Maintaining views incrementally. In SIGMOD, 157–166.
Horrocks, I., and Sattler, U. 2001. Ontology reasoning in
the shoq(d) description logic. In IJCAI, 199–204.
Huang, Z., and Stuckenschmidt, H. 2005. Reasoning with
multi-version ontologies: A temporal logic approach. In
ISWC, 398–412.
Kifer, D.; Ben-David, S.; and Gehrke, J. 2004. Detecting
change in data streams. In VLDB, 180–191.
Küsters, R. 2001. Non-Standard Inferences in Description
Logics, volume 2100 of LNCS. Springer.
Li, L., and Horrocks, I. 2003. A software framework for
matchmaking based on semantic web technology. In WWW,
331–339.
Noy, N. F., and Musen, M. A. 2002. Promptdiff: A
fixed-point algorithm for comparing ontology versions. In
AAAI/IAAI, 744–750.
OWL Working Group, W. 2009. OWL 2 Web Ontology Lan-
guage: Document Overview. W3C Recommendation.
Ren, Y., and Pan, J. Z. 2011. Optimising ontology stream
reasoning with truth maintenance system. In CIKM, 831–
836.
Rodriguez, A.; McGrath, R. E.; Liu, Y.; and Myers, J. D.
2009. Semantic management of streaming data. In Interna-
tional Workshop on Semantic Sensor Networks at ISWC.
Sheth, A. P.; Henson, C. A.; and Sahoo, S. S. 2008. Semantic
sensor web. IEEE Internet Computing 12(4):78–83.
Sheth, A. P. 2010. Computing for human experience:
Semantics-empowered sensors, services, and social com-
puting on the ubiquitous web. IEEE Internet Computing
14(1):88–91.
Valle, E. D.; Ceri, S.; van Harmelen, F.; and Fensel, D. 2009.
It’s a streaming world! reasoning upon rapidly changing in-
formation. IEEE Intelligent Systems 24(6):83–89.
Volz, R.; Staab, S.; and Motik, B. 2005. Incrementally
maintaining materializations of ontologies stored in logic
databases. J. Data Semantics 2:1–34.

86

