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Abstract

Trust is one of the most important factors for par-
ticipants’ decision-making in Online Social Networks
(OSNs). The trust network from a source to a target
without any prior interaction contains some important
intermediate participants, the trust relations between
the participants, and the social context, each of which
has an important influence on trust evaluation. Thus,
before performing any trust evaluation, the contextual
trust network from a given source to a target needs to
be extracted first, where constraints on the social con-
text should also be considered to guarantee the quality
of extracted networks. However, this problem has been
proved to be NP-Complete. Towards solving this chal-
lenging problem, we first propose a complex contextual
social network structure which considers social contex-
tual impact factors. These factors have significant in-
fluences on both social interaction between participants
and trust evaluation. Then, we propose a new concept
called QoTN (Quality of Trust Network) and a social
context-aware trust network discovery model. Finally,
we propose a Social Context-Aware trust Network dis-
covery algorithm (SCAN) by adopting the Monte Carlo
method and our proposed optimization strategies. The
experimental results illustrate that our proposed model
and algorithm outperform the existing methods in both
algorithm efficiency and the quality of the extracted
trust network.

Introduction
Online Social Networks (OSNs) have been used as a means
for a variety of activities. For example, according to a survey
on 2600 hiring managers in 2009 by CareerBuilder (career-
builder.com, a popular job hunting website), 45% of those
managers used social networking sites to investigate poten-
tial employees. The ratio increased to 72% in January 2010.
In such an activity, trust is one of the most important fac-
tors for participants’ decision making, requiring approaches
and mechanisms for evaluating the trustworthiness between
participants who are unknown to each other.

In OSNs, each node represents a participant and each
link between two nodes corresponds to a real-world or on-
line interaction. For adjacent participants (i.e., those nodes
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Figure 1: A social network

with a direct link between them), the trust value between
them could be explicitly given by one to another based on
their direct interaction (e.g., TAB and TBC). As each par-
ticipant usually interacts with many others, multiple trust
paths may exist between nonadjacent participants (e.g., path
A → B → E → G and A → B → E → F → G in Fig. 1)
from the source participant (e.g., A) to the target partici-
pant (e.g., G), which forms a trust network. As indicated
in the disciplines of Social Psychology (Mansell and Collins
2005) and Computer Science (Golbeck and Hendler 2006;
Liu et al. 2010), such a trust network can provide the ba-
sis for evaluating the trustworthiness of the target as it con-
tains some important intermediate participants, the trust re-
lations between those participants and social context. In
the literature, there have been some existing trust evalua-
tion approaches that evaluate the trust value between any
two nonadjacent participants (Golbeck and Hendler 2006;
Liu, Wang, and Orgun 2011a; 2011b). However, they all as-
sume the trust network between the two participants have
been identified. Namely, extracting such a contextual trust
network between two nonadjacent participants is an essen-
tial step before performing any trust evaluation between
them. The trust network discovery aims to identify a trust
network between two nonadjacent participants with less
nodes and/or less links but including the important interme-
diate participants, their trust relations, and the social context.
With such a process, trust evaluation methods can be more
efficient and effective.

However, extracting such a trust network involves the
NP-Complete problem of finding the longest simple path
(a simple path is an acyclic path) in a graph (Baase and
Gelder 2000). Alternatively, since the resource discovery
problem in P2P networks (Adamic, Lukose, and Huber-
man 2003) has similar properties, the heuristic search strate-
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gies developed for P2P network resource discovery can be
used. But these methods do not consider the social con-
text in social networks, including social relationships, so-
cial positions, residential location and preferences of par-
ticipants. As indicated in Social Psychology (Brass 2009;
Lichtenstein and Slovic 2006), all the above information
provides a social context and has significant influence on
both social interaction and trust evaluation. In addition, a
source may have different purposes to evaluate the trustwor-
thiness of the target, e.g., looking for a potential employee,
or a movie recommendation. Thus, to obtain a more trust-
worthy trust evaluation result, a source participant may spec-
ify some constraints of the values in social context as the
trust evaluation criteria in trust network discovery. However,
this feature has not been supported in the existing methods.
Therefore, it is a significant and challenging problem to ex-
tract the contextual trust network satisfying the constraints
specified by a source, which is expected to contain the most
trustworthy trust evaluation result.

In this paper, we first propose a new complex contextual
social network structure which contains social contextual
impact factors, including trust, social intimacy degree, role
impact factor, preference similarity and residential location
distance. Then, we propose a new concept QoTN (Quality of
Trust Network), taking these impact factors as the attributes
to illustrate the capability of a contextual trust network to
guarantee a certain level of trustworthiness in trust evalua-
tion. After that we propose a social context-aware trust net-
work discovery model. Since trust network discovery with
QoTN constraints involves finding the longest simple path
(a simple path is an acyclic path) in a graph, which has
been proved to be an NP-Complete problem (Baase and
Gelder 2000), we propose a novel Social Context-Aware
trust Network discovery algorithm, called SCAN, by adopt-
ing the Monte Carlo method and our proposed optimiza-
tion strategies. Experiments conducted on a real social net-
work dataset, Enron emails1, demonstrate the superior per-
formance of the SCAN algorithm.

Related Work
Social Network Analysis
In 1960’s, Milgram (1967) validated the small-world2 char-
acteristic in social networks. In recent years, sociologists
and computer scientists have started to investigate the char-
acteristics of popular OSNs, including MySpace (mys-
pace.com) and Flickr (flickr.com), and validated the small-
world and power-law characteristics of online social net-
works using data mining techniques.

Trust in Social Networks
Trust is a critical factor in the decision-making of par-
ticipants in OSNs (Kuter and Golbeck 2007). Golback et
al. (Golbeck and Hendler 2006) proposed a trust inference
mechanism in social networks based on an averaging strat-
egy. In addition, Liu et al. (2010) have proposed a heuristic

1http://www.cs.cmu.edu/ enron/
2The average path length between any two nodes is about 6.6 hops in a social

network (Milgram 1967).

algorithm to identify the most trustworthy social trust path
between two nonadjacent participants. They further pro-
posed a heuristic algorithm for the selection of top K (K≥ 2)
social trust paths (Liu, Wang, and Orgun 2011a) and a novel
trust transitivity model in social networks (Liu, Wang, and
Orgun 2011b). All of these trust models assume that the trust
network from the source to the target have been extracted.
Therefore, trust network discovery is a necessary step be-
cause it provides a foundation to apply the above promising
trust evaluation models.

Network Discovery
To the best of our knowledge, in the literature, there are
no approximation algorithms proposed for the NP-Complete
trust network discovery problem in OSNs. Since the re-
source discovery problem in P2P networks has the simi-
lar properties as the trust network discovery problem, some
search strategies developed for the resource discovery can
be applied in trust network discovery. These strategies can
be classified into three categories.

Flooding-Based Search (FBS) The flooding-based mech-
anism searches the network from the source by using the
Breadth First Search (BFS) strategy, which was applied into
Gnutella (rfc-gnutella.sourceforge.net). Since this search
strategy consumes huge computation time, the Time To Live
Breadth First Search (TTL-BFS) method (Filali and Huet
2010) was proposed. In TTL-BFS, the Time To Live (TTL)
is set to an integer and its value is decreased by 1 or V r (0 <
V r < 1) after each layer of BFS. During the process, if the
target is found, the search terminates. Otherwise, TTL-BFS
repeats BFS until T T L = 0 or the target is found.

Random Walk Search (RWS) RWS (Gkantsidis, Mihail,
and Saberi 2004) firstly searches all the neighboring nodes
of the source. If the target is discovered, the search termi-
nates. Otherwise, the method randomly selects one of the
currently node’s neighbors as the expansion node for the
next step of the search.

High Degree Search (HDS) The HDS method (Adamic,
Lukose, and Huberman 2003) firstly calculates the outdegree
of each of the neighboring nodes of a source and selects the
one with the maximal outdegree. If the selected node is the
target, then the search terminates. Otherwise, HDS repeats
the ourdegree calculation and node selection.

Summary The above search strategies have good perfor-
mance in P2P networks which do not contain social contex-
tual information. In addition, they do not support the trust
evaluation criteria specification. Thus, existing methods can-
not be expected to extract a trust network to deliver a trust-
worthy trust evaluation satisfying the constraints in social
contexts.

Complex Contextual Social Networks
In this section, we propose a new complex contextual so-
cial network structure, containing social contextual impact
factors, and hence reflecting the social networks in the real
world better.
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Social Contextual Impact Factors
1. Trust: Trust is the belief of one participant in another,

based on their interactions, in the extent to which the fu-
ture action to be performed by the latter will lead to an ex-
pected outcome (Liu et al. 2010). As pointed out in (Wang
and Varadharajan 2007; Mansell and Collins 2005), the
trust value between two people can be different in differ-
ent domains. In our model, let T Di

AB ∈ [0,1] denote the trust
value that A assigns to B in domain i. If T Di

AB = 0, it in-
dicates that A completely distrusts B in domain i, while
T Di

AB =1 indicates A completely believes B’s future action
can lead to the expected outcome in that domain.

2. Social Intimacy Degree: As illustrated in Social Psychol-
ogy (Brass 2009), a participant can trust and have more
social interactions with the participants with whom he/she
has more intimate social relationships than those with
whom he/she has less intimate social relationships. Let
SIAB∈ [0,1] denote the Social Intimacy Degree between A
and B in online social networks. SIAB=0 indicates that A
and B have no social relationship while SIAB=1 indicates
they have the most intimate social relationship.

3. Role Impact Factors: As illustrated in Social Psychology
(Adler 2001; Dalton 1959), in a certain domain of interest
(e.g., hiring employees or product sales), an expert’s rec-
ommendation is more credible than that from a beginner.
Let ρ

Di
A ∈ [0,1] denote the value of the Role Impact Fac-

tor, illustrating the impact of participant A’s social role in
domain i. ρ

Di
A = 1 indicates that A is a domain expert in

domain i while ρ
Di
A =0 indicates that A has no knowledge

in that domain.

4. Preference Similarity: As illustrated in Social Psychol-
ogy (Zajonc 2011), a participant can trust and have more
social interactions with another participant, with whom
he/she shares more preferences (e.g., both of them like
playing badminton) than those, with whom he/she shares
fewer preferences. Let PSDi

AB ∈ [0,1] denote the value of
the Preference Similarity between A and B in domain i.
When PSDi

AB=0, A and B have no similar preference in the
domain. When PSDi

AB = 1, they have the same preference
in that domain.

5. Residential Location Distance: As illustrated in So-
cial Psychology (Gimpel et al. 2008), a participant can
trust more and have more social interactions with another
whose residential location is close to that of the partici-
pant (e.g., in the same neighborhood) than those whose
residential location is far away. Let RLDAB ∈ [0,1] de-
note the Residential Location Distance between A and B.
When RLDAB =1, the residential location of A and B are
the same. When RLDAB =0, it indicates that the residen-
tial location between them has the largest distance.

Although it is difficult to build up comprehensive social
relationships, recommendation roles, preference similarity
and residential location distances in all domains, it is fea-
sible to build them up in particular applications (Liu, Wang,
and Orgun 2011b). For example, in the work by Mccallum

Figure 2: A complex contextual social network

et al. (2007), through mining the subjects and contents of
emails in the Enron Corporation1, the social relationship be-
tween each email sender and receiver can be discovered and
their roles can be predicted. Then the corresponding social
intimacy degree and role impact factor values can be esti-
mated based on probabilistic models. In addition, at Face-
book, the preference similarity and the residential location
distance between two participants can be mined from their
profiles (Mislove et al. 2007). Detailed mining methods are
out of the scope of this paper.

A Complex Contextual Social Network Structure
Based on the above social contextual impact factors, we pro-
pose a new complex contextual social network structure as
depicted in Fig. 2.

Social Context-Aware Trust Network
Discovery Model

Social Context-Aware Social Interaction
As indicated in Social Psychology (Gimpel et al. 2008;
Zajonc 2011; Brass 2009), some of the social contextual
impact factors (i.e., SI, PS, T and RLD) have influence on
social interactions. For example, based on the statistics of
1000 publications from 18 countries in ISI Web of Knowl-
edge (apps.webofknowledge.com) (Wren et al. 2007), the
first author and the last author had the same address in 54%
papers, indicating that RLD of authors impacts on the social
interactions in research. In addition, based on the statistics
on Flickr(flickr.com)-an online photo sharing social network
(Mislove et al. 2007), any two participants in photo sharing
usually have similar preferences, indicating that PS impacts
the social interactions.

Social Context-Aware Social Interaction
Probability
In the real world, many social phenomenons approximately
follow the normal (Gaussian) distribution (Bittinger 2002).
For example, the IQ, memory, income and reading skills of
people in a general population (Abell, Braselton, and Rafter
2012). The probability density function of the normal distri-
bution is as Eq.(1) (see the function image in Fig. 3).

y =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)
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Figure 3: Normal distribution

where parameters µ and σ are the mean and standard devia-
tion respectively.

In our model, we assume the probability distribution of
a social interaction between any two participants with the
social contextual impact factors (denoted as P(A→ B|X),
X is the social impact factor value) also follows the normal
distribution.

P(A→ B|X) =
∫ X+δ

X

1√
2πσ2

e−
(X−µ)2

2σ2 d(X) (2)

Then, based on mathematical theory (Bittinger 2002),
P(A→ B|X) can be calculated by Eq. (2) (i.e., the Proba-
bility Density Function of normal distribution). In this equa-
tion, δ is the length of each small interval (the horizontal
axis between 0 and 1 is divided into several small intervals
(Bittinger 2002)). If X is in one of the intervals (e.g., in the
interval [x1,x1 +δ] in Fig. 3), P(A→ B|X) is the integration
of Eq. (1) with a lower limit X and a upper limit X +δ (in the
case shown in Fig. 3, where X = x1). Namely, P(A→B|X) is
equal to the corresponding area of the trapezoid with curved
edges in an interval [X ,X + δ] (e.g., the shadowed area in
Fig. 3). In addition, the parameters µ and σ in Eq. (2) can
be computed by applying social statistics methods (Bittinger
2002), which is out of the scope of this paper. Finally, typ-
ically the social interaction with each factor is regarded as
an independent event, based on probability theory (Bittinger
2002), the aggregated social interaction probability between
A and B (denoted as AP(A→ B)) can be calculated by Eq.
(3).

AP(A→ B) = ∏P(A→ B|X) (3)

In our model, the aggregated social interaction probability
will be considered in the node selection of trust network dis-
covery, where the larger the probability of a node to have
a social interaction with the target, the more likely for the
node to be selected.

Quality of Trust Network (QoTN)
In addition to the influence of social context on social inter-
actions, our model also considers different trust evaluation
criteria of a source. We first propose a new concept, Quality
of Trust Network as below.

Definition 1 Quality of Trust Network (QoTN) is the ability
of a contextual trust network to guarantee a certain level
of trust in trust evaluation, taking T, SI, ρ, PS, RLD as
attributes.

In our model, a source participant can specify multiple
constraints for QoTN attributes (i.e., T , SI, ρ, PS and RLD)
for intermediate nodes and their links in a trust network, as

the requirements of trust network discovery in different do-
mains. Let QoT N(η)

vs,vt (η ∈ {T, SI, ρ, PS, RLD}) denote
the QoTN constraints of η in the trust network from vs to
vt (throughout this paper, vs denotes the source and vt de-
notes the target in a social network). For example, to hire
employees, vs, a hiring manager specifies the QoTN con-
straints as {QoT NT

vs,vt > 0.3, QoT NSI
vs,vt > 0.3, QoT NPS

vs,vt >

0.3, QoT NRLD
vs,vt > 0.3, QoT Nρ

vs,vt > 0.8}, if he/she believes
the role impact factor of each of the intermediate participants
is more important in the domain of recruitment.

Trust Network Utility
In our model, we define the utility (denoted as U) as the
measurement of the trustworthiness of an extracted trust net-
work. The utility function takes the QoTN attributes T , SI,
ρ, PS and RLD as the arguments in Eq. (4)

U(vs,vt) =
N

∑
i=1

Ti +
N

∑
i=1

SIi +
M

∑
i=1

ρi +
N

∑
i=1

PSi +
N

∑
i=1

RLDi (4)

M is the number of the intermediate nodes and N is the num-
ber of the corresponding links in the trust network,

The goal of trust network discovery is to extract the op-
timal trust network from source vs to target vt that satisfies
multiple QoTN constraints and yields the highest utility.

Social Context-Aware Trust Network
Discovery Algorithm

To solve the NP-Complete trust network discovery problem
with QoTN constraints, we propose a Social Context-Aware
trust Network discovery (SCAN) algorithm, by adopting the
Monte Carlo method and two optimization strategies.

Monte Carlo Method
Monte Carlo method (Gentle, Hardle, and Mori 2004) is a
computational algorithm which relies on repeated random
sampling to compute results. It is one of the techniques with
good efficiency for solving NP-complete problems (Gen-
tle, Hardle, and Mori 2004). In the literature, based on the
Monte Carlo method, a number of algorithms have been pro-
posed for solving NP-Complete multiple constrainted social
trust path selection and composite service selection prob-
lems (Liu, Wang, and Orgun 2011b; Li, Wang, and Lim
2009).

SCAN
In SCAN, initially, the source participant vs is regarded
as the current expansion node, and SCAN searches all the
neighboring nodes of vs (denoted as vs.neighboring node)
to investigate whether the current node and its corresponding
links satisfy the QoTN constraints. If all QoTN constraints
can be satisfied, the neighboring node is called a feasible
node (denoted as v f ). Given that the larger the outdegree of
a node, the more likely for the node to have a connection
with others (Adamic, Lukose, and Huberman 2003), SCAN
calculates the selection probability of all the feasible nodes
(denoted as SCP(v f → vt)) based on AP(v f → vt) and the
outdegree of v f (denoted as deg+(v f )) by Eq. (5).
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Figure 4: Unsatisfied nodes

SCP(v f → vt) = AP(v f → vt) ·
deg+(v f )

MAX(deg+)
(5)

where MAX(deg+) is the maximal value of the outdegree of
the nodes in a social network.

After that, based on their selection probabilities, SCAN
selects one of the feasible nodes as the next expansion node
(denoted as vexp), where the higher the selection probability
of a node, the more likely for the node to be selected. During
the process, a cycle in a path is avoided by the strategy in
(Pearl 1984), as it leads to inefficiency and ineffectiveness of
the network discovery (Mansell and Collins 2005). Finally,
SCAN repeats the above search process at each vexp until it
finds vt or reaches the threshold of search hops (denoted as
λh, on average λh ≤ 7 due to the small-world phenomenon
of social networks2). During the search process, in addition
to the basic Monte Carlo method, we adopt the following
three optimization strategies to improve the efficiency of our
algorithm.

Optimization Strategy 1: Avoiding Repeated Feasibil-
ity Investigations in Simulations. In each search step, the
Monte carlo method investigates the feasibility of all the
neighboring nodes of the current vexp (e.g., investigating vx,
vy and vz in Fig. 4). In multiple simulations of the Monte
Carlo method, a node may be selected as a vexp more than
once. In such a situation, the feasibility investigation needs
to be performed repeatedly, leading to low efficiency. To ad-
dress this issue, in SCAN, if a neighboring node is infea-
sible, (e.g., vx in Fig. 4), the corresponding link from the
current vexp to the neighboring node (e.g., vm→ vx) will be
removed. Then, upon reaching the same vexp (e.g., vm) in
the subsequent simulations, SCAN does not investigate its
neighboring nodes repeatedly as all of them are feasible.

Optimization Strategy 2: Avoiding Repeated Probabil-
ity Calculations in Simulations. In multiple simulations of
the Monte Carlo method, if the same vexp is selected more
than once (e.g., vm in Fig. 4 is selected more than once), its
feasible neighboring nodes’ selection probabilities will have
to be calculated repeatedly, leading to low efficiency. To ad-
dress this issue, at each feasible node, SCAN records its se-
lection probability (denoted as v.selection), thereby avoiding
repeated calculations in the subsequent simulations.

Given a group of QoTN constraints, and a pair of vs and
vt in a complex contextual social network, the process of
SCAN includes the following steps.

Initialization: At each node vi, set
vi.probability status = 0, which indicates the social
interaction probabilities of vi’s neighboring nodes (denoted
as vi.neighboring nodes) have not been calculated. In

addition, all the nodes are marked as unvisited (vi.visit = 0),
and set vexp = vs.

Step 1: Based on vexp.probability status, SCAN per-
forms the following search strategies.

If vexp.probability status 6= 1, SCAN investigates the fea-
sibility of v j, v j ∈ {vexp.neighboring nodes}) as follows.

(a) Case 1: If v j = vt , then SCAN terminates the current
search, and starts a new simulation from Initialization.

(b) Case 2: If v j 6= vt and v j is a feasible node, then
SCAN calculates SCP(v j→ vt), and sets v j.selection=
SCP(v j→ vt) and vexp.probability status = 1.

(c) Case 3: If v j 6= vt and v j is an infeasible node, based on
the number of the infeasible neighboring nodes of vexp
(denoted as vexp.in f easible number), SCAN performs
the following search strategies.
(c-1-1): If vexp.in f easible number =
vexp.neighboring nodes and vexp = vs, then SCAN
terminates, failing to return a trust network that
satisfies QoTN constraints.
(c-1-2): If vexp.in f easible number =
vexp.neighboring nodes and vexp 6= vs, then SCAN
terminates the current search and starts a new
simulation from initialization.
(c-1-3): If vexp.in f easible number 6=
vexp.neighboring nodes, go to Step 2.

Step 2. If vsel .visit = 0, calculate the probability of v j to
be a vexp by the following Eq.(6).

p(v j) =
v j.selection

∑vk.selection
vk ∈ {vexp.neighboring node} (6)

Step 3. Select one of the feasible neighboring nodes (de-
noted as vsel) based on their probabilities obtained by Eq.
(6). Then based on Optimization Strategy 1, set vsel .visit = 1,
to avoid cycles in the subsequent search steps of the current
simulation.

Step 4. Set vexp = vsel , and continue the search from Step
1 until the number of searching hops reaches λh (on average
λh ≤ 7(Milgram1967)).

The time complexity of SCAN is O(mld), where m is the
number of simulations; l is the average length of the so-
cial trust paths from vs to vt ; d is the maximal outdegree
of the nodes in social networks. In social networks, on av-
erage, l < 7 (Milgram 1967). Thus the time complexity of
SCAN is O(md), which is better than FBS (Flooding Based
Search) with the time complexity of O(dT T L) (TTL is Time
To Live, introduced in Section 2.3), and the same as those of
both RWS (Random Walk Search) and HDS (High Degree
Search).

Experimental Evaluation
Experiment Setup
In order to evaluate the performance of our proposed algo-
rithm on trust network discovery, we need a dataset which
contains social network structures. The Enron email dataset1
has been proved to possess the small-world and power-law
characteristics of social networks and thus it has been widely
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Figure 5: The utilities of extracted trust networks with 4 hops

Figure 6: The utilities of extracted trust networks with 6 hops

used in the studies of social networks (Mccallum, Wang,
and Corrada-Emmanuel 2007; S. Yoo and Moon 2009;
Liu, Wang, and Orgun 2011b; 2011a). Thus, to validate our
proposed algorithm, we select the Enron email dataset1 with
87,474 nodes (participants) and 30,0511 links (formed by
sending and receiving emails) as the dataset for our exper-
iments. Secondly, we randomly select a source and a target
from the dataset, and compare our SCAN with other meth-
ods in all the three categories, i.e., FBS, RWS and HDS.
Thirdly, we set four groups of QoTN constraints as listed
in Table 1 and set the social interaction probability to ap-
proximately follow the normal distribution with µ = 0.5 and
σ = 0.1. Finally, the social contextual impact factor values
are generated by using function normrnd(µ,σ) in Matlab.

Each of SCAN, FBS, RWS and HDS is implemented us-
ing Matlab R2008a running on an Lenovo ThinkPad SL500
laptop. The results are plotted in Fig. 5 to Fig. 8, where the
execution time and the utilities of the extracted trust network
for each of the algorithms are averaged based on 10 indepen-
dent runs. In each run, we perform up to 5000 simulations.

Results and Analysis
During the execution of FBS with TTL=2, MATLAB runs
out of memory. This could be caused by the large outdegrees
of the nodes in the two search hops. Therefore, we compare
the extracted trust networks’ utilities delivered by SCAN,
RWS and HDS and their execution time.

Table 1: The settings of QoTN constraints
ID QoT N(T ) QoT N(SI) QoT N(PS) QoT N(RLD) QoT N(ρ)
#1 0.1 0.1 0.1 0.1 0.1
#2 0.15 0.15 0.15 0.15 0.15
#3 0.2 0.2 0.2 0.2 0.2
#4 0.25 0.25 0.25 0.25 0.25

Figure 7: The execution time with 4 hops

Figure 8: The execution time with 6 hops

Fig. 5 to Fig. 6 plot the extracted trust networks’ utilities
with different QoTN constraints with 4 and 6 search hops
(the figures for 5 and 7 hops are similar to those of 4 and
6). From them we could see that firstly, with the same sim-
ulation times, our proposed SCAN can deliver much higher
network utilities than all other methods in all cases. In addi-
tion, since HDS cannot find vt after 5000 times search from
vs in all cases, the extracted trust network’s utility delivered
by HDS is always zero. Thus, we compare the average utili-
ties based on different QoTN constraints delivered by SCAN
and RWS in Table 2. From them we could see that, on aver-
age, our SCAN can deliver extra 72.69%, 76.52%, 84.43%,
85.25% and 71.12% more utilities respectively than RWS
with 1000, 2000, 3000, 4000 and 5000 simulations. This is
because that SCAN takes into account the influence of social
context on social interactions, where the larger the probabil-
ity that a node has a social interaction with vt , the more likely
for the node to be selected. This method increases the prob-
ability of finding a trust path from vs to vt at each search.
In addition, SCAN considers the QoTN constrains, and can
avoid searching infeasible nodes, improving the effective-
ness of each search.

Fig. 7 to Fig. 8 plot the execution time of SCAN, RWS
and HDS with different QoTN constraints with 4 and 6
search hops (the figures for 5 and 7 hops are similar to those
of 4 and 6). From the results, we could see that the execu-
tion time of SCAN is less than that of RWS in all cases.
In addition, when the simulation times are less than 1000,
the execution time of SCAN is similar to HDS. But with
the increase of simulation times, HDS consumes much more
execution time than SCAN. The average execution time of
of HDS, RWS and SCAN in each of 4 to 7 search hops is
listed in Table 3. Based on the statistics of all executions,
on average, the execution time of SCAN is only 13.85% and
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Table 2: The comparison of the utility
Simulations Difference of path utility

4 hops 5 hops 6 hops 7 hops total
1000 19.24%more 45.02%more 112.37%more 114.15%more 72.69%more
2000 62.40%more 61.68%more 63.29%more 118.71%more 76.52%more
3000 103.84%more 88.18%more 41.08%more 104.62%more 84.43%more
4000 114.80%more 101.68%more 40.13%more 84.42%more 85.25%more
5000 139.55%more 92.51%more 37.55%more 64.78%more 71.12%more

39.27% of that of RWS and HDS respectively. This is be-
cause SCAN can avoid repeated feasibility investigation (by
Strategy 1) and repeated selection probability calculation (by
Strategy 2).

Table 3: The comparison of execution time (5000 simula-
tions)

Algorithms The sum of the average execution time (sec)
4 hops 5 hops 6 hops 7 hops total

SCAN 532.5590 772.2890 910.7940 1.1280e+003 3.3436e+003
RWS 6.0538e+003 5.8048e+003 5.9819e+003 6.3017e+003 2.4142e+004
HDS 1.6466e+003 2.0008e+003 2.3238e+003 2.5434e+003 8.5146e+003

SCAN/RWS 0.0880 0.1330 0.1523 0.1790 0.1385
SCAN/HDS 0.3234 0.3836 0.3919 0.4435 0.3927

Conclusions and Future Work
In this paper, we have proposed a complex contextual so-
cial network structure containing social contextual impact
factors. Then, we have proposed a general concept QoTN
(Quality of Trust Network), and a novel social context-aware
trust network discovery model. Finally, we have proposed
a new Social Context-Aware trust Network discovery algo-
rithm (SCAN) by adopting the Monte Carlo method and our
proposed optimization strategies. Based on the above exper-
imental results and analysis, we conclude that our proposed
SCAN outperforms all the existing methods significantly in
both execution time and the quality of the extracted trust net-
works. Therefore, SCAN is an efficient and effective algo-
rithm for the trust network discovery problem with QoTN
constrains in complex contextual social networks.

In future work, we plan to incorporate our models and
algorithms in a new generation of contextual social network
based recommendation systems.
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