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Abstract
With the exponential increase in the number of docu-
ments available online, e.g., news articles, weblogs, sci-
entific documents, the development of effective and effi-
cient classification methods is needed. The performance
of document classifiers critically depends, among other
things, on the choice of the feature representation. The
commonly used “bag of words” and n-gram representa-
tions can result in prohibitively high dimensional input
spaces. Data mining algorithms applied to these input
spaces may be intractable due to the large number of
dimensions. Thus, dimensionality reduction algorithms
that can process data into features fast at runtime, ide-
ally in constant time per feature, are greatly needed in
high throughput applications, where the number of fea-
tures and data points can be in the order of millions. One
promising line of research to dimensionality reduction
is feature clustering. We propose to combine two types
of feature clustering, namely hashing and abstraction
based on hierarchical agglomerative clustering, in order
to take advantage of the strengths of both techniques.
Experimental results on two text data sets show that the
combined approach uses significantly smaller number
of features and gives similar performance when com-
pared with the “bag of words” and n-gram approaches.

Introduction
Recent World Wide Web advances have resulted in large
amounts of online text data such as news articles, blogs, and
scientific documents. The proliferation of such data poses
several challenges to the data mining community. In particu-
lar, these data require effective and efficient methods for text
classification, ranking, organization, indexing, and summa-
rization. The “bag of words” and n-gram feature represen-
tations, commonly used for text classification, usually result
in prohibitively high dimensional input spaces. Data mining
algorithms applied to these input spaces may be intractable
due to the large number of dimensions. Hence, using dimen-
sionality reduction techniques can be crucial for the perfor-
mance and the complexity of the learning algorithms.

The main idea behind dimensionality reduction is to
project the original high-dimensional data into a lower-
dimensional space, in which patterns in the data can be
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more easily identified. Models such as Principal Component
Analysis (PCA) (Jolliffe 1986), Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003), Probabilistic Latent Se-
mantic Analysis (PLSA) (Hofmann 1999), Latent Semantic
Indexing (LSI) (Deerwester et al. 1990) are widely used to
perform dimensionality reduction for text classification.

Unfortunately, for very high-dimensional data, with hun-
dreds of thousands of dimensions, processing data instances
into feature vectors at runtime, using these models, is com-
putationally very expensive. For example, given a learned
LDA model M and a new instance x, representing x as a
feature vector requires inference of unknown hidden topics
θ, i.e., the posterior probability p(θ|x,M ) needs to be esti-
mated. Because the number of new instances can be in the
order of millions in high throughput data mining applica-
tions such as online text classification, ranking, ad selection,
these approaches are not necessarily very efficient. There-
fore, dimensionality reduction algorithms that can process
data into features fast at runtime, ideally in constant time
per feature, are greatly needed.

One promising line of research to dimensionality reduc-
tion is feature clustering. Two types of feature clustering are
by bottom-up hierarchical agglomerative clustering (Duda,
Hart, and Stork 2001) (e.g., using the Jensen-Shannon diver-
gence (Lin 1991)), and by hashing (or random clustering).

Feature clustering by hierarchical agglomerative cluster-
ing finds clusters of “similar” features, called abstractions,
where the feature similarity is measured by distance met-
rics such as the Jensen-Shannon divergence between the
probability distributions of the class variable given the fea-
tures (Baker and McCallum 1998; Silvescu, Caragea, and
Honavar 2009; Slonim and Tishby 1999). High-dimensional
feature vectors are then compressed by abstracting out the
differences between features in the same cluster and adding
up their counts. We will refer to this as feature abstraction.
Feature abstraction effectively reduces the number of fea-
tures by one to three orders of magnitude without sacrific-
ing classification performance (Baker and McCallum 1998;
Silvescu, Caragea, and Honavar 2009), while maintaing a
constant processing time per feature at runtime (i.e., evalu-
ating abstractions needs only an array entry look-up). How-
ever, one of the main shortcomings of feature abstraction is
that, for very high dimensional spaces, e.g., d = 226, it re-
quires O(d) space to store the array that specifies the mem-
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bership of features into abstractions. For very large values
of d, storing the array and performing array entry look-up
operations may become difficult.

Feature hashing (Shi et al. 2009; Weinberger et al. 2009;
Forman and Kirshenbaum 2008; Langford, Li, and Strehl
2007) offers a very inexpensive, yet effective, approach to
reducing the number of features. Feature hashing allows
random collisions into the latent factors. The original high-
dimensional space is “reduced” by hashing the features, us-
ing a hash function, into a lower-dimensional space, i.e.,
mapping features to hash keys, where multiple features can
be mapped (at random) to the same key, and “aggregating”
their counts. Although this method is very effective in re-
ducing the number of features from very high (e.g., 226) to
mid-size (e.g., 216) dimensions, feature hashing can result
in significant loss of information, especially when hash col-
lisions occur between highly frequent features, which can
have significantly different class distributions.

Given the complementary strengths of hashing and ab-
straction, one question that can be raised is the following:
Can one design an effective and efficient approach to reduce
the number of feature dimensions by exploiting the strengths
of these techniques (hashing and abstraction) and overcome
their limitations? The research that we describe in this paper
addresses specifically this question.

Contributions. We present an approach to dimensionality
reduction that combines hashing and abstraction to gener-
ate accurate and concise models, while maintaing a constant
processing time per feature at runtime. More precisely, we
propose to first hash the original high-dimensional spaces
to mid-size dimensions (e.g., 216 or 214), operation which
does not significantly distort the data, and then use ab-
straction to further reduce the dimensionality for a small or
no loss in performance. The use of hashing minimizes the
space requirement needed by abstraction. The use of abstrac-
tion enforces collisions between features that have “simi-
lar” class distributions, as opposed to allowing random col-
lisions, which could result in significant loss of information.

We empirically show that combining hashing and abstrac-
tion: (a) can result in models that use a significantly smaller
number of features, and have similar performance, or some-
times better, compared to the “bag of words” approach; (b)
can provide a way to handle very high dimensionality that
results from using n-grams (i.e., sequences of n contigu-
ous words); (c) significantly outperforms the combination of
hashing and feature selection (Guyon and Elisseeff 2003).

Related Work
A variety of approaches to dimensionality reduction have
been studied in the literature as described below.

Feature selection (Guyon and Elisseeff 2003; Yang and
Pederson 1997) reduces the number of features by select-
ing a subset of the available features based on some chosen
criteria. For example, feature selection by average mutual
information selects the top words that have the highest av-
erage mutual information with the class variable (Yang and
Pederson 1997).

Principal Component Analysis (PCA) (Jolliffe 1986) finds
a projection of the original d-dimensional input space into a

lower m-dimensional orthogonal space, which captures as
much of the data variance as possible, by exploiting the
eigen-structure of the data covariance matrix. PCA is com-
putationally very expensive (Golub and van Loan 1983), al-
though less expensive methods for finding only m eigen-
vectors and eigenvalues were developed (see for exam-
ple (Roweis 1998)). Singular Value Decomposition (SVD)
(Berry 1992; Deerwester et al. 1990) is directly applied to
the data matrix. SVD is also computationally expensive, al-
though SVD methods for sparse text data were developed
with smaller computational complexity (Papadimitriou et al.
1998). However, neither PCA nor SVD is efficient to reduce
the dimensionality for a large number of new instances.

Topic models such as Latent Dirichlet Allocation (LDA)
(Blei, Ng, and Jordan 2003), Probabilistic Latent Seman-
tic Analysis (PLSA) (Hofmann 1999), and Latent Semantic
Indexing (LSI) (Deerwester et al. 1990) are dimensionality
reduction models, designed to uncover hidden topics, i.e.,
clusters of semantically related words that co-occur in the
documents. LSI uses SVD to identify topics, which are then
used to represent documents in a low dimensional “topic”
space. Hence, it is also inefficient. LDA models each docu-
ment as a mixture of topics, and each topic as a distribution
over the words in the vocabulary. The topic distribution of
a document can be seen as a low-dimensional “topic” rep-
resentation. However, LDA requires inference at runtime to
estimate the topic distribution.

Random projections (Johnson and Lindenstrauss 1984;
Achlioptas 2003; Liberty, Ailon, and Singer 2008; Bingham
and Mannila 2001; Rahimi and Recht 2008) project high d-
dimensional spaces into lower m-dimensional spaces using a
random m×d matrix R with unit length columns. Bingham
and Mannila (2001) showed empirically that random projec-
tions do not significantly distort the data and, although their
performance is not as accurate as that of SVD, they are com-
putationally less complex than SVD.

Feature hashing (or random clustering). Shi et al. (2009)
and Weinberger et al. (2009) presented hash kernels to map
high dimensional input spaces into low dimensional spaces
and showed them to be highly accurate for large scale clas-
sification and large scale multitask learning when the di-
mension of the low space is sufficiently large. Ganchev and
Dredze (2008) empirically showed that hash features can
produce accurate results on various NLP applications. For-
man and Kirshenbaum (2008) proposed a fast feature ex-
traction approach by combining parsing and hashing for
text classification and indexing. Indyk and Motwani (1998)
and Gionis, Indyk and Motwani (1999) presented Locality-
Sensitive Hashing (LSH), a random hashing/projection tech-
nique for approximate nearest-neighbor query problems.
Objects (e.g., images or text documents) are hashed using
multiple hash functions such that, for each hash function,
collisions are more likely to happen between objects that are
close to each other, rather than objects that are far apart. A
query object is then hashed, using the same hash functions,
and the objects stored in buckets containing the query object
are ranked and retrieved as the nearest neighbors. However,
LSH is computationally more expensive than hash kernels,
which require only adding up the vector coordinates with the
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same hash key (Shi et al. 2009).
Feature Abstraction. Information Bottleneck (IB) and its

variants (Tishby, Pereira, and Bialek 1999; Slonim and
Tishby 1999; Pereira, Tishby, and Lee 1993) are distribu-
tional clustering based approaches, designed to find a com-
pression of a variable X while preserving as much informa-
tion as possible about a target variable Y . Baker and Mc-
Callum (1998) applied distributional clustering to reduce the
dimensionality of the feature space for document classifica-
tion tasks. Silvescu et al. (2009) applied agglomerative IB
(Slonim and Tishby 1999) to simplify the data representation
on biological sequence classification tasks. Other feature ab-
straction methods include: automatic construction of word
taxonomies from text data and their usage to text classifi-
cation (Kang et al. 2005); compression of conditional prob-
ability tables in Bayesian networks using abstraction-based
search (desJardins, Getoor, and Koller 2000).

In contrast to the approaches discussed above, we present
a hybrid approach that combines hashing (Shi et al. 2009)
and abstraction (Silvescu, Caragea, and Honavar 2009) to
exploit their strengths, and address and minimize their lim-
itations. As feature selection is yet another accurate and ef-
ficient dimensionality reduction method that can be com-
bined with feature hashing, we compare our approach with
the combination of hashing and feature selection.

Methods
The “bag of words” and n-gram approaches construct a vo-
cabulary of size d, which contains all words or n-grams in
a collection of documents. A document is represented as a
vector x with as many entries as the words or n-grams in the
vocabulary, where an entry k in x can record the frequency
(in the document) of the kth word or n-gram in the vocabu-
lary, denoted by xk. Because only a small number of words
(compared to the vocabulary size) occurs in a document, the
representation of x is very sparse, i.e., only a small number
of entries of x is non-zero. However, storing the parame-
ter vectors in the original input space requires O(d) num-
bers, which can become difficult given today’s very large
collections of documents. The combination of hashing and
abstraction helps reduce the size of the parameter vectors.

Feature Hashing
Feature hashing (Shi et al. 2009; Weinberger et al. 2009;
Forman and Kirshenbaum 2008; Langford, Li, and Strehl
2007) is a dimensionality reduction technique, in which
high-dimensional input vectors x of size d are hashed into
lower-dimensional feature vectors xh of size b. Let S denote
the set of all possible strings and h and ξ be two hash func-
tions, such that h : S → {0, · · · ,b− 1} and ξ : S → {±1},
respectively. Each token in a document is directly mapped,
using h1, into a hash key, which represents the index of the
token in the feature vector xh, such that the hash key is a
number between 0 and b− 1. Each index in xh stores the

1Note that h can be any hash function, e.g. hashCode() of
the Java String class, or murmurHash function available online
at http://sites.google.com/site/murmurhash/.

value (“frequency counts”) of the corresponding hash fea-
ture. The hash function ξ indicates whether to increment or
decrement the hash dimension of the token, which renders
the hash feature vector xh to be unbiased (see (Weinberger
et al. 2009) for more details).

Thus, an entry i in xh records the “frequency counts” of
tokens that are hashed together, at random, into the same
hash key i. That is, xh

i = ∑k:h(k)=i ξ(k)xk, for k = 0, · · · ,d−
1 and i = 0, · · · ,b− 1. Note that in the case of ξ ≡ 1, xh

i
represents the actual frequency counts.

As can be seen, multiple tokens can be mapped, through
h, into the same hash key. According to the birthday para-
dox, if there are at least

√
b features, then collisions are

likely to happen (Shi et al. 2009), and hence, useful infor-
mation necessary for high accuracy classification could be
lost through feature hashing. However, words in a document
collection typically follow a Zipf distribution, i.e., only very
few words occur with high frequency, whereas the majority
of them occur very rarely. Because hash collisions are in-
dependent of word frequencies, most collisions are likely to
happen between infrequent words. Weinberger et al. (2009)
have proven that, for a feature vector x such that ‖x‖2 = 1,
the length of x is preserved with high probability, for a suf-
ficiently large dimension (or hash size) b and a sufficiently
small magnitude of x, i.e., ‖x‖∞ (lower and upper bounds
are theoretically derived (Weinberger et al. 2009)).

However, for many practical applications, the value of
b can be smaller than the theoretical lower bound. This
may be problematic as the smaller the size b of the hash
vector xh becomes, the more collisions occur in the data.
Even a single collision of very high frequency words, with
different class distributions, can result in significant loss
of information. In order to avoid such “bad” collisions,
we propose to combine feature hashing (Shi et al. 2009;
Weinberger et al. 2009) with feature abstraction (Silvescu,
Caragea, and Honavar 2009). Specifically, we first analyze
what is the dimension b at which the performance of clas-
sifiers that use hash features starts degrading due to “bad”
hash collisions. We propose to use feature hashing to reduce
very high dimensional input vectors (e.g., 226) into mid-size
dimensional hash vectors (e.g., 216), before the performance
starts degrading, and further reduce the dimensionality of
the hash vectors to smaller dimensions (e.g., to 210) using
feature abstraction that groups together hash features with
“similar” class distributions. Next, we present the combina-
tion of feature hashing with feature abstraction.

Feature Abstraction over Hash Vectors
Feature abstraction effectively reduces a classifier input size
by clustering similar features into an abstraction hierarchy.

Let H denote a set of hash features of size b, and m de-
note the dimension of the desired reduced space for abstrac-
tion (m� b). An abstraction hierarchy (AH) T over H is
defined as a rooted tree such that the leaf nodes correspond
to the hash features hi in H and the internal nodes corre-
spond to abstractions or clusters of hash features. An m-cut
γm through T is a set of m nodes, which forms a partition
of H , that is, γm = {a1 : H1, · · · ,am : Hm}, where a j denotes
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the jth abstraction and H j denotes the subset of hash features
that are clustered together into a j based on some similarity
measure. The nodes on the m-cut γm correspond to abstract
features in the low m-dimensional space.

The algorithm for learning AHs used in this work was
introduced by Silvescu et al. (2009) and is reviewed below.

Learning AHs over hash features. The input of the al-
gorithm is a set of hash features H , along with their frequen-
cies in each class yl ∈ Y , where Y represents the set of all
classes. That is,[

hi :
[
x(h,D)

i ,yl

]
yl∈Y

]
i=0,···,b−1

. (1)

Specifically,
[
x(h,D)

i ,yl

]
represents the number of times the

ith hash feature co-occurs with the class yl in the training set
D . The output is an AH T over H . The algorithm initializes
each abstraction with a hash feature in H , then recursively
merges pairs of abstractions that are most “similar” to each
other, and returns T after b−1 steps. The AH is stored in a
last-in-first-out (LIFO) stack.

Two abstractions are considered “similar” if they occur
within similar class contexts. The class context of a hash
feature in H is defined as the conditional probability dis-
tribution of the class variable Y (which takes values in Y )
given hi, p(Y |hi), and is estimated from D as follows:

p̂(Y |hi) =


[
x(h,D)

i ,yl

]
∑yl∈Y

[
x(h,D)

i ,yl

]


yl∈Y

. (2)

Furthermore, the class context of an abstraction a j : H j is
p(Y |a j), and is obtained using a weighted aggregation of the
contexts of the hash features in H j. That is,

p̂(Y |a j) =
|H j |

∑
t=1

x(h,D)
t

∑
|H j |
r=1 x(h,D)

r

· p̂(Y |ht), (3)

where ht ∈ a j for all t = 1, · · · , |H j|. Again, x(h,D)
t represents

the number of times ht occurs in D .
The distance between two abstractions ai and

a j, denoted by d(ai,a j), is defined as d(ai,a j) =
(p(ai) + p(a j))JSπi,π j(p(Y |ai), p(Y |a j)), where
JSπi,π j(p(Y |ai), p(Y |a j) is the weighted Jensen-Shannon
divergence2 (Lin 1991) between ai’s and a j’s class contexts,

with πi =
p(ai)

p(ai)+p(a j)
and π j =

p(a j)
p(ai)+p(a j)

. The abstrac-

tions ai and a j with the smallest distance between their class
contexts are merged into ak at each step.

The choice of the distance above based on the Jensen-
Shannon divergence explicitly minimizes the reduction in

2The weighted Jensen-Shannon divergence between two prob-
ability distributions pi and p j with weights πi and π j, is given
by: JSπi,π j (pi, p j) = πiKL(pi||p̄) + π jKL(p j||p̄), where p̄ is the
weighted average distribution, p̄ = πi pi+π j p j , and KL(pi||p̄) rep-
resents the Kullback-Leibler divergence between pi and p̄.

mutual information between the features and the class vari-
able. Let A be a random variable that takes values in the
set of abstractions on the cut γm. Silvescu et al. (2009) have
shown that the reduction in mutual information between A
and Y due to the merger {ai,a j} → ak is given by d(ai,a j).
Hence, the choice of the distance d to cluster features in-
duces an ordering over the cuts γm in T with the smallest re-
duction in mutual information from one cut to another. A cut
γm is uniquely obtained by removing m− 1 elements from
the top of the last-in-first-out stack. An array of indices of
size b (corresponding to the number of hash features) is used
to specify the membership of hash features into the abstrac-
tions on the cut γm. The space complexity for storing this
array is O(b) that is presumably significantly smaller than
O(d), which is the space complexity for storing the array
when only the abstraction is used.

Note that random clustering (or hashing) can suffer from
loss of information due to hashing in the same cluster of
two high frequency features with significantly different class
distributions, whereas class-based clustering (or abstraction)
with the Jensen-Shannon divergence, can avoid such a pitfall
by not allowing features in the same cluster, unless the class
distributions of the two features are significantly similar.

Using abstraction, mid-size dimensional hash vectors xh

of size b are abstracted into lower dimensional vectors xa

of size m, with m� b. Specifically, each hash feature hi is
mapped into the jth abstraction on the cut γm, to which it
belongs. The index j represents the index of the ith hash fea-
ture in xa, j = 0, · · · ,m− 1. Frequency counts of the hash
feature are stored at the corresponding index. Evaluating ab-
stractions requires only an array entry look-up.

An entry j in xa records the frequency counts of hash fea-
tures that are grouped together in an abstraction. That is,
xa

j = ∑i:a(i)= j xh
i , for i = 0, · · · ,b−1, j = 0, · · · ,m−1.

Experiments and Results
We evaluated the combination of hashing and abstraction for
classification on two data sets: the Reuters RCV1 data set of
newswire stories (Lewis et al. 2004), and the Cora bench-
mark data set of research articles (McCallum et al. 2000).

For the Reuters RCV1 data set, we used the standard split
of 781,265 articles for training and 23,149 articles for test-
ing, and considered the binary classification of the most pop-
ulous class in the data set, CCAT, which was also used by Shi
et al. (2009) for feature hashing. For Cora, we used a sub-
set3, which consists of 3191 machine learning research arti-
cles found on the Web, and categorized into seven classes.

Experimental Design
Our experiments are designed to explore the following ques-
tions: (i) What is the influence of the hash size on the per-
formance of classifiers that use hash features, and what is
the hash size at which the performance starts degrading? (ii)
How effective is feature hashing on prohibitively high di-
mensional n-gram representations? (iii) How does the per-
formance of feature abstraction compare to that of feature

3Available at http://www.cs.umd.edu/projects/linqs/projects/
lbc.
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hashing and feature selection after an initial reduction is
done by feature hashing to a mid-size dimensional space?

To answer these questions, we proceed with the following
steps. We first preprocess the data by removing punctuation,
and performing stemming. We did not remove stop words, as
they are required to form n-grams from text documents. An
n-gram was obtained by concatenating n consecutive words.

Given a document D, we apply feature hashing in two set-
tings as follows: (i) we first tokenize the document. Each
word token is then hashed into a hash key. We refer to this
setting as the “bag of words” approach (BoW); (ii) we to-
kenize the document and, in addition to the word tokens in
D, we also generate all the bigrams. This setting uses both
unigrams and bigrams. Each string, i.e., unigram or bigram,
is hashed into a hash key. We refer to this setting as n-grams.

We train Support Vector Machine (SVM) classifiers (Fan
et al. 2008) on hash features and investigate the influence of
hash size on SVMs’ performance. That is, we train SVMs on
BoW and n-grams, denoted as FH(BoW) and FH(n-grams),
respectively, for values of the hash size ranging from a 1 bit
hash (i.e., 21) to a 26 bit hash (i.e., 226), in steps of 1 (i.e., for
all powers of 2 up to 26), and compare their performance.

Furthermore, we apply hashing to the sparse high dimen-
sional BoW and n-gram representations to reduce the dimen-
sionality to a mid-size b-dimensional space, e.g., b = 216 or
b = 214, where the performance of SVMs starts to degrade
due to hash collisions (this was guided by the experiment
described above). We perform further dimensionality reduc-
tion using abstraction, selection, and hashing, and compare
the performance of SVMs trained using feature abstraction,
feature selection, and feature hashing, respectively. The fea-
tures used in each case are the following:
• a bag of m abstractions, over the available b hash features,

obtained using the combination of hashing and abstrac-
tion. This experiment is denoted by FH+FA.

• a bag of m hash features chosen from the available b hash
features, using feature selection by mutual information.
This experiment is denoted by FH+FS.

• a bag of m hash features obtained using feature hashing
over the available b hash features, i.e., for each token,
the first feature hashing produces an index i such that
i = h(token) % b, whereas the second hashing produces
an index j such that j = i % m. Note that for powers of
2, using hashing to reduce dimensionality from d to b and
then from b to m is the same as reducing the dimension-
ality from d to m, due to modulo operator properties. This
experiment is denoted by FH+FH.
In experiments, for each of the above representations, we

used the standard t f -id f weighting scheme. For SVM, we
used the LibLinear implementation4. As for the hash func-
tion, we experimented with both the hashCode of the Java
String class, and the murmurHash function. We found that
the results were not significantly different from one another
in terms of the number of hash collisions and classification
accuracy. We also experimented with both ξ : S→{±1} and
ξ≡ 1 (i.e., the actual counts), and found that the results were

4Available at http://www.csie.ntu.edu.tw/ cjlin/liblinear/

(a) (b)

Figure 1: Results on the Reuters RCV1 binary data set for
both FH(BoW) and FH(n-grams): (a) the influence of the
hash size on the performance of SVMs; (b) the comparison
of FH+FA with FH+FH and FH+FS.

b Reuters RCV1 (BoW) Reuters RCV1 (n-grams)
# features Collisions % # features Collisions %

226 360543 0.24 10570900 8.29
224 357543 1.07 8327354 30.35
222 346520 4.17 3925756 81.15
220 305969 16.18 1048556 99.98
218 195988 53.74 262144 100
216 65237 97.63 65536 100
214 16384 100 16384 100

Table 1: The number of unique features (denoted as # fea-
tures) as well as the rate of collisions on the Reuters RCV1
data set for both BoW and n-grams representations.

not significantly different. Thus, in the results shown next,
we used the hashCode function and ξ≡ 1.

On Reuters RCV1, we report the classification accuracy
on the test set, whereas on Cora, we report the average clas-
sification accuracy obtained in a 5-fold cross validation ex-
periment, along with the 95% confidence intervals. The ac-
curacy is shown as a function of the number of features. The
x axis of all figures shows the number of features on a log2
scale (i.e., number of bits in the hash-table).

Results on Reuters RCV1
Figure 1a shows the influence of the hash size b on the per-
formance of SVMs, trained using both FH(BoW) and FH(n-
grams) on Reuters RCV1, where b range from 21 to 226.

The influence of hash sizes on classifiers’ performance.
As can be seen in the figure, for both FH(BoW) and FH(n-
grams), as the hash size b increases, the performance of
SVMs increases as well, due to a smaller rate of hash col-
lisions. Table 1 shows, on Reuters RCV1, for both n-grams
and BoW, the number of unique features and the percentage
of collisions for various hash sizes. The number of unique
features is calculated as the number of non-zero entries in
the hash vector, and the number of collisions as the number
of entries with at least one collision. Note that the percentage
of collisions below 214 is 100%.

As the hash size increases beyond 216, the performance of
SVMs does not change substantially, and, eventually, con-
verges. Moreover, as the hash size increases beyond 216, the
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percentage of hash collisions decreases until almost no col-
lisions occur (Table 1). The performance of SVMs trained
on hash features in the 226 dimensional space is matched
by that of SVMs trained on hash features in the 220 dimen-
sional space, suggesting that hash collisions beyond 220 does
not significantly distort the data. Similar to Weinberger et al.
(2009), we considered as baseline, models trained on hash
features in the 226 space. As 226 highly exceeds the number
of unique features, and the rate of hash collisions becomes
close to zero, this can be seen as a fine approximation of the
SVMs trained without hashing. Furthermore, we considered
216 as the point where the performance starts degrading.

We conclude that, if hashing is used to reduce dimension-
ality from very high dimensions, e.g., 226, to mid-size di-
mensions, e.g., 216, hash collisions do not substantially hurt
the classification accuracy, whereas if it is used to reduce di-
mensionality from mid-size to smaller dimensions, e.g., 210,
hash collisions significantly distort the data, and the corre-
sponding SVMs result in poor performance (see Figure 1a).

Comparison of FH(BoW) with FH(n-grams). Figure
1a also contrasts the performance of SVMs trained using
FH(BoW) with that of their counterparts trained using FH(n-
grams). When the hash size is large, SVMs trained on FH(n-
grams) outperform those trained on FH(BoW), whereas for
small hash sizes, SVMs trained on FH(n-grams) perform
worse than those trained on FH(BoW). As the total number
of unique n-grams (words and bigrams), far exceeds the total
number of unique words (BoW), for the same hash size, the
percentage of hash collisions is higher in the case of n-grams
(see Table 1). We conclude that feature hashing is very ef-
fective on prohibitively high-dimensional n-gram represen-
tations, which would otherwise be impractical to use, thus,
resulting in memory-efficiency.

Comparison of FH+FA with FH+FH and FH+FS. Fig-
ure 1b shows the results of the comparison of FH+FA with
FH+FH and FH+FS on Reuters RCV1, for both FH(BoW)
and FH(n-grams). As the performance of SVMs using hash
features starts degrading substantially for hash sizes below
216 (see Figure 1a), suggesting that the hash collisions start
to significantly distort the data, we first reduce the dimen-
sionality by feature hashing into the 216 dimensional space.
We further reduced the dimensionality by abstraction, selec-
tion, and hashing (as described in the previous subsection).

As can be seen in the figure, FH+FA makes it possible
to train SVMs that use substantially smaller number of di-
mensions compared to the baseline, for a small drop in ac-
curacy. For example, with 210 = 1024 hash size, the accu-
racy of SVM is 91.26% using FH+FA(n-grams) as com-
pared to 93.62% accuracy achieved by the baseline, with
226 = 67,108,864 hash size. As the hash size decreases,
the performance of SVMs trained using FH+FA decreases
much slower compared to that of SVMs trained using both
FH+FS and FH+FH. For any choice of the hash size,
SVMs trained using FH+FA outperform those trained us-
ing FH+FS and FH+FH. The performance of SVMs trained
using FH+FA(BoW) and FH+FS(BoW) is not substantially
different from that of SVMs trained using FH+FA(n-grams)
and FH+FS(n-grams), respectively (Figure 1b).

We conclude that abstraction results in better perform-

(a) (b)

Figure 2: Results on the Cora multi-class data set for both
FH(BoW) and FH(n-grams): (a) the influence of the hash
size on the performance of SVMs; (b) the comparison of
FH+FA with FH+FH and FH+FS.

ing models compared to hashing and feature selection after
hashing was initially used to reduce the dimensionality of
high-dimensional spaces to mid-size dimensional spaces.

Results on Cora
Figure 2a shows the results of the comparison of FH(BoW)
with FH(n-grams), and the impact of the hash size on the
classification performance on Cora. Also on Cora, Figure 2b
shows the results of the comparison of FH+FA with FH+FS
and FH+FH. Furthermore, Table 2 shows the number of
unique features as well as the rate of collisions on Cora for
both BoW and n-grams representations. As expected, given
this significantly smaller data set, the number of unique fea-
tures is much smaller than that of Reuters RCV1, and conse-
quently, the rate of collisions is much smaller. For this rea-
son, we used as baseline, an SVM trained on hash features
in the 224 dimensional space. We also considered 214 as the
point where the performance starts degrading, and first re-
duced the dimensionality by feature hashing into the 214 di-
mensional space, instead of 216, as for Reuters RCV1. We
performed FA, FS, and FH on the 214 dimensional space.

As can be seen in the figures, the conclusions drawn on
Reuters RCV1 hold for Cora as well. In addition, SVMs
trained using FH+FA(n-grams) significantly outperform the
baseline, i.e., an SVM trained on FH(n-grams) using a 224

hash size. Hence, FH+FA can help minimize overfitting
(through parameter smoothing) when the labeled training set
is limited in size. FH+FA significantly outperforms FH+FS
and FH+FH. However, FH+FS approaches FH+FA much
faster compared to the results on Reuters RCV1, i.e., 26.

Conclusion
We presented an approach to reducing the dimensionality of
sparse high-dimensional feature vectors. Our approach ben-
efits from the advantages of both hashing and abstraction,
by combining them in a coherent and principled manner.
Specifically, hashing is used to reduce very high dimensions
up to a point where the performance starts degrading, due
to collisions of high-frequency features with highly diver-
gent class distributions. Abstraction is further used to reduce
these (hashed) dimensions to lower dimensions, by grouping
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b Cora (BoW) Cora (n-grams)
# features Collisions % # features Collisions %

224 10662 0.03 152692 0.43
222 10652 0.12 150653 1.77
220 10606 0.55 142687 7.12
218 10460 1.94 115836 26.67
216 9827 8.04 59093 75.21
214 7794 29.53 16383 99.92

Table 2: The number of unique features (denoted as # fea-
tures) as well as the rate of collisions on the Cora data set
for both BoW and n-grams representations.

together hash features with “similar” class distributions. The
results of our experiments on two text corpora demonstrate
the feasibility of our approach, which advances algorithms
that can efficiently process sparse high-dimensional data into
low-dimensional feature vectors at runtime. In the future, we
plan to apply and integrate the approach presented here for
fast classification and retrieval of short documents for social
networks such as Twitter and Facebook.
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