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Abstract

Anchor texts are useful complementary description for
target pages, widely applied to improve search rele-
vance. The benefits come from the additional informa-
tion introduced into document representation and the in-
telligent ways of estimating their relative importance.
Previous work on anchor importance estimation treated
anchor text independently without considering its con-
text. As a result, the lack of constraints from such con-
text fails to guarantee a stable anchor text representa-
tion. We propose an anchor graph regularization ap-
proach to incorporate constraints from such context into
anchor text weighting process, casting the task into a
convex quadratic optimization problem. The constraints
draw from the estimation of anchor-anchor, anchor-
page, and page-page similarity. Based on any estima-
tors, our approach operates as a post process of refining
the estimated anchor weights, making it a plug and play
component in search infrastructure. Comparable exper-
iments on standard data sets (TREC 2009 and 2010)
demonstrate the efficacy of our approach.

Introduction
Human-generated web content interweaves through hyper-
links, referred to as anchors. When a web designer creates
links pointing to other pages, she usually highlights a small
portion of text on the current page, aiming to describe target
page content or functionally link to target pages (e.g., “Click
here”, “Last page”), and so facilitate visitors navigating to
other information sources. Such highlighted text is referred
to as anchor text.

Anchor text is usually succinct and descriptive, sharing
similar properties with queries (Eiron and McCurley 2003)
and interpreting target pages from the viewpoint of infor-
mation describers (Dai, Qi, and Davison 2011). Anchor
text has been widely applied to improve web search rel-
evance (Fujii 2008; Dou et al. 2009; Metzler et al. 2009;
Yi and Allan 2010; Dai and Davison 2010). The advantage
is anchor text enables we estimate web page relevance based
on an enhanced document representation. Here, the enhance-
ment includes (1) the additional information introduced into
target page content (Metzler et al. 2009; Yi and Allan 2010;
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Dai and Davison 2010), and (2) the intelligent ways of esti-
mating anchor text importance (Dou et al. 2009). Our work
makes efforts on the second aspect.

Most previous work on anchor importance estimation
treated anchor text independently without considering its
context. Anchor weights are simply accumulated based on
their occurrence. Dou et al. (2009) and Metzler et al. (2009)
both pointed this out and proposed to differentiate whether
source and target pages are from the same site when quan-
tifying anchor text importance. While these approaches ver-
ified the relationship between source and target sites is im-
portant, we argue that it is simply one type of useful relation-
ship for improving anchor importance estimation. In partic-
ular, anchor weight estimation may benefit from three other
types of broader relationship, i.e., that between (1) anchors
pointing to the same page, (2) the anchor and its target page;
and (3) similar anchors pointing to similar pages. Our es-
sential goal is to stabilize the estimated anchor text weights
from its context.

The anchor text collection of a target page comprises a
description portfolio. Assuming better anchor weights pos-
itively correlate to ranking performance, our purpose is to
maximize the quality of anchor text representation, and at
the same time minimize the risk of anchor importance es-
timation. Here, the risk is important since it measures how
confident our estimated anchor weights are. To quantify the
risk, we necessarily draw from the interrelationship between
anchors pointing to the same target page. There is an analog
with the relationship between anchor text and target pages.
Highly similar anchor text tends to capture target pages’
points, but may fail to provide complementary information.

Hyperlinks serve as recommendations to target
pages (Brin and Page 1998). Assuming two similar
pages have similar anchor text representation (Yi and Allan
2010), their similar anchor text tends to have consistent
importance estimates. This idea actually has an analog in
the area of information filtering and recommender systems,
where similar items tend to attract similar rating distribution
given a fixed group of users (Sarwar et al. 2001).

Based on the above concerns, we propose an anchor
graph regularization approach, which quantifies these three
types of relationship into constraints. To achieve this, we
draw from the estimation of anchor-anchor, anchor-page,
and page-page similarity from content-based and link-based
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viewpoints respectively. We incorporate the constraints into
anchor text importance estimation and cast the task into a
convex quadratic optimization problem. Based on any ba-
sic anchor importance estimators, our approach operates as
a post process of refining the estimated anchor weights,
making them more stable. Our contributions are two folds.
First, we propose an anchor graph regularization approach
to incorporate anchor text context into constraints for es-
timating anchor text importance. We are not aware of any
previous work emphasized anchor text context for docu-
ment representation. Second, we conduct comparable exper-
iments on standard data sets (TREC 2009 and 2010 Web
track (NIST 2010)), and demonstrate our approach achieves
statistically significant ranking improvement over five rep-
resentative baselines respectively.

The remainder of this paper is organized as follows. We
first review previous work, followed by presenting how we
quantify constraints to stabilize anchor importance estima-
tion. We next introduce experimental setup and report our
experimental results, followed by concluding our work with
a discussion on future work.

Related Work
Using Anchor text to improve web search. Previous work has
studied how to utilize anchor text for improving search rel-
evance. (Craswell, Hawking, and Robertson 2001) is among
the earliest, in which the authors demonstrated the effective-
ness of anchor text on answering the information needs tar-
geting at finding specific web sites. The following work on
using anchor text to improve search gradually falls into three
categories. One of them is to connect query intent with an-
chor text distribution on the web (Lee, Liu, and Cho 2005;
Kraft and Zien 2004; Fujii 2008). Their observation is that
the anchor text containing navigational query terms tends to
have more skewed anchor-link distribution. It benefits web
search in the way that we can use anchor text to customize
ranking treatments for queries with different types of intent.
The second category focuses on solving anchor text spar-
sity problem (Metzler et al. 2009; Yi and Allan 2010), i.e.,
only a few web pages has considerable amount of anchor
text associated. The reason is that page in-coming links fol-
low power law distribution (Amitay and Paris 2000). The
effort within this category is to incorporate appropriate com-
plementary anchor text to enrich existing anchor text repre-
sentation. The third category focuses on intelligent ways of
anchor text importance estimation. Dou et al. (2009)’s work
that incorporated where source and target pages are from
falls into this category. Our work is similar with theirs in
that we both incorporate anchor text context into the impor-
tance estimation. However, the difference is that we focus on
other types of broader relationship, and combine them into
a unified optimization framework.

Modeling risks in information retrieval. Information re-
trieval (IR) community recently discussed risk-aware IR
models (Wang and Zhu 2009; Wang 2009) for diversify-
ing search results. Enlightened by mean-variance analysis
of Modern Portfolio Theory (MPT), the risks of document
relevance estimation capture the inter-document relation-
ship, and are modeled to penalize the final relevance esti-

mates. Empirical results demonstrated it achieves significant
improvements over the baselines without considering rele-
vance risk (Wang and Zhu 2009; Zhu et al. 2009). Model-
ing risk also succeeds in other IR tasks, including pseudo-
feedback models and query expansion (Collins-Thompson
2008; 2009) and information fusion (Wang and Kankanhalli
2010). Similar with (Collins-Thompson 2008), we also for-
mulate the risk as one of the optimization objectives. How-
ever, the fundamental difference is that we focus on anchor
text representation, modeling the risk within anchor text im-
portance estimation, while theirs focused on query represen-
tation, selecting the term set from pseudo-feedback docu-
ments for robust query expansion.

Utilizing similar pages in anchor text representation. Pre-
vious work has utilized similar web pages for their anchor
text representation. Yi and Allan (2010) used the anchor text
from semantically similar pages to enrich the anchor text
representation of the current page. It is actually a smooth-
ing process from anchor text of similar pages, mitigating
anchor text sparsity problem and making the smoothed an-
chor representation more discriminative. Following the same
spirit, we refer anchor text weights from similar web pages.
The difference is we quantify anchor weight consistency into
constraints, and solve this using graph regularization.

Anchor Graph Regularization
In this section, we present our problem approach for building
a contextual anchor text representation. We first present the
framework of anchor text importance estimation, and then
introduce our parameter estimation.

Framework
Following previous work (Craswell, Hawking, and Robert-
son 2001; Westerveld, Kraaij, and Hiemstra 2001), we build
up the surrogate document for each web page d from its as-
sociated anchor text collection Ad . Here, Ad comprises all
unique anchor text lines a, i.e., ∀a ∈ Ad . Each a associates
with one score fd(a), indicating its importance with respect
to the target page d. fd can be achieved from any basic esti-
mator, e.g., (Fujii 2008; Dou et al. 2009; Metzler et al. 2009;
Yi and Allan 2010). For simplicity, we define pd as a proba-
bilistic version of fd , i.e., pd = fd/‖fd‖1, and formulate our
task as

argmin
p̂d

(1−ξ) · ‖p̂d−p(0)
d ‖

2
F +ξS(Ad) (1)

s.t. ‖p̂d‖1 = 1

where p̂d is our estimates on anchor text importance, and
p(0) is the original estimates (i.e., outputs from one basic es-
timator), and ‖·‖2

F is the Frobenius norm. We conjecture that
p(0) serves as a reasonable expectation on anchor text impor-
tance. Therefore, we compute the deviation from p(0) as part
of the loss. Leveraging the loss from constraints S(Ad), we
achieve the final anchor importance estimates by minimiz-
ing the sum of loss. S(Ad) is a set of constraints functioning
on Ad . In this paper, we focus on designing S(Ad) to incor-
porate anchor text context from (1) the relationship between
different anchor text lines with a same target page, denoted
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Figure 1: Anchor text weights associated with clueweb09-
en0000-95-24509 in Clueweb09 data set before (left) and
after (right) we apply constraint Saa. The average weight on
several most semantically similar anchor text lines for one
grid. These grids are organized according to anchor-anchor
similarity, so that more similar anchor text lines lay closer.

as Saa; (2) the relationship between anchor text lines and
the target page, denoted as Sad ; and (3) the relationship be-
tween similar anchor text lines associated with similar web
pages, denoted as Saa′ . ξ is the trade-off controlling the em-
phasis on original estimates p(0)

d versus bias to constraints
S(Ad). When ξ is 0, the problem is trivial with the solution
p̂d = p(0)

d . Given p̂d , we scale p̂d to achieve f̂d = p̂d · ‖fd‖1.
We now introduce how to formulate Saa, Sad and Saa′ .

Defining Saa. The purpose of Saa is to constrain the risks
within anchor text importance estimation. Here, the risk
comes from the situation that when most of the heavily
weighted anchor text lines have large positive correlation,
the anchor text representation may focus on a limited num-
ber of well representative content points. However, the risk
that these points fall out of the target page coverage also
increases, given that the anchor text representation is too
focused, and may miss other important points that need to
cover. To minimize such risk, we propose Saa by using the
covariance between different anchor text lines, which is en-
lightened by mean-variance analysis in Portfolio Theory. We
define Saa as:

Saa : argmin
p̂d

p̂T
d W(aa)

d p̂d (2)

where W(aa)
d is the covariance matrix over anchor text lines

in Ad . We consider a special case here, i.e., the variance of
individual anchor text line is 1, and interpret correlation by
similarity measures1. Figure 1 shows the effect of Saa on
one document example. The observation is that anchor text
weights are more diverse, especially for more similar anchor
text lines.

Defining Sad The purpose of Sad is to leverage the cov-
erage and balance of anchor text representation for a target
page. Coverage measures how similar anchor text represen-
tation (weighted) are with the target page, while balance pre-
vents any individual anchor text line from dominating the
whole anchor text representation. The constraint on cover-
age is defined as

Sad(cov) : (w(ad)
d )T p̂d ≥ λ (3)

where w(ad)
d measures the similarities from anchor text line

a to page d, and λ is a parameter serving as a lower bound on
1“Correlation” and “similarity” are interchangeable here.

the weighted sum of similarity from each a to d. For balance,
we define the constraint as:

Sad(bal) : w(ad)
d (a) · p̂d(a)≤ ε ∀a ∈ Ad (4)

where ε is a upper bound on the similarity from individual a
to d.

Defining Saa′ The purpose of Saa′ is to reference anchor
text weights on similar pages for better determining the an-
chor importance on current pages. The main idea is to regu-
larize on weighting consistency between paired anchor text
lines on different pages. Given a target page d, we first
search its top k similar pages (also known as the k near-
est neighbors, denoted as Nd , with k = 20), and then for
∀d′ ∈ Nd , we define the weighting constraints between d’s
anchor text line a and d′’s anchor text line a′. The loss from
inconsistent weighting is accumulated and minimized as part
of the final optimization objectives. The constraint Saa′ is de-
fined as:

Saa′ : argmin ∑
a∈Ad

∑
d′∈Nd

∑
a′∈Ad′

c(aa′)
dd′ (p̂d(a)−pd′(a

′))2 (5)

where c(aa′)
dd′ measures the similarity between a of d and a′

of d′, functioning on W(dd), w(ad)
d′ , and w(ad)

d respectively.
Here, W(dd) is the similarity matrix between paired target
pages. In this way, the weights on more similar anchor text
lines describing similar pages are closer. We normalize c(aa′)

dd′

so that ∑a∈Ad ∑d′∈Nd ∑a′∈Ad′
c(aa′)

dd′ = 1 for a given page d.

c(aa′)
dd′ is defined as:

c(aa′)
dd′ =

W(dd)(d,d′)w(ad)
d′ (a′)w(ad)

d (a)

∑
a∈Ad

∑
d′∈Nd

∑
a′∈Ad′

W(dd)(d,d′)w(ad)
d′ (a′)w(ad)

d (a)
(6)

Optimization. We presented how we formulate anchor text
context as constraints and incorporate them into a unified op-
timization framework, we now discuss how to solve this op-
timization problem. We summarize our problem as follows.

argmin
p̂d

(1−ξ)(1−µ)‖p̂d−p(0)
d ‖

2
F (7)

+ξ(1−µ)p̂T
d W(aa)

d p̂d

+µ ∑
a∈Ad

∑
d′∈Nd

∑
a′∈Ad′

c(aa′)
dd′ (p̂d(a)−pd′(a

′))2

s.t. ‖p̂d‖1 = 1

(w(ad)
d )T p̂d ≥ λ

w(ad)
d (a) · p̂d(a)≤ ε ∀a ∈ Ad

This is a standard quadratic optimization problem. W(aa)
d is

actually an anchor-anchor covariance matrix, which makes
it a positive definite matrix. The diagonal matrix constructed
by ∑d′∈Nd ∑a′∈Ad′

c(aa′)
dd′ is also positive definite. Therefore,

our optimization problem is guaranteed to be convex, which
has a global minimizer if there exists some feasible solu-
tion (satisfying constraints). To guarantee all conditions can
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be satisfied, we incorporate slack variables that measure vi-
olation of the conditions, and formulate them into existing
objectives. We transform Equation 7 into:

argmin
p̂d

(1−ξ)(1−µ)‖p̂d−p(0)
d ‖

2
F (8)

+ξ(1−µ)p̂T
d W(aa)

d p̂d

+µ ∑
a∈Ad

∑
d′∈Nd

∑
a′∈Ad′

c(aa′)
dd′ (p̂d(a)−pd′(a

′))2

+λ1 + ∑
a∈Ad

ε1(a)

s.t. ‖p̂d‖1 = 1

(w(ad)
d )T p̂d ≥ λ−λ1

w(ad)
d (a) · p̂d(a)≤ ε+ ε1(a) ∀a ∈ Ad

λ1 ≥ 0
ε1(a)≥ 0 ∀a ∈ Ad

The ways of solving convex quadratic optimization prob-
lems include interior point, active set (Murty 1988), aug-
mented Lagrangian (Delbos and Gilbert 2003), conjugate
gradient, and etc. Given that we face on the challenge of
processing large-scale data, we choose to use interior point
method implemented in OOQP-0.99.22 (Gertz and Wright
2003) with its default solver.

Parameter Estimation
We presented how we optimize the problem. We now intro-
duce how to estimate parameters, i.e., anchor-anchor sim-
ilarity (W(aa)), anchor-doc similarity (w(ad)) and doc-doc
similarity (W(dd)). Two main steps are (1) representing an-
chor text lines/documents and (2) computing similarity mea-
sures.

We start by introducing how we represent anchor text
lines and web pages. For anchor text line a,

• Content-based representation: select k′ web pages that
have the most in-coming links associated with a. Con-
catenate the content of these k′ web pages to represent
a, where k′ is 5 by default.

• Link-based representation: “bag of documents” model
with the document frequency equal to the number of in-
coming links associated with a, pointing to that document.

For document d,

• Content-based representation: “bag of words” model on
page content. Each element records term frequency.

• Link-based representation: “bag of document” model
with the document frequency equal to the number of in-
coming links pointing from that document.

In this way, we represent each a or d by a term/document
frequency vector θ. We then normalize θ, dividing each ele-
ment by the sum of all elements. Since θ may be sparse, we
use Laplacian smoothing (esp. add-one smoothing) in prac-
tice, i.e., θ′w = (θw +α)/(∑w′∈V θw′ +α|V |), where α = 1
and V is the vocabulary. We use both representations, and

Table 3: Representation ablation. Ranking performance
NDCG@20 on TREC 2010 as a test set.

Methods Content+Link Link Content
AAMSC 0.133 0.131 (-1.6%) 0.132 (-0.8%)
LinkProb 0.135 0.133 (-1.5%) 0.135 (-0.0%)
Combined+Max 0.133 0.132 (-0.8%) 0.133 (-0.0%)
SiteProbEx 0.132 0.131 (-0.8%) 0.131 (-0.8%)
M-ORG-RALM 0.135 0.132 (-2.3%) 0.134 (-0.8%)

combine them by the geometric mean over similarities based
on each type of representation.

We next present how to compute similarity matrices
W(aa), w(ad) and W(dd). For anchor-doc similarity w(ad), we
compute cosine similarity. Given anchor text line a and tar-
get page d, w(ad)

d (a) is defined as θ′d ·θ′a.
For W(aa) and W(dd), we use the heat kernel (Lafferty and

Lebanon 2005) to measure the affinity between multinomial
distributions θi and θ j, as it has been successfully applied
in many IR and classification tasks (Diaz and Metzler 2007;
Dillon and Collins-Thompson 2010). It is given by:

K (θi,θ j) = exp(−1
t

arccos2(∑
w

√
θi,w ·

√
θ j,w)) (9)

where t is a parameter controlling the decay of heat flow.
We set it to 0.5. w is word/document within vector θi and θ j.
For W(aa), we compute K(aa) between all paired anchor text
lines. For W(dd), we only compute K(dd) from each d to its k
nearest neighbors with k= 20, i.e., from d to d′ with d′ ∈Nd .
Using graph Laplacian, we choose to define W(aa) (W(dd))
as the exponential of K(aa)’s (K(dd)’s) Laplace-Beltrami op-
erator (Lafon 2004), given by:

W(aa) = exp(−l · (I− D̂−1/2
(aa) K̂(aa)D̂

−1/2
(aa) )) (10)

W(dd) = exp(−l · (I− D̂−1/2
(dd) K̂(dd)D̂

−1/2
(dd) )) (11)

where K̂(aa) (K̂(aa)) is the normalized affinity matrix with
K̂(aa) =D−1

(aa)K(aa)D
−1
(aa) and K̂(dd) =D−1

(dd)K(dd)D
−1
(dd). D̂(aa),

D̂(dd), D(aa), and D(dd) are diagonal matrices with D̂(aa)ii =

∑ j K̂(aa)i, j, D̂(dd)ii = ∑ j K̂(dd)i, j, D(aa)ii = ∑ j K(aa)i, j, and
D(dd)ii = ∑ j K(dd)i, j respectively. In this work, we always
set parameter l to 0.1.

Experimental Setup
Data set and Evaluation. Our goal is to improve search rel-
evance through incorporating anchor text context into esti-
mating anchor text representation. The experiments are con-
ducted on ClueWeb09 (Category B) data set. It includes
49.8M web pages and 940M hyperlinks, with 7.6M pages
having in-coming links and 19M pages having enriched an-
chor text lines (Yi and Allan 2010; Metzler et al. 2009).
Given that only a few pages associate with a large num-
ber of unique anchor text lines, we set the upper bound
for the size of Ad to 200, keeping the most important an-
chor text lines (from basic estimators). The corpus is in-
dexed through Indri Search Engine (Lemur Project 2010)

27



(a) Saa (b) Sad (c) Saa′

Figure 2: Relative improvement (by using each constraint) over baseline anchor text importance estimators for P@20 on TREC
2009 as test set. We separate queries according to their intent. Topic 5, 15, 21, 23, 27, 31, 40, 41, 46 have navigational intent as
revealed by manual inspection.

(a) Saa (b) Sad (c) Saa′

Figure 3: Relative improvement (by using each constraint) over baseline anchor text importance estimators for P@20 on TREC
2009 as test set. We separate queries according to their length.

using Krovetz stemmer. We use the Ad hoc task of the TREC
2009 (50 queries) and 2010 (50 queries) Web track for eval-
uation. For each query, we first achieve its top 2000 search
results by smoothed language model (Dirichlet smoothing)
with parameter µ = 2000, and then proceed reranking. Our
main evaluation metrics are Precision (P@k) and Normal-
ized Discounted Cumulative Gain (NDCG@k) (Jarvelin and
Kekalainen 2000) at truncate level k. NDCG credits more
when relevant results are ranked at higher positions.

Ranking Function. The way that anchor text representa-
tion influences document relevance estimation is through be-
ing part of document fields. Combining different document
fields has been shown highly effective for retrieval on the
web in previous work (Zaragoza et al. 2004). Representa-
tive ways include BM25F (Robertson, Zaragoza, and Taylor
2004) and fielded language models. In this work, we choose
to use BM25F for showing the efficiency of combined fields
without the loss of generality. BM25F is defined as:

BM25F(q,d) = ∑
w∈q

t̂ f (w,d)
k1 + t̂ f (w,d)

log
N−d fw +0.5

N +0.5
(12)

where N is the total number documents. d fq is the number of
documents containing w. k1 is fixed to 1000. t̂ f (w,d) is the
normalized term frequency weighted over all fields, given by

t̂ f (w,d) = ∑
f i={anc,doc}

wt( f i)
t f (w, f i,d)

1+b f i(
l( f i,d)
l( f i)

−1)
(13)

where wt( f i) is trade-off between “anchor text” and “doc

body”. t f (w, f i,d) is term frequency in field f i of docu-
ment d. For anchor fields, t f (w,anc,d) is the accumulated
term frequency over all unique anchor text lines, weighted
by the estimation of their relative importance f̂d . l( f i,d) is
the length of field f i. l( f i) is average length of field f i over
all documents. b f i is fixed to 0.8. To estimate document rel-
evancy, we learn parameters wt( f i), ξ, µ, λ and ε (The lat-
ter four are from Equation 8) using coordinate ascent algo-
rithm (Metzler and Croft 2007), driven to optimize mean av-
erage precision in training process.

Baseline Methods. The baseline anchor text impor-
tance estimation approaches are LinkProb (Dou et al.
2009), AAMSC (Fujii 2008), Combined+Max (Metzler et
al. 2009), SiteProbEx (Dou et al. 2009), and M-ORG-
RALM (Yi and Allan 2010). For each of these five ap-
proaches, we apply our regularization approach (denoted as
CxtReg) and compare their ranking performance.

Experimental Results
We start our experiments by investigating the performance
of our baseline models before and after we apply Cx-
tReg. Performance is based on two-fold cross-validation,
i.e., training on TREC 2009 (2010) queries and testing on
TREC 2010 (2009) queries. We then conduct deeper analy-
sis on the benefits from each constraint and representation.

Performance comparison. Table 1 and 2 show ranking
performance on TREC 2009 and 2010 respectively, both as
training and test set. CxtReg significantly enhances all base-
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Table 1: Ranking performance on TREC 2009 of baseline anchor text importance estimators before and after we apply CxtReg
on each one of them. Symbol §denotes statistically significant differences from baselines by a single-tailed student t-test.

Baselines As a Training Set As a Test Set Best Parameters
Methods P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20 (µ,ξ,λ,ε)
AAMSC 0.350 0.296 0.390(+11.4%)§ 0.303 (+4.5%) 0.351 (+0.2%) 0.290 (-0.3%) (0,0.1,0,0.4)
LinkProb 0.359 0.290 0.393 (+9.8%) 0.307 (+5.8%) 0.382 (+6.4%)§ 0.303 (+3.4%) (0.1,0.8,0,0.2)
Combined+Max 0.350 0.280 0.392 (+12.0%)§ 0.303 (+8.2%)§ 0.351 (+0.2%) 0.296 (+5.7%)§ (0.2,0,0,0.4)
SiteProbEx 0.330 0.267 0.356 (+7.8%) 0.304 (+13.8%)§ 0.351 (+6.3%) 0.293 (+9.7%)§ (0,0,0.8,0.1)
M-ORG-RALM 0.310 0.236 0.360 (+16.0%)§ 0.304 (+28.8%)§ 0.363 (+17.1%)§ 0.301 (+27.0%)§ (0.5,0.8,0.1,0)

Table 2: Ranking performance on TREC 2010 of baseline anchor text importance estimators before and after we apply CxtReg
on each one of them. Symbol §denotes statistically significant differences from baselines by a single-tailed student t-test.

Baselines As a Training Set As a Test Set Best Parameters
Methods P@20 NDCG@20 P@20 NDCG@20 P@20 NDCG@20 (µ,ξ,λ,ε)
AAMSC 0.241 0.129 0.268 (+10.8%)§ 0.143 (+10.0%)§ 0.264 (+9.4%)§ 0.133 (+3.1%) (0,0.2,0,1)
LinkProb 0.248 0.127 0.270 (+8.8%)§ 0.141 (+11.0%)§ 0.265 (+6.8%) 0.135 (+6.2%)§ (0.1,0.9,0.3,0.6)
Combined+Max 0.243 0.125 0.268 (+1.3%) 0.143 (+14.4%)§ 0.264 (+8.8%)§ 0.133 (+6.4%)§ (0,0.2,0,1)
SiteProbEx 0.265 0.133 0.269 (+1.3%) 0.135 (+1.5%) 0.272 (+2.4%) 0.132 (+0.8%) (0.9,0.5,0.5,0.5)
M-ORG-RALM 0.257 0.129 0.262 (+1.9%) 0.134 (+3.8%) 0.257 (+0.0%) 0.135 (+5.1%) (0.3,0.1,0.2,0.1)

line estimators on both data sets. This consistent superior-
ity demonstrates the effectiveness of incorporating anchor
text context on improving anchor text representation for re-
trieval. A closer look at their comparison suggests the fol-
lowing trends. First, the improvement is relatively indepen-
dent with baseline estimators’ details, but poorer baselines
tend to benefit more from CxtReg. One possible reason is
that the flexibility of leveraging the coverage and balance
within anchor text representation help better respond infor-
mation needs. Second, more diverse best parameter combi-
nations tend to make CxtReg’s relative improvement more
diverse. For SiteProbEx and M-ORG-RALM, their best pa-
rameters learned from TREC 2009 and 2010 are more di-
verse, and their relative improvement on training and test
sets is also more diverse. Assuming this two points are
highly correlated, we infer that the benefits from CxtReg
tends to be stable at least for some basic estimators, such
as LinkProb and Combined+Max.

Benefits from individual constraint vs. query intent. Fig-
ure 2 shows the relative improvement when applying each
individual constraint to queries with different intent. All
three constraints consistently improve search relevance on
informational queries, indicating incorporating anchor text
context help more intelligently answer complex and rich in-
formation needs, rather than just locating home pages. It is
especially useful for commercial search engines given that
other ranking signals have been able to handle navigational
queries well. Benefits on navigational queries depend on ba-
sic anchor text importance estimators.

Benefits from individual constraint vs. query length.
Query length reflects how broad the information needs are.
Figure 3 shows the the relative improvement when applying
each individual constraint to queries with different length.
Mostly three individual constraints outperform greater on
queries with length being 2, indicating these constraints do
not handle narrow information needs well. One possible rea-
son is that the pages with narrow content attract few atten-

tion (i.e., anchors) from other pages, and CxtReg inevitably
incorporates noise given that it draws from the whole anchor
text context. The improvement on queries with one term is
not stable, and highly depend on basic estimators. One may
notice the abnormal properties shown on M-ORG-RALM.
We conjecture that more anchor text lines incorporated by
M-ORG-RALM improves the utilization of CxtReg.

Representation ablation. The efficacy of constraints re-
lies on similarity estimation W(aa), w(ad), and W(dd). We
conduct representation ablation, shown in Table 3. Content-
based representation outperforms link-based one. Their
combination is superior to any one of them, indicating
content-based and link-based representations contain com-
plementary aspects.

Conclusion and Future Work
In this work, we propose to incorporate anchor text context
into anchor text representation for improving search rele-
vance. Three aspects include: (1) the relationship between
anchor text lines with a same page, for estimating risk; (2)
the relationship between anchor text representation and tar-
get pages; and (3) the relationship between similar anchors
pointing to similar pages. We incorporate these three aspects
into a unified optimization framework, aiming to enhance
any basic anchor text importance estimators. Experimental
results demonstrate our approach significantly improves all
baseline estimators. Deeper analysis suggests our approach
is especially useful for answering informational queries and
bi-term queries. Representation enhancement helps further
improve the efficacy of our approach.

The main limitation of this work is its efficiency issue, i.e.,
we only consider the top 200 important unique anchor text
lines per page, and so how to mitigate this problem becomes
part of our future work. In addition, a few interesting ex-
tensions include (1) designing document- and query-specific
meta-features for controlling the relative importance of con-
straints; (2) applying the approach to other representation-
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based applications, such as cluster-based language models;
and (3) designing more unified frameworks to optimize rep-
resentation and retrieval models simultaneously. We hope to
study these issues in the future.
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