
Two New Local Search Strategies for Minimum Vertex Cover

Shaowei Cai1 Kaile Su2,3∗ Abdul Sattar3,4
1Key laboratory of High Confidence Software Technologies, Peking University, Beijing, China

2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
3Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

4ATOMIC Project, Queensland Research Lab, NICTA
shaowei cai@126.com; {k.su,a.sattar}@griffith.edu.au

Abstract

In this paper, we propose two new strategies to design effi-
cient local search algorithms for the minimum vertex cover
(MVC) problem. There are two main drawbacks in state-of-
the-art MVC local search algorithms: First, they select a pair
of vertices to be exchanged simultaneously, which is time
consuming; Second, although they use edge weighting tech-
niques, they do not have a strategy to decrease the weights.
To address these drawbacks, we propose two new strate-
gies: two stage exchange and edge weighting with forget-
ting. The two stage exchange strategy selects two vertices to
be exchanged separately and performs the exchange in two
stages. The strategy of edge weighting with forgetting not
only increases weights of uncovered edges, but also decreases
some weights for each edge periodically. We utilize these two
strategies to design a new algorithm dubbed NuMVC. The
experimental results show that NuMVC significantly outper-
forms existing state-of-the-art heuristic algorithms on most
of the hard DIMACS instances and all instances in the hard
random BHOSLIB benchmark.

Introduction
The Minimum Vertex Cover (MVC) problem consists of,
given an undirected graph G = (V,E), finding the mini-
mum sized vertex cover, where a vertex cover is a subset
S ⊆ V such that every edge in G has at least one endpoint
in S. Two other forms of the MVC problem are the Maxi-
mum Clique (MC) problem and Maximum Independent Set
(MIS) problem. These three problems are prominent combi-
natorial optimization problems of great importance in theory
and applications (Cai, Su, and Sattar 2011).

MVC, MC and MIS are all NP-hard problems (Garey
and Johnson 1979); furthermore, it is NP-hard to approxi-
mate MVC within any factor smaller than 1.3606 (Dinur and
Safra 2005), although one can achieve an approximation ra-
tio of 2−o(1) (Halperin 2002; Karakostas 2005). Also, neg-
ative results hold for approximability within any constant
factor in polynomial time for MC and MIS (Håstad 1999;
2001). Practical algorithms for MVC (MC, MIS) mainly fall
into two types: exact ones and heuristic ones. Exact algo-
rithms, e.g. (Li and Quan 2010b; 2010a), guarantee the op-

∗Corresponding author
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

timality of the solutions they find, but may fail to give a so-
lution within reasonable time for large instances. As the size
of the problem increases, the exact algorithms become fu-
tile. Therefore, large and hard MVC (MC, MIS) instances
are typically solved using heuristic approaches, which are
mainly stochastic local search algorithms.

A huge amount of effort has been devoted to designing
heuristic approaches for MVC, MC and MIS problems, in-
cluding (Aggarwal, Orlin, and Tai 1997; Battiti and Pro-
tasi 2001; Busygin, Butenko, and Pardalos 2002; Shyu, Yin,
and Lin 2004; Barbosa and Campos 2004; Pullan 2006;
Richter, Helmert, and Gretton 2007; Andrade, Resende, and
Werneck 2008; Cai, Su, and Chen 2010; Cai, Su, and Sattar
2011), just to name a few. As one of the three problems (The
other two are SAT and Coloring.) in “NP hard problems:
The Second DIMACS Implementation Challenge”, earlier
heuristics for Maximum Clique can be found in (Johnson
and Trick 1996).

This work is devoted to a more efficient local search algo-
rithm for MVC. Typically, local search algorithms for MVC
solve the problem by solving the k-vertex cover problem it-
eratively. To solve the k-vertex cover problem, they main-
tain a current candidate solution of size k, and exchange two
vertices iteratively until it becomes a vertex cover, where ex-
changing two vertices means removing one vertex from the
current candidate solution and adding another into it.

In our opinion, there are two drawbacks in state-of-the-
art MVC local search algorithms. First, they select a pair of
vertices for exchanging simultaneously according to some
heuristic (Richter, Helmert, and Gretton 2007; Cai, Su, and
Chen 2010; Cai, Su, and Sattar 2011), which is rather time
consuming, as will be explained in the section “Two Stage
Exchange”. The second drawback is about the edge weight-
ing techniques. The basic concept of edge weighting is to
increase weight of uncovered clauses to diversity the search.
Previous MVC algorithms utilize different edge weighting
schemes. For example, COVER (Richter, Helmert, and Gret-
ton 2007) increases weights of uncovered edges each step,
while EWLS (Cai, Su, and Chen 2010) and EWCC (Cai,
Su, and Sattar 2011) increase weights of uncovered edges
only when meeting local optima. However, all these algo-
rithms do not have a mechanism to decrease the weights.
We believe this is not fruitful because the weighting deci-
sions made too long ago may mislead the search.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

441

To address these two drawbacks in MVC local search al-
gorithms, this paper proposes two new strategies, namely
two stage exchange and edge weighting with forgetting. Ac-
cording to the two stage exchange strategy, the two vertices
to be exchanged are selected separately and exchanged in
two stage: it first selects a vertex and removes it from the cur-
rent candidate solution, and then selects a vertex and adds it.
The second strategy we propose is edge weighting with for-
getting, which updates edge weights each step, and reduces
edge weights by multiplying a constant factor smaller than
one to forget the earlier weighting decisions when the av-
eraged weight achieves a threshold. This is the first time a
forgetting mechanism is introduced into edge weighting lo-
cal search algorithms for MVC. Note that smoothed clause
weighting techniques in local search for the Boolean satisfi-
ability problem (SAT) are also “forgetting” mechanisms to
some extent. However, according to our experiments, direct
applications of smoothed weighting techniques cannot im-
prove but even weaken the performance of our MVC algo-
rithm. For more discussions about the differences between
the forgetting mechanism in this work and smoothed weight-
ing techniques, please refer to the discussion section.

We combine these two strategies in a simple local search
algorithm called NuMVC. To evaluate the performance of
NuMVC, we compare it with PLS (Pullan 2006), COVER
(Richter, Helmert, and Gretton 2007) and EWCC (Cai, Su,
and Sattar 2011), which are the current best heuristic algo-
rithms for MVC (MC, MIS). Our experiments show that
NuMVC is largely competitive on the DIMACS bench-
mark, where it outperforms the other solvers on most of the
hard instances; moreover, NuMVC dominates on the whole
BHOSLIB benchmark, dramatically improving the existing
results. Hence this work represents a significant progress in
heuristic algorithms for MVC (MC, MIS).

The remainder of this paper is organized as follows. In the
next section, we introduce some definitions and notations
used in this paper. Then we present the two strategies: two
stage exchange and edge weighting with forgetting. After
that, we describe the NuMVC algorithm, and present exper-
imental results demonstrating the performance of NuMVC.
Finally, we give some concluding remarks.

Definitions and Notations
An undirected graph G = (V,E) consists of a vertex set
V and an edge set E ⊆ V × V , where each edge is a 2-
element subset of V . For an edge e = {u, v}, u and v are the
endpoints of edge e. Two vertices are neighbors if and only
if they both belong to some edge. N(v) = {u ∈ V |{u, v} ∈
E} is the set of neighbors of a vertex v.

Given an undirected graph G = (V,E), a candidate
solution for MVC is a subset of vertices. An edge e ∈ E is
covered by a candidate solution X if at least one endpoint
of e belongs to X . During the search procedure, NuMVC
always maintains a current candidate solution. For conve-
nience, in the rest of this paper, we use C to denote the cur-
rent candidate solution. The state of a vertex v is denoted by
sv ∈ {1, 0}, where sv = 1 means v ∈ C, and sv = 0 means
v /∈ C. The step to a neighboring candidate solution consists
of exchanging two vertices: a vertex u ∈ C is removed from

C, and a vertex v /∈ C is put into C. The age of a vertex is
the number of steps since its state was last changed.

An edge weighted undirected graph is an undirected graph
G = (V,E) combined with a weighting function w so that
each edge e ∈ E is associated with a non-negative integer
number w(e) as its weight. We use w to denote the mean
value of all edge weights.

Let w be a weighting function for G. For a candidate so-
lution X , we set the cost of X as

cost(G,X) =
∑

e∈E and e is not covered by X

w(e)

which indicates the total weight of edges uncovered by
X . We take cost(G,X) as the evaluation function, and
NuMVC prefers candidate solutions with lower costs.

For a vertex v ∈ V ,

dscore(v) = cost(G,C)− cost(G,C ′)

where C ′ = C\{v} if v ∈ C, and C ′ = C ∪ {v} other-
wise, measuring the benefit of changing the state of vertex
v. Obviously, dscore(v) ≤ 0 if v ∈ C, and dscore(v) ≥ 0
if v /∈ C.

Two Stage Exchange
In this section, we introduce the two stage exchange frame-
work, which the NuMVC algorithm is based on to exchange
a pair of vertices.

As with most state-of-the-art local search algorithms for
MVC, NuMVC is an iterated k-vertex cover algorithm.
When finding a k-vertex cover, NuMVC removes one ver-
tex from the current candidate solution C and goes on to
search for a (k − 1)-vertex cover. In this sense, the core of
NuMVC is a k-vertex cover algorithm — given a positive
integer number k, searching for a k-sized vertex cover. To
find a k-vertex cover, NuMVC begins with a candidate solu-
tion C of size k, and then exchanges two vertices iteratively
until C becomes a vertex cover.

Most local search algorithms for MVC select a pair of
vertices to be exchanged simultaneously according to some
heuristic. For example, COVER selects a pair of vertices
that maximize gain(u, v) (Richter, Helmert, and Gretton
2007); EWLS (Cai, Su, and Chen 2010) and EWCC (Cai,
Su, and Sattar 2011) select a random pair of vertices with
score(u, v) > 0. A drawback of selecting two vertices to
be exchanged simultaneously is that, the evaluation of a
pair of vertices not only depends on the evaluations (such
as dscore) of the two vertices, but also involves the rela-
tionship between the two vertices, like “do they belong to a
same edge”. Therefore, it is rather time consuming to evalu-
ate each candidate pair of vertices.

In contrast to earlier MVC local search algorithms,
NuMVC selects the two vertices for exchanging separately
in two stages. In each iteration, NuMVC first selects a vertex
u ∈ C with the highest dscore and removes it. After that,
NuMVC selects a uniformly random uncovered edge e, and
chooses one endpoint v of e with the higher dscore under
some restrictions and adds it into C.

442

Selecting the two vertices for exchanging separately may
in some cases miss some greedier vertex pairs which con-
sist of two neighboring vertices. Nevertheless, as is usual in
local search algorithms, there is a tradeoff between the accu-
racy of heuristics and the complexity per step. Let R and A
denote the set of candidate vertices for removing and adding
separately. The time complexity per step for selecting the
exchanging vertex pair simultaneously is |R| · |A|; while the
complexity per step for selecting the two vertices separately,
as in NuMVC, is only |R|+ |A|.

To sum up, the two stage exchange framework slightly
brings down the greediness of the algorithm, and signifi-
cantly cuts down the time complexity per step. It is wor-
thy to note that, as heuristics in a local search algorithm are
often based on intuition and experience rather than on the-
oretically or empirically derived principles and insights, we
cannot say for certain that being less greedy is not a good
thing (Hoos and Stützle 2005). On the other hand, a lower
time complexity is always what we expect.

Edge Weighting with Forgetting
This section presents a new edge weighting technique called
edge weighting with forgetting, which plays an important
role in NuMVC.

The proposed strategy of edge weighting with forgetting
works as follows: each edge is associated to a positive inte-
ger number as its weight, and each edge weight is initialized
as one. Then in each iteration, edge weights of the uncovered
edges are increased by one. Moreover, when the average
weight achieves a threshold, all edge weights are reduced
to forget the earlier weighting decisions using the formula
w(e) := ρ · w(e), where ρ < 1.

Edge weighting techniques, as a form of diversification,
have been used in MVC local search algorithms. For exam-
ple, COVER (Richter, Helmert, and Gretton 2007) updates
edge weights each step, while EWLS (Cai, Su, and Chen
2010) and EWCC (Cai, Su, and Sattar 2011) update edge
weights only when meeting local optima. However, these
edge weighting techniques do not have a mechanism to de-
crease the weights. The essential difference between edge
weighting with forgetting and previous edge weighting tech-
niques is that it introduces a forgetting mechanism to reduce
edge weights periodically.

The intuition behind the forgetting mechanism is that the
weighting decisions made too long ago are no longer help-
ful and may mislead the search. Therefore, these weight-
ing decisions should be considered less important than the
recent ones. For example, consider two edges e1 and e2
with w(e1) = 1000 and w(e2) = 100 at some step. We
use ∆w(e) to denote the increase of w(e). According to
the evaluation function, in the next period of time, the al-
gorithm is likely to cover e1 more frequently than e2, and
we may assume that during this period ∆w(e1) = 50 and
∆w(e2) = 500, which makes w(e1) = 1000 + 50 = 1050
and w(e2) = 100+500 = 600. Without a forgetting mecha-
nism, the algorithm would still prefer e1 to e2 to be covered
in the future search. This is not reasonable, as during this
period the number of steps in which e2 is covered is much
less than the number of steps in which e1 is covered. Thus,

e2 should take priority to be covered for the sake of diver-
sification. Now let us consider the case with the forgetting
mechanism (assuming ρ = 0.3 which is the setting in our ex-
periments). Suppose w(e1) = 1000 and w(e2) = 100 when
the algorithm performs the forgetting. The forgetting mecha-
nism reduces the edge weights asw(e1) = 1000×0.3 = 300
and w(e2) = 100 × 0.3 = 30. After a period of time,
with ∆w(e1) = 50 and ∆w(e2) = 500, we have w(e1) =
300 + 50 = 350 and w(e2) = 30 + 500 = 530. In this case,
the algorithm prefers to cover e2 rather than cover e1 in the
future search, as we expect.

The NuMVC Algorithm
In this section, we present the NuMVC algorithm, which
is based on the strategies of two stage exchange and edge
weighting with forgetting.

For better understanding the NuMVC algorithm, we first
describe a strategy called configuration checking (CC),
which is used in NuMVC. The CC strategy was proposed
in (Cai, Su, and Sattar 2011) for handling the cycling prob-
lem in local search, i.e., revisiting a candidate solution that
has been visited recently (Michiels, Aarts, and Korst 2007),
and has been used in local search algorithms for MVC (Cai,
Su, and Sattar 2011) as well as SAT (Cai and Su 2011).
The CC strategy in NuMVC works as follows: For a ver-
tex v /∈ C, if all its neighboring vertices never change their
states since v’s last removal from C, then v should not be
added back to C. An implementation of the CC strategy is
to maintain a boolean array confChange. During the search
procedure, vertices with confChange[v] = 0 are forbidden
to be added into C. The confChange array is initialized as
an all-1 array. After that, when a vertex v is removed from
C, confChange[v] is reset to 0; when a vertex v changes
its state, for each u ∈ N(v), confChange[u] is set to 1.

We outline the NuMVC algorithm in Algorithm 1, as de-
scribed below. In the beginning, all edge weights are initial-
ized as 1, and dscores of vertices are computed accordingly;
confChange[v] is initialized as 1 for each vertex v; then the
current candidate solution C is constructed by adding the
vertex with the highest dscore iteratively until it becomes a
vertex cover, and the best solution C∗ is initialized as C.

After the initialization, the loop (lines 7-18) is executed
until a given cutoff time is reached. During the search pro-
cedure, once there is no uncovered edge, which means C is
a vertex cover, NuMVC updates the best solution C∗ as C
(line 9), and then removes the vertex with the highest dscore
from C (line 10), going on to search for a vertex cover with
a smaller size. We note that, inC, the vertex with the highest
dscore has the minimum absolute value of dscore since all
these dscores are negative.

In each iteration of the loop, NuMVC swaps two vertices
according to the strategy of two stage exchange (line 12-16).
Specifically, it first selects a vertex u ∈ C with the high-
est dscore to remove, breaking ties in favor of the oldest
vertex. NuMVC keeps track of the vertex last inserted into
C, and prevents it from being removed immediately. After
removing u, NuMVC selects a random uncovered edge e,
and selects one of e’s endpoints to add into C as follows:
If only one endpoint of e satisfies confChange[v] = 1,

443

then that vertex is selected; if both endpoints of e satisfy
confChange[v] = 1, then NuMVC selects the one with
the higher dscore, breaking ties in favor of the older ver-
tex. The exchange is finished by adding the selected vertex
into C. Along with exchanging the two vertices u and v, the
confChange array is updated accordingly.

Algorithm 1: NuMVC
1 NuMVC (G,cutoff)

Input: graph G = (V,E), the cutoff time
Output: vertex cover of G

2 begin
3 initialize edge weights and dscores of vertices;
4 initialize the confChange array as an all-1 array;
5 construct C greedily until it is a vertex cover;
6 C∗ := C;
7 while elapsed time < cutoff do
8 if there is no uncovered edge then
9 C∗ := C;

10 remove a vertex with the highest dscore from C;
11 continue;

12 choose a vertex u ∈ C with the highest dscore,
breaking ties in favor of the oldest one;

13 C := C\{u}, confChange(u) := 0 and
confChange(z) := 1 for each z ∈ N(u);

14 choose an uncovered edge e randomly;
15 choose a vertex v ∈ e such that

confChange[v] = 1 with higher dscore, breaking
ties in favor of the older one;

16 C := C ∪ {v}, confChange(z) := 1 for each
z ∈ N(v);

17 w(e) := w(e) + 1 for each uncovered edge e;
18 if w ≥ γ then w(e) := bρ · w(e)c for each edge e;

19 return C∗;

At the end of each iteration, NuMVC updates the edge
weights (line 17-18). Weights of all uncovered edges are
increased by one. Moreover, NuMVC uses the forgetting
mechanism. Specifically, if the average weight of all edges
achieves a threshold, then all edge weights are multiplied by
a constant factor ρ (ρ < 1) and rounded down to the inte-
ger as edge weights are defined as integers in NuMVC. The
forgetting mechanism forgets the earlier weighting decision
to some extent, as these past effects are generally no longer
helpful and may mislead the search.

We conclude this section by the following observation,
which guarantees the executability of line 15.

Proposition 1 For an uncovered edge e, there is at least one
vertex v ∈ e such that confChange[v] = 1.

Proof: Let e = {v1, v2}, the proof includes two cases.
(a) There is at least one of v1 and v2 which never changes
its state after initialization. Without loss of generality, we
assume v1 is such a vertex. In the initialization, we have that
confChange[v1] = 1. After that, only removing v1 from
C (which corresponds to v’s state sv changing to 0 from 1)
can make confChange[v1] to be 0, but v1 never changes its
state after initialization, so we have confChange[v1] = 1.
(b) Both v1 and v2 change their states after initialization.

As e is uncovered, we have v1 /∈ C and v2 /∈ C. Without
loss of generality, we assume the last removing of v1 hap-
pens before the last removing of v2. When the last time v1 is
removed, v2 ∈ C holds. Afterwards, v2 is removed, which
means v2 changes its state, so confChange[v1] is set to 1
as v1 ∈ N(v2).

Empirical Results
We evaluate NuMVC against the best known local search
algorithms for MVC (MC, MIS) on standard benchmarks
in the literature, i.e., the DIMACS and BHOSLIB bench-
marks. We first present a brief introduction to the DIMACS
and BHOSLIB benchmarks, and describe some preliminar-
ies about the experiments. Then, for each benchmark set, we
compare NuMVC with the best known local search algo-
rithms. We also perform additional experiments to study the
effectiveness of the two stage exchange strategy.

Seen from recent literature, there are five state-of-the-
art heuristic algorithms for MVC (MC, MIS): three MVC
algorithms COVER (Richter, Helmert, and Gretton 2007),
EWLS (Cai, Su, and Chen 2010) and EWCC (Cai, Su, and
Sattar 2011), and two MC algorithms DLS-MC (Pullan and
Hoos 2006) and PLS (Pullan 2006). EWCC and PLS are the
improved versions of EWLS and DLS-MC respectively, and
show better performance over their original versions on DI-
MACS and BHOSLIB benchmarks. Therefore, we compare
NuMVC only with PLS, COVER and EWCC.

The Benchmarks
The DIMACS benchmark is taken from the Second DI-
MACS Challenge Test Problems (1992-1993)1. These in-
stances were generated from real world problems such as
coding theory, fault diagnosis, Kellers conjecture and the
Steiner Triple Problem, etc, and random graphs in various
models, such as the brock and p hat families. These in-
stances range in size from less than 50 vertices and 1,000
edges to greater than 3,300 vertices and 5,000,000 edges.

The BHOSLIB2 (Benchmarks with Hidden Optimum So-
lutions) instances were generated randomly in the phase
transition area according to the model RB (Xu and Li 2000;
Xu et al. 2007). The SAT version of the BHOSLIB bench-
mark is extensively used in the SAT competition3. Never-
theless, SAT solvers are much weaker than MVC solvers on
these problems (Cai, Su, and Sattar 2011), which remains
justifiable when referring to the results of the SAT Compe-
tition 2011 on this benchmark. The BHOSLIB benchmark
is famous for its hardness and so influential as strongly rec-
ommended by the MVC (MC, MIS) community (Grosso,
Locatelli, and Pullan 2008; Cai, Su, and Sattar 2011). It has
been widely used in the recent literature as a reference point
for new heuristics to MVC, MC and MIS. Besides these 40
instances, there is a large instance frb100-40 with 4,000 ver-
tices and 572,774 edges, which is designed for challenge.

1ftp://dimacs.rutgers.edu/pub/challenges
2http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-

benchmarks.htm
3http://www.satcompetition.org

444

Graph PLS COVER EWCC NuMVC

Instance k∗ suc time suc time suc time suc time

brock400 2 371 100 0.15 3 1947 20 1778 96 572

brock400 4 367 100 0.03 82 960 100 25.38 100 4.89

brock800 2 776 100 3.89 0 n/a 0 n/a 0 n/a

brock800 4 774 100 1.31 0 n/a 0 n/a 0 n/a

C2000.9 1920 0 n/a 0 n/a 0 n/a 1 1994

C4000.5 3982 100 67 100 658 100 739 100 152

gen400 p0.9 55 345 100 15.17 100 0.35 100 0.05 100 0.02

keller6 3302 92 559 100 68 100 3.76 100 2.37

MANN a45 690 1 1990 94 714 88 763 100 86

MANN a81 2221 0 n/a 1 1995 1 1986 27 1657

p hat1500-1 1488 100 2.36 100 18.10 100 9.79 100 3.75

Table 1: Comparative results on the DIMACS benchmark

Experiment Preliminaries
NuMVC is implemented in C++. The codes of COVER are
downloaded on line4 and those of PLS and EWCC are pro-
vided by their authors respectively. All the four solvers are
compiled by g++ with the ’-O2’ option. All experiments
are run on a 3 GHz Intel Core 2 Duo CPU E8400 and
4GB RAM under Linux. To execute the DIMACS machine
benchmarks5, this machine requires 0.19 CPU seconds for
r300.5, 1.12 CPU seconds for r400.5 and 4.24 CPU seconds
for r500.5.

For NuMVC, we set γ = |V |/2 and ρ = 0.3 for all
runs, except for the challenging instance frb100-40, where
γ = 5000 and ρ = 0.3. Other state-of-the-art MVC (MC,
MIS) algorithms also have parameters, such as DLS-MC
(Pullan and Hoos 2006) and EWLS (Cai, Su, and Chen
2010). Moreover, the parameters in DLS-MC and EWLS
vary on different instances.

For each instance, each algorithm is performed 100 runs
with different random seeds, where each run is terminated
upon reaching a given cutoff time which is set to 2000 sec-
onds. We report the following information for each instance:
the optimal (or minimum known) vertex cover size (k∗); the
number of successful runs in which a solution of size k∗ is
found (“suc”); and the averaged run time in CPU seconds
over all runs (“time”), where the run time of a failed run is
considered to be the cutoff time. If there are no successful
runs, the “time” column is marked with “n/a”. The results in
bold indicate the best performance for an instance.

The averaged run time over only successful runs cannot
indicate comparative performance of algorithms correctly
unless the evaluated algorithms have close success rates, and
can be calculated by “time”∗100−cutoff∗(100−“suc”)

“suc” , so we
do not report these statistics.

DIMACS Benchmark Results
The results on the DIMACS benchmark are shown in Ta-
ble 1. Most DIMACS instances are so easy that they can be
solved by all solvers with 100% success rate within 2 sec-
onds, and thus are not reported in the table.

Table 1 shows that NuMVC outperforms COVER and
EWCC on all instances and competes well with PLS.

4http://www.informatik.uni-freiburg.de/˜srichter/
5ftp://dimacs.rutgers.edu/pub/dsj/clique/

Graph PLS COVER EWCC NuMVC

Instance k∗ suc time suc time suc time suc time

frb40-19-1 720 100 10.42 100 1.58 100 0.55 100 0.24
frb40-19-2 720 100 85.25 100 17.18 100 11.30 100 4.08
frb40-19-3 720 100 9.06 100 5.06 100 2.97 100 1.07
frb40-19-4 720 100 77.39 100 11.79 100 13.79 100 2.76
frb40-19-5 720 95 496 100 124 100 41.71 100 10.14
frb45-21-1 900 100 52.31 100 14.34 100 9.07 100 2.71
frb45-21-2 900 100 170 100 38 100 15 100 5
frb45-21-3 900 21 1737 100 110 100 56 100 14
frb45-21-4 900 100 111 100 21 100 15 100 4
frb45-21-5 900 100 261 100 105 100 42 100 11
frb50-23-1 1100 30 1658 100 268 100 124 100 38
frb50-23-2 1100 3 1956 48 1325 82 905 100 177
frb50-23-3 1100 2 1989 39 1486 56 1348 95 606
frb50-23-4 1100 100 93 100 33 100 24 100 8
frb50-23-5 1100 79 967 100 168 100 85 100 19
frb53-24-1 1219 1 1982 17 1796 30 1696 86 895
frb53-24-2 1219 6 1959 50 1279 81 1006 100 205
frb53-24-3 1219 20 1771 99 273 100 117 100 51
frb53-24-4 1219 21 1782 48 1428 81 900 100 266
frb53-24-5 1219 10 1955 95 423 100 125 100 40
frb56-25-1 1344 1 1993 24 1698 56 1268 100 470
frb56-25-2 1344 0 n/a 17 1598 52 1387 97 659
frb56-25-3 1344 0 n/a 97 537 100 285 100 121
frb56-25-4 1344 11 1915 93 476 100 183 100 50
frb56-25-5 1344 27 1719 100 168 100 80 100 27
frb59-26-1 1475 0 n/a 16 1607 21 1778 88 843
frb59-26-2 1475 0 n/a 9 1881 7 1930 37 1677
frb59-26-3 1475 3 1978 21 1768 64 1294 96 636
frb59-26-4 1475 0 n/a 3 1980 20 1745 79 1004
frb59-26-5 1475 30 1708 98 431 100 174 100 62

Table 2: Comparative results on the BHOSLIB benchmark

NuMVC significantly outperforms PLS on five instances,
including the two putatively hardest instances C2000.9 and
MANN a81 (Richter, Helmert, and Gretton 2007; Grosso,
Locatelli, and Pullan 2008; Cai, Su, and Sattar 2011), as well
as keller6, MANN a45 and gen400 p0.9 55. For C2000.9,
only NuMVC finds a 1920-sized solution, and NuMVC finds
a 1921-sized solution in 70 runs, while this number is 31, 6
and 32 for PLS, COVER, and EWCC respectively.

Nevertheless, PLS significantly outperforms NuMVC on
the brock graphs and C4000.5. The brock graphs are de-
signed to defeat greedy heuristics by explicitly incorporating
low-degree vertices into the optimal vertex cover. Indeed,
most algorithms preferring higher-degree vertices such as
GRASP, RLS, k-opt, COVER and EWCC also failed in
these graphs. PLS performs well on the brock family be-
cause it comprises three sub-algorithms, one of which favors
the lower degree vertices.

Recently, a branch-and-bound MC algorithm named Max-
CLQ (Li and Quan 2010b) and its improved version Max-
CLQdyn+EFL+SCR (Li and Quan 2010a) show a consid-
erable progress on solving DIMACS instances by exact al-
gorithms. It would be interesting to compare NuMVC with
MaxCLQdyn+EFL+SCR. We leave this for future work.

BHOSLIB Benchmark Results
Table 2 shows comparative results on the BHOSLIB bench-
mark. For concentrating on the considerable gaps in com-
parisons, we do not report the two groups of small instances
(frb30, frb35), as they can be solved within 2 seconds by

445

all solvers, and the results are consistent with Table 2.
The results demonstrate that NuMVC significantly out-

performs all the other algorithms on all BHOSLIB instances,
in terms of both success rate and averaged run time. We
take a further look at the performance comparison between
NuMVC and EWCC, as EWCC performs obviously better
than PLS and COVER on this benchmark. NuMVC solves
33 instances out of 40 with 100% success rate, 4 more in-
stances than EWCC does; For instances solved by both al-
gorithms with 100% success rate, the overall averaged run
time is 25 seconds for NuMVC and 74 seconds for EWCC;
For other instances, the averaged success rate is 90% for
NuMVC, compared to 50% for EWCC.

The excellent performance of NuMVC is further under-
lined by the large gaps between NuMVC and the other
solvers on the hard instances. For those hard instances where
all solvers fail to find an optimal solution with 100% success
rate, NuMVC achieves an averaged success rate of 82.57%,
dramatically better than that of PLS, COVER and EWCC,
which are 0.85%, 17.43% and 35.71% respectively. Obvi-
ously, the experimental results show that NuMVC delivers
the best performance for this hard random benchmark, vastly
improving the existing performance results.

Also, we would like to remark that the performance of
NuMVC on the BHOSLIB benchmark is better than a four
core version of CLS (Pullan, Mascia, and Brunato 2011),
even if we do not divide the runtime of NuMVC by 4 (the
number of cores utilized by CLS). If we consider the ma-
chine speed ratio and divide the runtime of NuMVC by 4,
then NuMVC would be dramatically better than CLS on the
BHOSLIB benchmark.

For the challenging instance frb100-40, which has a hid-
den minimum vertex cover of size 3900, the designer of the
BHOSLIB benchmark conjectured that this instance will not
be solved on a PC in less than a day within the next two
decades6. The latest record for this challenging instance is a
3902-sized vertex cover found by EWLS, and also EWCC.

Solver 3902 ≤ 3903
suc time suc time

COVER 0 n/a 33 2768
EWCC 1 2856 79 2025

NuMVC 4 2955 93 1473

Table 3: Results on frb100-40 Challenging Instance

We run COVER, EWCC and NuMVC 100 trials within
4000 seconds on frb100-40. Given the failure of PLS on
large BHOSLIB instances, we do not run PLS on this in-
stance. Table 3 shows that NuMVC significantly outper-
forms EWCC and COVER on frb100-40. For NuMVC, 4
runs find a 3902-sized solution with the average time of 2955
seconds, and 93 runs find a 3903-sized solution (including
3902-sized) with the average time of 1473 seconds.

6http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-
benchmarks.htm

Graph PLS COVER EWCC NuMVC
Instance #steps/sec #steps/sec #steps/sec #steps/sec

C4000.5 85,318 8,699 11,927 513,307
MANN a45 1546,625 279,514 578,656 991,476

p hat 1500-1 170,511 19,473 34,111 297,220
frb53-24-5 841,346 128,971 219,038 570,425
frb56-25-5 801,282 116,618 199,441 522,561
frb59-26-5 706,436 108,534 189,536 511,014

Table 4: Complexity per step on selected instances

The Effectiveness of Two Stage Exchange
We study the effectiveness of the two stage exchange heuris-
tic by comparing the number of search steps per second on
representative instances.

Seen from Table 4, the number of search steps per second
of NuMVC is much more than those of the other two MVC
local search solver COVER and EWCC, where the increase
ranges from several to several dozen times. This indicates
that the two stage exchange strategy can significantly accel-
erate MVC local search algorithms. Although PLS performs
more steps per second than NuMVC, PLS is an MC local
search algorithm whose search scheme is essentially differ-
ent from those of MVC local search algorithms.

Discussion
The forgetting mechanism in NuMVC is inspired by
smoothing techniques in clause weighting local search algo-
rithms for SAT. However, it is different from those smooth-
ing techniques in SAT local search algorithms.

According to the way that clause weights are smoothed,
there are three main smoothing techniques in SAT local
search to our knowledge: the first is to pull all clause weights
to their mean value usingwi := ρ·wi+(1−ρ)·w, as in ESG
(Schuurmans, Southey, and Holte 2001), SDF (Schuurmans
and Southey 2001) and SPAS (Hutter, Tompkins, and Hoos
2002); the second is to subtract one from all clause weights
which are bigger than 1, as in DLM (Wu and Wah 2000) and
PAWS (Thornton et al. 2004); and the last is employed in
DDWF (Ishtaiwi et al. 2005), which transfers weights from
neighbouring satisfied clauses to unsatisfied ones.

The forgetting mechanism in NuMVC is different from
these smoothing techniques in SAT solving. Although the
second smoothing technique can be also seen as a forget-
ting mechanism to some extent, the forgetting mechanism in
NuMVC is done by multiplying all edge weights by a con-
stant factor ρ that is smaller than one, rather than by subtract-
ing weights. Also, NuMVC forgets weights on the condition
that the averaged weight achieves a threshold. The forget-
ting mechanism in NuMVC is novel and has not been used
in smoothing techniques in literature we have found.

We conducted a few experiments to study the perfor-
mance of the alternative versions of NuMVC by replac-
ing the forgetting mechanism with the smoothing tech-
niques similar to those in SAT local search mentioned above,
and found that those smoothing techniques only seemed
to weaken the performance. It would be interesting to find

446

out the reasons of the success of the forgetting mechanism
and the failure of the smoothing techniques in MVC edge
weighting local search algorithms like NuMVC. We leave
this direction of investigation for future work.

Conclusions and Future Work
We presented two new local search strategies for the min-
imum vertex cover (MVC) problem, namely two stage ex-
change and edge weighting with forgetting. Based on these
two strategies, we developed a local search algorithm for
MVC, called NuMVC. The NuMVC algorithm is evaluated
against the best known local search algorithms for MVC
(MC, MIS) on standard benchmarks, i.e., the DIMACS and
BHOSLIB benchmarks. The results are convincing and con-
cluding in this highly competitive field.

We believe that the algorithm can be further improved by
more elaborate techniques, especially by better heuristics for
the two stage exchange framework and more effective edge
weighting schemes. Also, it is interesting to investigate how
the forgetting mechanism in NuMVC can be applied to local
search algorithms for other combinatorial search problems.

Acknowledgement
This work is partially supported by 973 Program
(2010CB328103), ARC grants FT0991785 and
DP120102489, and Open Project SYSKF1003 of State
Key Laboratory of Computer Science. We would like to
thank the anonymous referees for their helpful comments.

References
Aggarwal, C.; Orlin, J.; and Tai, R. 1997. Optimized crossover for
the independent set problem. Operations Research 45:226–234.
Andrade, D. V.; Resende, M. G. C.; and Werneck, R. F. F. 2008.
Fast local search for the maximum independent set problem. In
Workshop on Experimental Algorithms, 220–234.
Barbosa, V. C., and Campos, L. C. D. 2004. A novel evolutionary
formulation of the maximum independent set problem. J. Comb.
Optim. 8(4):419–437.
Battiti, R., and Protasi, M. 2001. Reactive local search for the
maximum clique problem. Algorithmica 29(4):610–637.
Busygin, S.; Butenko, S.; and Pardalos, P. M. 2002. A heuristic for
the maximum independent set problem based on optimization of a
quadratic over a sphere. J. Comb. Optim. 6(3):287–297.
Cai, S., and Su, K. 2011. Local search with configuration checking
for sat. In Proc. of ICTAI-11, 59–66.
Cai, S.; Su, K.; and Chen, Q. 2010. Ewls: A new local search for
minimum vertex cover. In Proc. of AAAI-10, 45–50.
Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for minimum ver-
tex cover. Artif. Intell. 175(9-10):1672–1696.
Dinur, I., and Safra, S. 2005. On the hardness of approximating
minimum vertex cover. Annals of Mathematics 162(2):439–486.
Garey, M., and Johnson, D. 1979. Computers and Intractability:
A Guide to the Theory of NP-completeness. San Francisco, CA,
USA: Freeman.
Grosso, A.; Locatelli, M.; and Pullan, W. J. 2008. Simple ingre-
dients leading to very efficient heuristics for the maximum clique
problem. J. Heuristics 14(6):587–612.

Halperin, E. 2002. Improved approximation algorithms for the
vertex cover problem in graphs and hypergraphs. SIAM Journal on
Computing 31(5):1508–1623.
Håstad, J. 1999. Clique is hard to approximate within n1−ε. Acta
Math 182:105–142.
Håstad, J. 2001. Some optimal inapproximability results. J. ACM
48(4):798–859.
Hoos, H., and Stützle, T. 2005. Stochastic Local Search: Founda-
tions and Applications. San Francisco, CA, USA: Morgan Kauf-
mann.
Hutter, F.; Tompkins, D. A. D.; and Hoos, H. H. 2002. Scaling and
probabilistic smoothing: Efficient dynamic local search for sat. In
Proc. of CP-02, 233–248.
Ishtaiwi, A.; Thornton, J.; Sattar, A.; and Pham, D. N. 2005. Neigh-
bourhood clause weight redistribution in local search for sat. In
Proc. of CP-05, 772–776.
Johnson, D. S., and Trick, M., eds. 1996. Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge, 1993,
volume 26 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science. American Mathematical Society, Provi-
dence, RI, USA.
Karakostas, G. 2005. A better approximation ratio for the vertex
cover problem. In Proc. of ICALP-05, 1043–1050.
Li, C. M., and Quan, Z. 2010a. Combining graph structure ex-
ploitation and propositional reasoning for the maximum clique
problem. In Proc. of ICTAI (1), 344–351.
Li, C. M., and Quan, Z. 2010b. An efficient branch-and-bound
algorithm based on maxsat for the maximum clique problem. In
Proc. of AAAI-10, 128–133.
Michiels, W.; Aarts, E. H. L.; and Korst, J. H. M. 2007. Theoretical
aspects of local search. Springer.
Pullan, W., and Hoos, H. H. 2006. Dynamic local search for the
maximum clique problem. J. Artif. Intell. Res. (JAIR) 25:159–185.
Pullan, W.; Mascia, F.; and Brunato, M. 2011. Cooperating local
search for the maximum clique problem. J. Heuristics 17(2):181–
199.
Pullan, W. 2006. Phased local search for the maximum clique
problem. J. Comb. Optim. 12(3):303–323.
Richter, S.; Helmert, M.; and Gretton, C. 2007. A stochastic local
search approach to vertex cover. In Proc. of KI-07, 412–426.
Schuurmans, D., and Southey, F. 2001. Local search characteristics
of incomplete sat procedures. Artif. Intell. 132(2):121–150.
Schuurmans, D.; Southey, F.; and Holte, R. C. 2001. The exponen-
tiated subgradient algorithm for heuristic boolean programming. In
Proc. of IJCAI-01, 334–341.
Shyu, S. J.; Yin, P.; and Lin, B. M. T. 2004. An ant colony opti-
mization algorithm for the minimum weight vertex cover problem.
Annals OR 131(1-4):283–304.
Thornton, J.; Pham, D. N.; Bain, S.; and Jr., V. F. 2004. Additive
versus multiplicative clause weighting for sat. In Proc. of AAAI-04,
191–196.
Wu, Z., and Wah, B. W. 2000. An efficient global-search strat-
egy in discrete lagrangian methods for solving hard satisfiability
problems. In Proc. of AAAI/IAAI-00, 310–315.
Xu, K., and Li, W. 2000. Exact phase transitions in random con-
straint satisfaction problems. J. Artif. Intell. Res. (JAIR) 12:93–103.
Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2007. Ran-
dom constraint satisfaction: Easy generation of hard (satisfiable)
instances. Artif. Intell. 171(8-9):514–534.

447

