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Abstract

An interesting strategy called configuration checking (CC)
was recently proposed to handle the cycling problem in lo-
cal search for Minimum Vertex Cover. A natural question is
whether this CC strategy also works for SAT. The direct ap-
plication of CC did not result in stochastic local search (SLS)
algorithms that can compete with the current best SLS al-
gorithms for SAT. In this paper, we propose a new heuris-
tic based on CC for SLS algorithms for SAT, which is called
configuration checking with aspiration (CCA). It is used to
develop a new SLS algorithm called Swcca. The experiments
on random 3-SAT instances show that Swcca significantly
outperforms Sparrow2011, the winner of the random satis-
fiable category of the SAT Competition 2011, which is con-
sidered to be the best local search solver for random 3-SAT
instances. Moreover, the experiments on structured instances
show that Swcca is competitive with Sattime, the best local
search solver for the crafted benchmark in the SAT Competi-
tion 2011.

Introduction
The propositional satisfiability problem (SAT) is a prototyp-
ical NP-complete problem. It is central to many domains
of computer science and artificial intelligence, and has been
widely studied due to its significant importance in both the-
ory and applications (Kautz, Sabharwal, and Selman 2009).
Two popular approaches for solving SAT are conflict driven
clause learning (CDCL) and stochastic local search (SLS),
and in this work we focus on the latter. While systematic ap-
proaches such as CDCL that perform considerable amounts
of reasoning are often more useful on application instances,
SLS is well known as the most effective approach for solv-
ing random satisfiable instances.

The basic schema for an SLS algorithm for SAT is as
follows: Beginning with a random complete assignment of
truth values to variables, in each subsequent search step a
variable is chosen and flipped. We use pickVar to denote
the function for choosing the variable to be flipped. Ac-
cording to the heuristic used in pickVar, SLS algorithms can
be divided into three categories: GSAT, WalkSAT and dy-
namic local search (DLS). The current best solvers, such as

∗Corresponding author
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the three winners in SAT 2011 competition namely Spar-
row2011 (Balint and Fröhlich 2010), Sattime2011 (Li and Li
2011), and EagleUP (Gableske and Heule 2011), are combi-
nations of heuristics from these categories.

As stated in (Tompkins, Balint, and Hoos 2011), SLS
algorithms for SAT usually work in two different modes,
i.e., the greedy (intensification) mode and the diversification
mode. In the greedy mode, they prefer variables whose flips
can decrease the number of unsatisfied clauses; in the diver-
sification mode, they tend to better explore the search space
and avoid local optima, usually using randomized strategies
and exploiting diversification properties of variables (Tomp-
kins, Balint, and Hoos 2011) such as age and flip count to
pick a variable for this aim. SLS algorithms for SAT usu-
ally utilize GSAT-like heuristics in the greedy mode and
WalkSAT-like ones in the diversification mode.

An important issue for local search is the cycling prob-
lem, i.e., revisiting a candidate solution that has been vis-
ited recently (Michiels, Aarts, and Korst 2007). A strategy
called configuration checking (CC) was recently proposed to
deal with this issue, and was used to improve a state-of-the-
art Minimum Vertex Cover (MVC) local search algorithm
called EWLS (Cai, Su, and Chen 2010), which leads to the
much more efficient SLS solver EWCC for MVC (Cai, Su,
and Sattar 2011). A natural question is whether this CC strat-
egy also works for SAT.

According to the CC strategy for MVC in (Cai, Su, and
Sattar 2011), it is easy to develop a CC strategy for SAT,
which forbids a variable x to be flipped if none of its neigh-
boring variables has been flipped since the last time x was
flipped. Actually, this has been used in an SLS algorithm
called Swcc. However, Swcc cannot compete with the cur-
rent best SLS solvers such as Sparrow2011 (Cai and Su
2011). In our opinion, the CC strategy is too strict for SLS
algorithms for SAT, as it forbids all variables whose circum-
stance (i.e., the truth values of all its neighboring variables)
has not changed since its last flip to be flipped, regardless of
the benefit its flip can bring.

This work proposes a new heuristic based on CC for SLS
algorithms for SAT. We name it Configuration Checking
with Aspiration (CCA), as this new heuristic utilizes a mech-
anism which is inspired by the aspiration mechanism in tabu
search (Glover 1990; Salhi 2002). According to CCA, there
are two levels with different priorities in the greedy mode.
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Those variables whose flips can bring a big benefit have a
chance to be selected on the the second level, even if they do
not satisfy the CC criterion.

The CCA heuristic is used to develop a new algo-
rithm called Swcca (Smoothed Weighting and Configuration
Checking with Aspiration). For showing the effectiveness of
Swcca, we compare it with Sparrow2011 on a broad range
of 3-SAT instances. Sparrow2011 is the improved version of
the Sparrow algorithm which made a breakthrough on solv-
ing the random 3-SAT problem (Balint and Fröhlich 2010).
It won the golden medal in the random satisfiable category of
the SAT Competition 2011, and is considered to be the best
local search solver for random 3-SAT instances. Our exper-
iments show that the Swcca algorithm significantly outper-
forms Sparrow2011 on random 3-SAT instances.

Additionally, we compare Swcca with Sattime (Li and
Li 2011) on structured instances from the crafted category
of the SAT Competition 2011. Our experiments show that
Swcca is competitive with Sattime on these structured in-
stances. This is notable as Sattime was ranked 4th in the
crafted category of the SAT Competition 2011, but only two
portfolio solvers ppfolio (parallel and sequential versions)
and sss did better than Sattime. Note that the good perfor-
mance of the two ppfolio solvers are due to to the perfor-
mance of TNM included in them (Roussel 2011). Sattime
was developed from TNM and solved 109 instances, while
the best CDCL solver only solved 93 instances in the cate-
gory.

The remainder of this paper is organized as follows: some
definitions and notations are given in the next section. Then
we present the CC strategy and the CCA heuristic. After
that, we describe the Swcca algorithm. Experimental results
demonstrating the performance of Swcca are presented next.
Finally we give some concluding remarks.

Definitions and Notations
Given a Conjunctive Normal Form (CNF) formula F =
C1 ∧ C2 ∧ ... ∧ Cm on a set of variables {x1, x2, ..., xn},
the Boolean Satisfiability problem (SAT) consists in testing
whether all clauses in F can be satisfied by some consistent
assignment of truth values to variables. We use V (F ) to de-
note the set of all variables appear in the formula F . A clause
is a disjunction of literals, where a literal is either a variable
x or its negation x. We say a literal l occurs in a clause, if
this clause contains l. However, when we say a variable x
occurs in a clause, we mean that this clause contains either
x or x. Two variables are neighbors iff they occur in at least
one clause. Let N(x) = {y|y ∈ V (F ) and y occurs in at
least one clause with x}, which is the set of all neighboring
variables of variable x.

A (possibly partial) mapping α : V (F )→ {0, 1} is called
an assignment. If α maps all variables to a Boolean value, it
is called complete. For local search algorithms for SAT, a
candidate solution is a complete assignment.

In a dynamic local search algorithm for SAT, a CNF for-
mula F is combined with a weighting function w so that
each clause c ∈ F is associated with a positive integer num-
ber w(c) as its weight. We use cost(F, s) to denote the total
weight of all unsatisfied clauses under an assignment s. For

a variable x, let score(x) = cost(F, s) − cost(F, s′), mea-
suring the benefit of flipping x, where s′ is obtained from s
by flipping x. A variable x is decreasing iff score(x) > 0.
The age of a variable is defined as the number of search steps
that have occurred since the variable was last flipped.

Configuration Checking
Originally introduced in (Cai, Su, and Sattar 2011), config-
uration checking (CC) is a strategy aiming to reduce the cy-
cling problem in local search. The intuition behind this idea
is that by reducing cycles on local structures of the candidate
solution, we reduce cycles on the whole candidate solution.

The CC strategy is based on the concept configuration.
In the context of SAT, the configuration of a variable refers
to truth values of all its neighboring variables. The formal
definition is given as follows:

Definition 1 Given a CNF formula F and s the current as-
signment to V (F ), the configuration of a variable x ∈
V (F ) is a vector Cx consisting of truth values of all vari-
ables in N(x) under s (i.e., Cx = s|N(x), which is the as-
signment restricted to N(x) ).

Given a CNF formula F , the CC strategy can be de-
scribed as follows: When selecting a variable to flip, for
a variable x ∈ V (F ), if the configuration of x has not
been changed since x’s last flip, which means the cir-
cumstance of x never changes, then it is forbidden to be
flipped. To implement the CC strategy, we employ an ar-
ray confChange, whose element is an indicator for a vari-
able — confChange[x] = 1 means the configuration
of variable x has been changed since x’s last flip; and
confChange[x] = 0 on the contrary. During the search pro-
cedure, the variables with confChange[x] = 0 are forbid-
den to be flipped in the greedy mode, which could decrease
blind unreasonable greedy search.

Previous SLS algorithms for SAT usually select the vari-
able to flip based on properties of variables such as score
(Hoos and Stützle 2000), break (Selman, Kautz, and Co-
hen 1994) and age (Gent and Walsh 1993); state-of-the-
art SLS algorithms also utilize dynamic score (Tompkins
and Hoos 2010) and functions combining different proper-
ties (Balint and Fröhlich 2010; Tompkins, Balint, and Hoos
2011). However, all these SLS algorithms neglect the cir-
cumstance of variables. Here the CC strategy takes into ac-
count the variables’ circumstance information when select-
ing a variable to flip. It appears reasonable and helpful to
incorporate such a circumstance-concerning strategy to the
traditional variable-based heuristics, as the best decision on
a variable should come from not only its information, but
also its circumstance, such as the state of the community it
belongs to.

Configuration Checking with Aspiration
Although the CC strategy shows its effectiveness in SLS al-
gorithms for SAT, it is still in its infancy. We consider the
CC strategy is too strict, as any variable whose configura-
tion has not been changed since its last flip is forbidden to be
flipped in the greedy mode, regardless of its score. This lack
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of differentiation is a big disadvantage in our opinion. To
overcome this drawback, we propose a new pick-var heuris-
tic based on CC, which is called configuration checking with
aspiration (CCA).

Before getting into the details of the CCA heuristic, we
first give some definitions. A variable x is said configu-
ration changed iff confChange[x] = 1. A configuration
changed decreasing (CCD) variable is a variable with both
confChange[x] = 1 and score(x) > 0. A significant de-
creasing (SD) variable is a variable with score(x) > g,
where g is a positive integer large enough, and in this work
g is set to the averaged clause weight (over all clauses) w.

The CCA heuristic switches between the greedy mode
and the diversification mode. In the greedy mode, there are
two levels with descending priorities. On the first level it
does a gradient walk, i.e., picking the CCD variable with the
greatest score to flip. If there are no CCD variables, CCA
activates the “aspiration criterion” to give a chance to the
SD variables. Specifically, it selects the SD variable with
the greatest score to flip if there is one, which corresponds
to the second level. If there are neither CCD variables nor
SD variables, CCA switches to the the diversification mode,
where clause weights are updated, and the oldest variable
in a uniformly random unsatisfied clause is picked to flip.
In the CCA heuristic, all ties are broken by preferring the
oldest variable.

The aspiration criterion selects the variables with great
scores to flip. Note that in the diversification mode, an SLS
algorithm with the CCA heuristic may flip a variable whose
score is a negative integer with a large absolute value. These
variables are forbidden to be flipped by the CC strategy un-
til one of their neighboring variables is flipped. Without the
aspiration criterion, such variables which are “mistakenly”
flipped in the diversification mode will accumulate. This
would delay the algorithm transferring to promising search
areas. The aspiration criterion makes the algorithm correct
such mistakes and thus can transfer to promising search ar-
eas in time.

The Swcca Algorithm
We use the CCA heuristic to develop a new SLS algorithm
called Swcca. To focus on the essential part of the Swcca
algorithm, we only present the pseudo code of its pickVar
function, as the initialization is trivial: generating a random
complete assignment s, initiating all clause weights as 1 and
computing scores of variables accordingly, and initiating all
confChange[x] as 1.

The CCA pickVar-function
The CCA pickVar-function is outlined in Algorithm 1, as
described below:

The Swcca algorithm stores all CCD variables in a set
CCDVar and all SD variables in a set SDVar. In each itera-
tion, Swcca utilizes the CCA pickVar-function to pick a vari-
able to flip in two modes: the greedy mode and the diversifi-
cation mode.

The greedy mode: If CCDVar is not empty, the CCA
function returns the variable with the greatest score in the

Algorithm 1: pickVar-function CCA
//greedy mode1
if CCDVar6= ∅ then return x ∈ CCDVar with the2
largest score, breaking ties in favor of the oldest one;
if SDVar6= ∅ then return x ∈ SDVar with the largest3
score, breaking ties in favor of the oldest one;
//diversification mode4
update clause weights;5
pick a random unsatisfied clause c;6
return the oldest variable in c;7

variable set CCDVar, breaking ties in favor of the oldest
variable. If CCDVar is empty and SDVar is not empty, the
CCA function returns the variable with the biggest score in
SDVar, breaking ties in favor of the oldest variable.

The diversification mode: If both CCDVar and SDVar
are empty, then the CCA function switches to the diversi-
fication mode. Specifically, it first updates clause weights:
clause weights of all unsatisfied clauses are increased by one
; further, if the averaged weight w exceeds a threshold γ, all
clause weights are smoothed as w(ci) := bρ ·w(ci)c+b(1−
ρ)wc. Then, it picks a uniform random unsatisfied clause,
and returns the oldest variable in that clause.

Implementation of the CCA Heuristic
The complexity of the CCA heuristic depends on the imple-
mentation of the data structures: the confChange array, the
SDVar and CCDVar sets. We describe our implementation
below.

The confChange array is initialized by setting all
confChange[x] to 1. After that, when flipping a variable
x, confChange[x] is reset to 0, and for each y ∈ N(x),
confChange[y] is set to 1.

The SDVar set is identified by checking all variables in
unsatisfied clauses, as a variable not in unsatisfied clauses is
impossible to be decreasing. We do not use more “clever”
implementations for maintaining the SDVar set because it is
not used that frequently, compared to the CCDVar set, which
can be seen from the CCA pickVar-function.

The most important data structure of Swcca is the CCD-
Var set, which consists of all CCD variables. To maintain
the CCDVar set, we employ a stack also named CCDVar;
moreover, we utilize an auxiliary array recorded, whose el-
ement is an indicator — recorded[x] = 1 means x is stored
in CCDVar; and recorded[x] = 0 on the contrary. At the
end of the initialization stage of the Swcca algorithm, all
variables with dscore(x) > 0 and confChange[x] = 1
are pushed into the CCDVar stack, and recorded[x] is set
to 1 for these variables and 0 for the others. During the
search procedure, we frequently update the CCDVar stack,
and along with updating CCDVar, the recorded array is up-
dated accordingly: when pushing a variable x into CCDVar,
recorded[x] is set to 1; when removing a variable x out of
CCDVar, recorded[x] is set to 0. There are two cases in
which the CCDVar stack is updated : (a) flipping a variable
or (b) updating clause weights.
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(a) Updating the CCDVar stack when flipping a variable:
When flipping a variable, the CCDVar stack is updated in a
two-stage process. First, those variables that no longer sat-
isfy the conditions (dscore(x) > 0 and confChange[x] =
1) are removed from CCDVar; second, those variables not
in CCDVar but will satisfy the conditions after the flip are
pushed into CCDVar. In the “removing” stage, all we do is
scanning the CCDVar stack and removing those variables
whose scores are no longer positive. We exclaim that by
doing so we remove all the variables that no longer sat-
isfy the conditions out of CCDVar. For the other condition
confChange[x] = 1, in each step the only variable whose
confChange value changes from 1 to 0 is the flipped vari-
able. If the flipped variable x was in CCDVar before the
flip, then score(x) < 0 holds after flipping x (flipping x
would make score(x) to be its opposite number), so x will
be removed since its score is negative. In the “adding” stage,
we scan the neighboring variables of the flipped variable,
and push those with score[y] > 0 and recorded[y] = 0
into the CCDVar stack. Here we do not check the condition
confChange[y] = 1 because for each neighboring variable
y of the flipped variable, confChange[y] is set to 1 accord-
ing to the updating rule of the confChange array.

(b) Updating the CCDVar stack when updating clause
weights: When increasing the clause weight of an unsatis-
fied clause by one, the scores of all variables in the clause
are also increased by 1. If this updating makes the score of
a variable x become positive from non-positive, and at that
moment confChange[x] = 1 holds, then we push x into
the CCDVar stack.

Experimental Results
In this section, we first present a brief introduction to the
benchmarks we adopted, and describe some preliminaries
about our experiments. Then, we divide the experiments into
four parts. Part A is to compare Swcca with TNM (the win-
ner of the satisfiable random category of SAT 2009 Competi-
tion), Sparrow2011 and Swcc on large 3-SAT instances from
SAT 2009 Competition; part B is to compare Swcca with
Sparrow2011 on 3-SAT instances from SAT 2011 Competi-
tion; and part C is to compare Swcca with Sparrow2011 on
huge random 3-SAT instances with up to 80000 variables.
While the first three parts of experiments are carried out on
random 3-SAT instances, part D is to compare Swcca with
Sattime on structured instances.

The Benchmarks
We evaluate the Swcca algorithm on four benchmarks. The
first one contains all 3-SAT instances in the random large
category of the SAT 2009 Competition (2000 6 #var 6
18000), as well as all instances in the additional benchmark
of the same category (20000 6 #var 6 26000). The sec-
ond one contains all 3-SAT instances in the random large
category from the SAT 2011 Competition (2500 6 #var 6
50000). The instances from random median category are too
easy for a modern SLS solver that they are not included in
our experiments. For these two benchmarks, there are 10 in-
stances for each size. The clause-to-variable ratio is 4.2 for
all instances.

As for the third benchmark, we generate 600 satisfiable
huge random 3-SAT instances with a clause-to-variable ra-
tio of 4.2 (the hardest ratio from the SAT competition used
for such instances), according to the fixed clause length di-
versification model (no tautologies, no duplicate clauses, no
duplicate literals in a clause). Their sizes range from 55000
variables to 80000 variables in increments of 5000 (100 in-
stances each).

The fourth benchmark contains all satisfiable instances
from the selected benchmark of the crafted category in the
SAT Competition 20111. We do not consider those instances
labeled as unsatisfiable instances.

Experimental Setup
Swcca is implemented in C++ and compiled by g++ with
the ’-O2’ option. In all experiments, we set γ = 300 and
ρ = 0.3 for the smoothed clause weighting scheme in
Swcca. The solvers TNM, Sparrow2011 and Sattime we use
for comparison are the ones submitted to the SAT 2009 and
2011 competitions respectively. Swcc is the one tested in
(Cai and Su 2011).

All experiments were run on a machine with an Intel Core
E8400 with 3 GHz CPU and 3GB RAM under Linux. Each
run terminates upon either finding a solution or reaching a
given cutoff time which is set to 1000 seconds for the first
two benchmarks and 1800 seconds (half an hour) for the last
two benchmarks.

For the first two benchmarks, we run each solver 100
times for each instance and thus 1000 times for each class.
For the third benchmark, we run each solver 5 times for each
instance and thus 500 times for each class. For the fourth
benchmark, we run each solver 10 times for each instance.
We say an instance is solved by a solver if the solver finds a
solution satisfying all clauses of the instance. For each solver
on each class of instances, we report the success rate (the
number of successful runs divided by the number of total
runs), as well as the mean values of the run time (in seconds)
and the number of flips.

Results
Part A: Table 1 presents the comparative performance re-
sults on the random 3-SAT benchmark from the SAT Com-
petition 2009. Seen from the results, the performance of
TNM and Swcc are not as good as those of the other two
solvers. Swcca outperforms Sparrow2011 on all groups of
instances in terms of both success rate and run time, and per-
forms significantly better on large instances with #var ≥
20000. In particular, altogether there is only one instance on
which Swcca does not find a solution within the time limit
in some runs, where it succeeds to find a solution in 94 runs.
However, this is also the most difficult instance for Spar-
row2011 and it succeeds in only 48 runs. Also, seen from
Table 1, Swcca is about 3 to 4 times faster than Swcc, which
indicates the effectiveness of the CCA heuristic.

Part B: We compare Swcca with Sparrow2011 with all
(satisfiable) random 3-SAT instances from the SAT Compe-

1http://www.cril.univ-artois.fr/SAT11/bench/SAT11-
Competition-SelectedBenchmarks.tar
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Instance
Class

TNM Sparrow2011 Swcc Swcca
suc time #flips(106) suc time #flips(106) suc time #flips(106) suc time #flips(106)

3SAT-2000vars 100% 1.6 3.3 100% 1.4 2.1 100% 1.4 2.5 100% 0.8 1.5
3SAT-4000vars 94.9% 74 134.0 98.5% 48 70.6 100% 21.6 30.9 100% 10 15.1
3SAT-6000vars 99.5% 42 65.3 100% 17 21.2 100% 43 54.5 100% 14 18.1
3SAT-8000vars 98.5% 63 96.1 99.6% 34 39.1 99.1% 56 66.2 100% 20 22.2
3SAT-10000vars 99.8% 64 91.5 100% 14 15.7 100% 29 28.7 100% 13 13.7
3SAT-12000vars 97.1% 194 292.4 100% 46 49.4 100% 93 76.7 100% 31 30.4
3SAT-14000vars 94.2% 291 394.8 100% 49 50.3 100% 109 80.7 100% 38 34.7
3SAT-16000vars 96.5% 232 280.0 100% 29 29.5 100% 62 40.8 100% 23 20.5
3SAT-18000vars 92.3% 351 369.9 100% 37 36.2 100% 81 48.2 100% 30 25.3
3SAT-20000vars 45.6% 827 900.2 94.1% 236 183.5 92% 326 187.6 99.4% 131 97.7
3SAT-22000vars 59.8% 735 710.7 99.8% 108 97.8 99.3% 207 104.0 100% 65 41.4
3SAT-24000vars 59.0% 707 660.0 96.3% 158 134.7 93.5% 215 102.0 100% 83 52.2
3SAT-26000vars 55.8% 686 598.3 99.6% 106 89.1 97.5% 195 87.8 100% 66 35.9

Table 1: Comparative performance results on the large random 3-SAT instances from the SAT Competition 2009

tition 2001. Table 2 presents the comparative performance
results of Swcca and Sparrow2011 on the random large
3-SAT benchmark from the SAT Competition 2001. For
these large instances, Swcca also shows superiority to Spar-
row2011, in terms of both success rate and run time. Partic-
ularly, altogether there is only one instance on which Swcca
does not achieve a 100% success rate, where it achieves a
99% success rate. The obvious gap of success rate between
the two solvers on the largest group (#var=50000) indicates
a significant performance gap between Sparrow2011 and
Swcca on difficult large random 3-SAT instances.

Swcc performs significantly worse than Swcca, especially
on large instances. For example, on the group of instances
with 50000 variables, it only achieves a success rate less than
50%. We do not report the detailed results of Swcc on this
benchmark due to the limitation of space.

Also, to study how much the CCA strategy contribute to
the Swcca algorithm, we run Swcca without the CCA strat-
egy on this benchmark. The alternative algorithm with the
CCA strategy fails to find a solution for all instances with
#var > 5000. This indicates that the CCA strategy plays a
key role in the Swcca algorithm.

Part C: Table 3 presents the comparative performance
results on huge 3-SAT instances, which shows that Swcca
significantly outperforms Sparrow2011 on these huge in-
stances. The success rates of Swcca on all groups of these
huge instances are 100% or almost 100%, while the success
rates of Sparrow2011 varies from 68% to 94.8%. The av-
erage run time of Swcca is less than half of that of Spar-
row2011 on all groups of instances, except for the group
with 80000 variables, which is nearly half of that of Spar-
row2011. We are confident that Swcca would be able to
solve even larger instances.

We would like to point out that the gap of step perfor-
mance between Sparrow2011 and Swcca is much more ob-
vious than the run time performance gap. We believe by op-
timizing the implementation, we can speed up Swcca. It is
also worthy to note that the most significant idea in Spar-

Instance Class Sparrow2011 Swcca

suc time #flips(106) suc time #flips(106)

3SAT-2500vars 99.5% 30 40.3 100% 13 22.3

3SAT-5000vars 100% 19 24.1 100% 14 19.2

3SAT-10000vars 99.9% 40 42.9 100% 26 26.5

3SAT-15000vars 100% 57 57.0 100% 41 37.0

3SAT-20000vars 99.9% 98 91.0 100% 62 50.1

3SAT-25000vars 98.9% 169 143.6 100% 89 65.2

3SAT-30000vars 97.9% 208 162.0 100% 106 72.1

3SAT-35000vars 92.4% 360 258.1 100% 186 95.6

3SAT-40000vars 90.7% 321 216.1 99.9% 162 76.8

3SAT-50000vars 67.8% 584 347.9 100% 262 119.6

Table 2: Comparative performance results of Swcca and
Sparrow2011 on the random large 3-SAT instances from the
SAT Competition 2011

row2011 is the probability distribution technique (Balint and
Fröhlich 2010) that used in the diversification mode, while
the CCA strategy works in the greedy mode. We believe that
these two significant techniques would cooperate well and
result in a better local search SAT solver.

Part D: We compare Swcca with Sattime on all satisfi-
able instances from the selected benchmark of the crafted
category in the SAT Competition 2011. Sattime was the first
SLS solver entering the last phase in the crafted category of
a SAT competition and easily beating there all the CDCL
algorithms, which have been considered more effective than
local search for structured SAT problems for a longtime. Sat-
time was ranked 4th in the category, but only two portfolio
solvers ppfolio (parallel and sequential versions) and sss did
better than Sattime, thanks to the performance of TNM in-
cluded in them. We also note that Sattime utilizes some rea-
sonings before the local search procedure, which is helpful
for solving structured instances.
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Instance Class Sparrow2011 Swcca

suc time #flips(106) suc time #flips(106)

3SAT-55000vars 94.8% 591 380.8 100% 207 98.6

3SAT-60000vars 88% 730 456.6 100% 248 112.6

3SAT-65000vars 87.8% 843 511.6 100% 294 128.7

3SAT-70000vars 85.6% 880 516.3 99% 401 157.4

3SAT-75000vars 74.6% 1078 620.1 99.4% 477 189.1

3SAT-80000vars 68% 1187 658.1 97.2% 631 242.0

Table 3: Comparative performance results of Swcca and
Sparrow2011 on huge random 3-SAT instances

Instance Class #instances Sattime Swcca

suc time suc time

289 15 100% <0.01 100% <0.01

automata-synchronization 7 0% n/a 17.5% 1498

battleship 14 98.6% 26 100% <0.01

GreenTao 3 100% 37 86.7% 91

sgen 10 96% 199 35% 1041

SRHD-SGI 28 52.8% 930 47.1% 1059

VanDerWaeden pd 3k 7 75.7% 646 100% 134

Table 4: Comparative performance results of Swcca and Sat-
time on the selected crafted benchmark of the SAT Competi-
tion 2011. The results in bold indicate the best performance
for a class of instances.

The results in Table 4 show that Swcca is competi-
tive with Sattime on these structured instances. Particu-
larly, while Sattime fails on all automata-synchronization
instances, Swcca solves three of them. To the best of our
knowledge, this is the first time that a local search solver
solves such automata-synchronization instances.

We also compare Swcca and sattime on the 12 crafted
forced satisfiable rbsat instances from the SAT Competition
2011. These rbsat instances are generated in the phase tran-
sition area according to the model RB (Xu and Li 2000;
Xu et al. 2007). The experimental results show that the two
solvers are competitive on these rbsat instances: both solvers
solve the rbsat instances with less than 1000 variables in less
than 50 seconds, but fail to find a solution on those with
more than 1500 variables.

Related Work and Discussion
Heuristics in SLS algorithms for SAT can be divided into
three categories: GSAT, WalkSAT and dynamic local search
(DLS). Although there are considerable works on inte-
grating CDCL heuristics in SLS algorithms for SAT (Li,
Stallmann, and Brglez 2003; Hirsch and Kojevnikov 2005;
Balint, Henn, and Gableske 2009; Audemard et al. 2010),
researches towards improving SLS solvers for SAT are
mainly about improving GSAT-like heuristics, or WalkSAT-
like ones, or clause weighting techniques.

There are two strategies widely used in GSAT-like heuris-
tics: the tabu mechanism (Mazure, Sais, and Grégoire 1997)

and the promising decreasing variable (PDV) exploitation
strategy proposed in G2WSAT (Li and Huang 2005). It is
worthy to note that all awarded SLS solvers in SAT compe-
titions since 2007 follow G2WSAT and switch between the
greedy and diversification modes depending on the existence
or not of promising variables (in our knowledge). However,
Swcca switches between the two modes according the exis-
tence of the CCD and SD variables.

Remark that promising decreasing variables are a strict
subset of CCD variables. For a variable to be CCD, it suf-
fices that a neighbor is flipped and that the score is posi-
tive. To be promising, one or several neighbors should be
flipped to make its score positive. When an increasing vari-
able is flipped, it is CCD as soon as one of its neighbors is
flipped and its score remains positive. However, it cannot be
promising until its neighbors are flipped to make its score
non-positive and then positive. The constraint to be promis-
ing is much stronger. In some sense, CCD and promising
may be two extremities, there should be an intermediate no-
tion more effective to investigate in the future.

Compared to GSAT-like heuristics, more works have
been devoted to improving WalkSAT-like heuristics, most
of which belong to the Novelty family, including Nov-
elty and R-Novelty (McAllester, Selman, and Kautz 1997),
Novelty+, AdaptNovelty+ (Hoos 2002), Novelty++ (Li and
Huang 2005), Novelty+p (Li, Wei, and Zhang 2007) and so
on. The most significant improvement recently is the selec-
tion mechanism based on probability distribution in Sparrow
(Balint and Fröhlich 2010), which makes a break-through in
solving the random 3-SAT problem.

A different line of research from GSAT and WalkSAT se-
ries is DLS algorithms using clause weighting techniques.
The basic concept of clause weighting is to increase weight
of unsatisfied clauses in local minima and thus help the
search to avoid local minima. Well-known DLS algorithms
include ESG (Schuurmans, Southey, and Holte 2001), SDF
(Schuurmans and Southey 2001) and SPAS (Hutter, Tomp-
kins, and Hoos 2002), DLM (Wu and Wah 2000) and PAWS
(Thornton et al. 2004), as well as DDWF (Ishtaiwi et al.
2005). For a review on DLS algorithms, we refer to (Thorn-
ton 2005).

As with most current best solvers, Swcca combines
heuristics from the three categories: GSAT-like, WalkSAT-
like and DLS. The CCA heuristic is used to improve the
GSAT-like heuristic (the greedy mode). In order to demon-
strate the effectiveness of the CCA heuristic clearly, we keep
the WalkSAT-like heuristic and the clause weighting tech-
nique in Swcca rather simple: the WalkSAT-like heuristic in
the diversification mode of Swcca is a simplified version of
Novelty, and the clause weighting scheme in Swcca is a sim-
plified version of ESG.

Conclusions and Future Work
Inspired by the success of the configuration checking (CC)
strategy on the Minimum Vertex Cover problem, we pro-
posed a new variable selection heuristic called configuration
checking with aspiration (CCA) for SLS algorithms for SAT.
The CCA heuristic works on two levels in the greedy mode,
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which is more flexible compared to the CC strategy. More-
over, the CCA heuristic has only one parameter for control-
ling when to activate the aspiration criterion, which is quite
stable and do not need to be tuned manually.

We utilized the CCA heuristic to develop a new SLS al-
gorithm called Swcca. The experiments show that Swcca
is substantially faster for random 3-SAT than Sparrow2011,
the winner of the 2011 SAT competition in the random cat-
egory, and is competitive with Sattime for crafted instances,
the best local search solver for crafted instances in the 2011
SAT competition. These results are exciting as Sparrow2011
represents the last breakthrough in solving hard random 3-
SAT, and Sattime was the first SLS solver entering the last
phase in the crafted category of a SAT competition and eas-
ily beating there all the CDCL algorithms, which have been
considered more effective than local search for structured
SAT problems for a longtime.

As for future work, we would like to design more sophis-
ticated “configuration checking” techniques to further im-
prove the state of the art in SLS algorithms for SAT. Also
we would like to apply the CCA heuristic to other combina-
torial search problems.
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