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Abstract

Although successfully employed on many industrial prob-
lems, Combinatorial Optimization still has limited applica-
bility on several real-world domains, often due to modeling
difficulties. This is typically the case for systems under the
control of an on-line policy: even when the policy itself is
well known, capturing its effect on the system in a declara-
tive model is often impossible by conventional means. Such
a difficulty is at the root of the classical, sharp separation be-
tween off-line and on-line approaches. In this paper, we inves-
tigate a general method to model controlled systems, based on
the integration of Machine Learning and Constraint Program-
ming (CP). Specifically, we use an Artificial Neural Network
(ANN) to learn the behavior of a controlled system (a mul-
ticore CPU with thermal controllers) and plug it into a CP
model by means of Neuron Constraints. The method obtains
significantly better results compared to an approach with no
ANN guidance. Neuron Constraints were first introduced in
(Bartolini et al. 2011b) as a mean to model complex systems:
providing evidence of their applicability to controlled sys-
tems is a significant step forward, broadening the application
field of combinatorial methods and disclosing opportunities
for hybrid off-line/on-line optimization.

Introduction
Advances in Combinatorial Optimization in the last decades
have enabled their successful application to a large num-
ber of industrial problems. Nevertheless, many real-world
domains are still impervious to such approaches. This is
mainly due to difficulties in formulating an accurate declar-
ative model of the system to be optimized.

This is typically the case for systems under the control
of an on-line policy: even when the controller behavior is
known in detail, capturing the effect of its actions in a declar-
ative way is often out of the reach of conventional modeling
techniques. Such a difficulty is at the root of the classical,
sharp separation between off-line and on-line approaches.
In this paper, we investigate a method to optimize decisions
on controlled systems, based on the integration of Machine
Learning and Constraint Programming. We propose to ex-
tract an approximate system representation, via Artificial
Neural Networks (ANN), and plug such an approximation
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into a declarative model. In this way, the off-line optimizer
has information about the behavior of the controlled system.
The resulting approach is inherently off-line/on-line hybrid.

The use of ANNs for learning modeling components by
means of the so-called Neuron Constraints was pioneered in
(Bartolini et al. 2011b), where the authors tackle a thermal
aware scheduling problem over a quad-core CPU. Thermal
models are complex and multi-dimensional, usually formu-
lated as large set of difference equations (Pedram and Nazar-
ian 2006; Huang, Ghosh, and Velusamy 2006). Their em-
bedding in combinatorial solvers for optimal workload al-
location is far from trivial. The method proposed in (Bar-
tolini et al. 2011b) achieves such a demanding goal and is
remarkably easy to implement. However, a limitation of the
approach is that it assumes the system is thermally in open-
loop: there is no feedback control on the system operation
which continuously samples the operating temperature and
forces safe operation by reducing performance when tem-
perature emergencies arise. In practice, most of state-of-the-
art multi-core platforms do implement closed-loop thermal
controllers to prevent thermal runaway. In second place, the
paper targets a small scale system with 4 cores only, provid-
ing little evidence of the method scalability to larger models.

The target platform considered in this paper is the SCC
prototype CPU by Intel (Single-chip Cloud Computer,
(Howard and Dighe et al. 2010)). This platform envisions fu-
ture High Performance Computing (HPC) and data-centers
processors. It features 48 cores connected by a Network on
Chip and is subject to the action of temperature regula-
tion mechanisms, with non-negligible impact on the perfor-
mance. In particular, we consider: 1) a threshold-activated
thermal controller and 2) a thermal aware Round Robin
scheduling policy. We show how a reasonable model can
be built and exploited for off-line workload allocation. The
result is far from trivial, due to the large non-linearities in-
troduced by the control policies. Optimization is carried on
via Large Neighborhood Search, reporting consistently bet-
ter results compared to an ANN free approach.

Problem Description
We tackle thermal aware workload dispatching on the ex-
perimental SCC CPU by Intel. Specifically, we want to map
a set of heterogeneous tasks on the platform cores so as to
maximize the overall efficiency, which is workload depen-
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dent due to the action of low-level thermal control strategies.
In detail, we assume the presence of two specific tempera-
ture reduction mechanisms: since those are not yet fully im-
plemented in the Intel prototype, we developed a powerful
simulation framework for the platform and the controller.

The Target Platform
The SCC platform has 24 dual-core tiles arranged in a 6× 4
mesh (overall, 48 cores in a 6 × 8 mesh). Each core runs
and independent instance of the Linux kernel. Inter-tile com-
munication occurs via message passing on a network in-
terface, so that tasks cannot easily migrate between cores.
The SCC API (Mattson et al. 2010) is designed to dispatch
“batches” of jobs rather than single ones. Each tile contains
two thermal sensors and each core contains a set of perfor-
mance counters, suitable to track various architectural events
(such as the number of retired instructions) at periodic inter-
vals. SCC allows fine grain power management via Dynamic
Voltage and Frequency Scaling (DVFS).

We developed for the SCC architecture a trace-driven sim-
ulator based on Matlab. The simulation framework is de-
signed to take into account realistic temperature evolution
and the effect of the operating frequency on the execution
time (and power consumption) of each task. To simulate the
SCC thermal evolution, depending on the chip workload and
the room temperature, we use the Hotspot (Huang, Ghosh,
and Velusamy 2006) thermal model developed in (Sadri,
Bartolini, and Benini 2011). The position of each core and
the workload executed by its immediate neighbors have a
strong impact on its steady state temperature.

Modern multicore platforms feature a hardware shutdown
mechanism, switching-down the entire chip when critical
temperatures are reached. To avoid this situation the oper-
ating system preventively slows down one or more cores
when the temperature is higher than a given threshold. In
an attempt to mitigate the resulting performance loss, ther-
mal aware scheduling policies have been proposed (Coskun,
Rosing, and Gross 2009; Cuesta et al. 2010). The basic idea
is to exploit the different task attitude by spatially and tem-
porally alternating the execution of hot-tasks and cold-tasks,
leading to a lower and more stable temperature map. We im-
plemented in our framework both these mechanisms.

Threshold Controller: At the bottom of the stack we im-
plemented a threshold controller. The controller probes the
core temperature every 2ms: if it is higher than a thresh-
old Tmax (80◦C) the frequency is switched to fmin; if it
is lower than Tmin (78◦C) the core frequency is switched
to fmax, with fmax � fmin. Reducing the operating fre-
quency leads to increased task durations and reduced plat-
form efficiency. Such a variation is smaller for tasks making
frequent memory accesses (i.e. memory-bound), since mem-
ory waiting time is independent of the core frequency. Sim-
ilarly to (Bartolini et al. 2011b), we characterize tasks via
their average number of Clocks Per Instruction at maximum
frequency (CPI). Small CPI values correspond to computa-
tion intensive tasks, while higher values are symptomatic of
frequent memory accesses.

Thermal Aware Scheduler: On the top of the stack, for each

core we implemented a thermal-aware, fair scheduler. This
relies on separate hot and cold task queues and is triggered
every 10ms (scheduling quantum):

1. The current temperature tcur is probed and compared with
that of the last quantum. Based on the result of the com-
parison, the expired task is classified as hot or cold and
inserted in the corresponding queue.

2. The scheduler updates a moving average tavg of the core
temperature I.e. tavg = α · tavg + (1− α) · tcur, where α
is a parameter in ]0, 1[.

3. If tcur > tavg , the scheduler selects for execution the first
task in the cold queue; conversely, the first task in the hot
queue is selected. This mechanism mitigates thermal cy-
cles keeping the temperature close to its average value.

In order to ensure fair execution, the scheduler keeps a
counter for each task, incremented every time it is sched-
uled. At step 3, once the scheduler has selected the queue
from which the next task has to be drawn, a check is per-
formed to see if the associated counter is equal to a maxi-
mum value β. If this is the case, the task is skipped and the
next one in the queue is selected. Once all the counters have
reached the β value, they are reset. This mechanism ensures
a Round Robin like behavior on a β · 10ms · #tasks time
window. The implementation is compatible with the stan-
dard Linux scheduler.

Optimization Problem Formulation
Let T (with |T | = n) be the set of tasks ti to be scheduled
and C (with |C| = m) be the set of platform cores ck. As
in many realistic settings, we assume the duration of each
task is unknown. The computation demand of ti is mea-
sured by its CPI value at maximum frequency, i.e. CPIi.
Each task must be executed by a platform core. Tasks are
preemptive, but no migration is possible. We assume the sys-
tem runs at constant room temperature temp. The objective
is to make the execution as fair as possible: since durations
are not available, this is achieved by mapping roughly the
same number of tasks to each core and by minimizing the
penalties due to the threshold controller. On this purpose,
we chose to enforce:

bn/mc ≤ |T (ck)| ≤ dn/me (1)

where T (ck) is the set of tasks assigned to core ck. Hard
balancing constraints such as (1) are common in mapping
policies for embedded systems. We decided to maximize the
worst case platform efficiency1. The average efficiency eff k
of a core ck over a time interval is defined as:

eff k =
1

|T (ck)|︸ ︷︷ ︸
(A)

·
∑

ti∈T (ck)

(
CPI−1

i (fmin) · fmin

CPI−1
i (fmax) · fmax

· tc+ (1− tc)
)

︸ ︷︷ ︸
(B)

where CPI−1i (f) · f denotes the instructions of task ti pro-
cessed per second at clock frequency f and tc is the ratio

1Maximizing the cumulated efficiency of all cores has a high
chance of hiding platform hot-spots.
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of the interval when the threshold controller is active. Both
values can be measured at run-time by accessing the CPU
counters. In practice, term (A) in the formula is the (inverse,
normalized) number of instructions processed in the interval
if Tmax is never exceeded, while term (B) is the reduced
value due to the controlled activation.

Related Work
Temperature management in MPSoCs has been attracting
considerable research attention in recent years, pushed by
the growing awareness that the development of modern
multi-core platforms is about to hit a “thermal wall”. Clas-
sical temperature control techniques include abrupt reduc-
tion of the operating frequency, task migration or core shut-
down, typically triggered when a specified threshold tem-
perature is reached. These reactive methods avoid chip over-
heating, but have a relevant impact on the performance.
Hence several works have investigated thermal-aware work-
load allocation, making use of mechanisms as DVFS to
prevent the activation of more drastic cooling measures.
Those approaches include: (1) on-line optimization poli-
cies (Coskun, Rosing, and Gross 2009; Coskun, Rosing, and
Whisnant 2007; Bartolini et al. 2011a; Zanini et al. 2009;
Hanumaiah, Vrudhula, and Chatha 2011), based on pre-
dictive models and taking advantage of run-time temper-
atures read from hardware sensors; (2) off-line allocation
and scheduling approaches (Puschini et al. 2008; Murali et
al. 2008), usually embedding a simplified thermal model of
the target platform (Paci et al. 2006) or performing chip
temperature assessment via a simulator (Bao et al. 2009;
Xie and Hung 2006).

Approaches based on learning a thermal model as an
ANN have been recently proposed. In (Sridhar et al. 2012)
the authors use an ANN as a proxy to optimize the thermal
simulation on a GPU cluster. ANNs are shown to be capable
of accurately modeling the heat equation of a thermal sim-
ulation. In (Ge, Malani, and Qiu 2010) an ANN is used to
embed thermal prediction in an on-line task migration and
DVFS policy. (Jayaseelan and Mitra 2009) uses instead an
ANN to try and test on-line the micro-architectural config-
urations generated by a binary search algorithm, with the
goal of finding performance optimal, thermally safe global
system settings. (Hanumaiah, Vrudhula, and Chatha 2011)
shows that the thermal control and workload balancing of a
multicore platform is a cyclic, complex and non-linear prob-
lem and suggests a set of approximations to reduce the prob-
lem complexity. Unfortunately the proposed simplifications
neglect lateral heat, the thermal interaction between neigh-
boring cores and specificities of the platform.

As a common trait, all those approaches focus on model-
ing the thermal behavior of the multicore system, but none
of them takes into account the effects of a control policy. As
a consequence, the proposed methods tend to be strictly off-
line or on-line. Even when some multi-level optimization is
performed (e.g. (Hanumaiah, Vrudhula, and Chatha 2011;
Jayaseelan and Mitra 2009)), the off-line (or slow pace) op-
timizer is not actually aware of the behavior of the on-line
controller, thus limiting the optimization opportunities.

Solution Method
In this paper, we investigate a general method to model con-
trolled systems, based on the integration of Machine Learn-
ing and Constraint Programming (CP). Specifically, we use
an Artificial Neural Network to learn the behavior of the
CPU and the thermal controllers. The network is embed-
ded into a CP model by means of Neuron Constraints, thus
providing an off-line optimizer with knowledge about the
on-line controllers and effectively making the approach an
off-line/on-line hybrid.

ANN Design
We chose to use an ANN to predict the platform efficiency,
given a task-to-core mapping and the room temperature
value. Specifically, we introduce and train an ANN for each
core ck. The network output is the core efficiency eff k, as
defined earlier in this paper.

The value eff k of a core has a negative dependence on
its average temperature, as a consequence of the slow-down
introduced by the threshold controller. Due to the specific
implementation of the on-line thermal aware scheduler, we
expect the temperature of a core ck to be close to the av-
erage value determined by the composition of hot and cold
tasks. This composition can be estimated by the average CPI
among the tasks in T (ck). In second place, the average ck
temperature is sensitive to the temperature of the room and
of the surrounding cores. In particular, the sensitivity to the
latter has been demonstrated to decay as the distance be-
tween the cores grows (Bartolini et al. 2011a).

The reported considerations together with empirical tests
motivated the choice of the input vector for each ANN. In
particular, assuming core ck is in position (i, j) on the 6 ×
8 mesh, the input vector is composed by the values of: 1)
the room temperature temp; 2) the average CPI of the tasks
on the core2, i.e. ACPIk; 3) the average CPI of the four
cardinal neighboring ch, formally defined as those in the set
N(ck) of cores in position (i± 1, j ± 1). More in detail, we
use normalized input values:

temp =
temp− µtemp − νtemp

νtemp
(2)

ACPIk =
ACPIk − µCPI − νCPI

νCPI
(3)

where µ and ν values are normalization parameters. Each
normalized value ranges in [−1, 1]. If the core is in a corner
or on a chip edge the missing neighbor input is replaced by
replicating the ACPIk value. Overall, this amounts to 6 in-
puts for each core. The output is the predicted efficiency for
core eff k, normalized with µeff = 0 and νeff = 1.

We implemented and evaluated different network topolo-
gies, input configurations and activation functions. The best
trade-off between ANN complexity and efficiency approxi-
mation is obtained by using a feed-forward three-layer net-
work with 10 sigmoid neurons for the layer-0, 5 pure linear
neurons for the layer-1 and one sigmoid neuron for the out-
put layer.

2Where ACPIk =
∑

ti∈T (ck) CPIi

|T (ck)|
.
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Figure 1: Neural Network Test Error histogram

Figure 2: Neural Network Test Error histogram

The training and test set for core k respectively consist of
2600 and 1000 randomly generated tuples, containing val-
ues for the inputs temp,ACPIk, ACPIh∀ch ∈ N(ck). For
the normalizations we assume µtemp = 300◦K, νtemp =
30◦K, µcpi = 0, νcpi = 25. Those values are suitable for
temp values in [300◦K, 360◦K] and CPIi ∈ [0, 50]. We
then use the simulator to measure the actual efficiency cor-
responding to each tuple. Network training was performed
via back-propagation, adjusting weights and bias according
to the Levenberg-Marquardt algorithm (Hagan and Menhaj
1994). Figure 1 shows the prediction error on the test set for
the core in position (2, 2). The ANN estimation of the fu-
ture efficiency has an error below 5% for more than the 80%
of the test patterns. Figure 2 instead shows the average pre-
diction error for all the cores, with their x and y coordinate
respectively on the x and y axes. From the figure we can see
that the average error is below the 5% for all the cores.

Embedding an ANN in a Constraint Model
An ANN can be plugged into a constraint model by means
of Neuron Constraints, introduced in (Bartolini et al. 2011b).
Those are global constraints modeling a single artificial neu-
ron. They come in floating point and integer versions: the
latter has signature:

actfunction(Z, [Xi], [wi], b, π)

where Z is an integer output variable, [Xi] is a vector of in-
teger input variables, [wi], is a vector of real-valued weights

and b is a bias; π is an integer precision value. The term
“actfunction” denotes the neuron activity function. The
constraint maintains Bound Consistency on the expression:

Z = round

(
π · actfunction

(
π · b+

∑
i

wi · Xi

))
where it is assumed that the domain of Z and the domain of
Xi variables is assumed to be scaled according to π. A full
ANN can be integrated into a CP model by: 1) introducing
a Neuron Constraint for each neuron; 2) adding an auxil-
iary integer variable to represent the output of each hidden
neuron; 3) specifying the input/output of each Neuron Con-
straint according to the network structure and weights.

Model
We model the problem with Constraint Programming. The
decision variables represent the core assignment:

COREi ∈ {0, . . .m− 1} ∀ti ∈ T (4)

where COREi = k iff task ti is assigned for execution to core
ck. The restrictions on the minimum/maximum number of
tasks are captured via Global Cardinality Constraints:

gcc([COREi], bn/mc, dn/me) ∀k ∈ C (5)

where [COREi] denotes the vector of all COREi variables and
bn/mc and dn/me respectively are the minimum and max-
imum cardinalities for every domain value. The efficiency
of each core is estimated using the ANNs described above.
Formally, we add into the model, ∀ck ∈ C:

ANNk(EFFk, ACPIk ∪ {ACPIh : ch ∈ N(ck)} ∪ TEMP)

where the predicate ANNk stands for the set of Neu-
ron Constraints and auxiliary variables corresponding to
the network for ck. Variable EFFk represents the normal-
ized predicted efficiency of ck. This is modeled adopting a
fixed precision representation and takes discrete values in
{−π, . . . π}, where π is the chosen precision value. Vari-
ables ACPIk ∈ {−π, . . . π} denote the (normalized) average
cpi value for core ck and variable TEMP ∈ {−π, . . . π} is the
(normalized) room temperature. The notation N(ck), which
refers to the set of cores adjacent to ck. Since the room tem-
perature is constant, we have:

TEMP = round(π · temp) (6)

where temp is the normalized temperature and round is the
classical rounding operation. Average CPI values for each
core are more complex to obtain. In first place, we introduce
a set of auxiliary variables Xi,k ∈ {0, 1}, connected to COREi
via chaining constraints:

Xi,k = (COREi = k) ∀ti ∈ T, ck ∈ C (7)

Then the ACPIk variables are computed by means of a novel
average global constraint:

average(ACPIk, [round(π · cpii)], [Xik]) ∀ck ∈ C (8)

where cpii are the normalized cpii. The average constraint
has signature average(Zi, [wi], [Vi]), where wi are integer
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weights and Z, Vi are integer variables. The constraint main-
tains Bound Consistency on the equality:

Z = round

(∑
i wi · Vi∑

i Vi

)
where Z = 0 if all Vi are 0. The constraint filtering algorithm
is not discussed here due to space limitations. The problem
objective is to maximize the worst-case efficiency, i.e.:

max Z = min
ck∈C

EFFk (9)

The basic model structure is relatively simple, with the Neu-
ral Network capturing most of the problem complexity. It is
worth noting that, for the considered 48 core platform, the
model may grow pretty big (12,823 constraints and 12,577
variables for a 240 task instance), thus stressing the impor-
tance of the search strategy and of efficient filtering to obtain
good quality solutions in reasonable time.

Search Strategy
Intuitively, low CPI tasks cause larger heat dissipation and
are more likely to trigger the threshold controller than high
CPI ones. Moreover, the temperature of each ck is influenced
by the workload of neighboring cores. Hence, as a general
rule, higher platform efficiency is pursued by either spread-
ing tasks uniformly according to their CPIi or by surround-
ing heavy loaded cores by cooler ones. Driven by this in-
tuition, we perform optimization via Large Neighborhood
Search (LNS, (Shaw 1998)).

Starting Solution: The starting solution is computed by
spreading tasks so as to maximize the worst case average
core CPI, i.e.ACPIk. This is achieved as described in Algo-
rtihm 1: the basic underlying idea is to map an equal number
of warm and cold tasks on each core. When mapping warm
tasks, we favor ck with high ACPIk. When mapping cold
tasks, we favor low ACPIk values, in an attempt to make
the mapping as uniform as possible. More advanced heuris-
tics may be considered in future work.

Algorithm 1 Initial Solution
1: let θ be the median CPIi
2: buildW = {ti : CPIi < θ} and C = {ti : CPIi ≥ θ}
3: for all ti inW by increasing CPIi do
4: map ti to the ck with min |T (ck)|. Break ties by max

ACPIk, then randomly
5: for all ti in C by decreasing CPIi do
6: map ti to the ck with min |T (ck)|. Break ties by min

ACPIk, then randomly

Algorithm 1 is designed to take into account Constraints
(5) and hence always finds a feasible solution. Once this
is available, we start the LNS iterations, trying to improve
the objective value by exploiting platform heterogeneity and
neighborhood interactions.

Inner Search Strategy: Each LNS attempt makes use of a
random variable/value selection strategy, restarted with a
varying fail limit according to the Luby sequence (Luby
1993). The classical fail limit for each attempt is multiplied

by a factor γ. Each LNS iteration ends when an improving
solution is found, or when the fail limit becomes higher than
a stop value Γ. An improving solution is required to be better
than the current incumbent by at least π/100 units.

This setting was chosen after preliminary experimenta-
tion, including more sophisticated search strategies. The ra-
tionale for the choice is to focus search on neighborhoods
containing a significant number of improving solutions. In
this situation a highly randomized search strategy is likely
to yield the best results and quickly identify good quality
mappings. Since the ANN model is approximated, finding
the actual problem optimum is of limited interest due to the
possible estimation errors.

Relaxation Strategy: At each LNS iteration, in order to have
any chance of improving the solution, it is necessary to relax
at least a few decision variables from the cores having min-
imum EFFK. After a preliminary experimentation, we ended
up with the relaxation strategy discussed in Algorithm 2,
where eff ∗ denotes the worst case efficiency in the incum-
bent solution.

Algorithm 2 Relaxation Strategy
1: Identify the set WC of cores causing the current objective

value, i.e. WC = {ck : EFFk ≤ eff ∗ + π/100 − 1}. Let
nw denote |WC|.

2: Select from C \WC the 2 · nw cores having the highest value
for EFFk + ACPIk. Then build a set BC by randomly choosing
nw cores from the previous set.

3: Build a set NC by selecting nw random cores from⋃
ck∈WC N(ck) \BC

4: Relax all COREi variables such that cCOREi ∈WC ∪BC ∪NC

As an intuition, we completely free the cores ck having the
worst case efficiency (taking into account the optimization
step π/100). For each such ck, we additionally free a neigh-
bor core and a random “good” core. Good cores are those
having either high efficiency or high average CPI. The un-
derlying rationale is trying to improve the efficiency of the
critical ck by moving tasks from less constrained cores and
by exploiting neighborhood effects.

Experimentation
In order to test the proposed method we generated two
groups of synthetic workloads, each group consisting of 10
sets of 240 tasks to be mapped on the target platform. Tasks
in each set are either computation-bound (CPIi normally
distributed with mean 0.75 and standard deviation 0.25) or
memory-bound (CPIi normally distributed with mean 35
and standard deviation 5)3. Low CPI values are capped at
0.5, high values at 50. Benchmark Group A contains 75%
computation-bound and 25% memory-bound tasks, while
the mix is 85%/15% for Group B. The room temperature
for all test was fixed to 310K and the parameters for each
LNS iterations are γ = 5,Γ = 1000. The precision value π

3This values represent real corner cases of SCC workloads
(Sadri, Bartolini, and Benini 2011)
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# FIRST ANN CPI RND

G
ro

up
A

0 78.8% (2.6) 87.9% (0.5) 78.1% (2.0) 24.4% (15.8)
1 78.4% (2.1) 87.2% (0.8) 78.3% (1.9) 33.3% (14.7)
2 78.5% (0.6) 87.9% (0.5) 78.5% (0.6) 24.7% (15.1)
3 77.8% (2.0) 87.7% (0.5) 77.6% (2.4) 27.3% (14.4)
4 77.9% (1.7) 87.3% (0.9) 78.4% (1.8) 32.1% (16.6)
5 78.0% (2.1) 87.6% (0.6) 77.8% (1.8) 27.2% (12.9)
6 77.3% (2.4) 87.9% (0.7) 78.4% (2.1) 26.3% (13.3)
7 78.3% (1.9) 87.8% (0.6) 78.3% (1.9) 29.3% (13.6)
8 78.0% (2.7) 88.1% (0.4) 78.0% (2.7) 31.0% (15.5)
9 78.4% (1.6) 87.4% (0.5) 78.4% (1.6) 26.9% (17.7)

Table 1: Solution Quality after 60 sec., on Group A

is 1000. The approach is implemented using the Google or-
tools CP solver (Perron 2011). The Neuron Constraints are
written in C++, while the search method is in Python.

Solution Quality
We performed a first experimentation to assess the expected
quality of the mapping provided by our approach. On this
purpose, our method was compared with a pure random al-
location (serving as baseline) and with a simplified approach
making use of no ANN. The latter was obtained by remov-
ing the network representation from the model and by using
the ACPIk variables as a proxy for the core efficiencies. The
problem objective becomes max Z = minck∈C ACPIk and
high quality cores in the LNS relaxation strategy are identi-
fied based solely on their average CPI.

The search being largely randomized, each workload in-
stance was solved 10 times, with different seeds for the ran-
dom number generator. All tests were run on an Intel Core i7
2.8GHz, with a time limit of 60 seconds (the solution quality
tends to stabilize within this limit). Table 1 reports for each
workload the results of this first experimentation, showing
for each approach the mean quality of the final solution and
the corresponding standard deviation (between round brack-
ets). Specifically, column ANN refers to our approach, CPI
is the method with the simplified model and RND is the
baseline random mapping. Column FIRST reports the qual-
ity of the first solution (the same for ANN and CPI).

Exploiting the ANN guidance to take advantage of plat-
form non-homogeneity and neighborhood effects allows an
average 6-8% improvement. Since this (predicted) value is
about twice the value of the average prediction error, it
seems reasonable to think that the obtained solutions achieve
an actual efficiency gain. By increasing the ratio of com-
putation intensive tasks in the mix (i.e. moving to Group
B), platform peculiarities not captured by the average CPI
model become more relevant and the ANN advantage grows
to more than 30%. As discussed in the Conclusion section,
we expect the actual (simulated) gain to be more limited, but
those are nevertheless very relevant improvements.

Convergence Rate
Workload dispatching routines as the one described in this
work are likely to be run relatively often at execution time. It
is therefore interesting to assess the solver ability to quickly
provide high quality solutions. On this purpose we measured

# FIRST ANN CPI RND

G
ro

up
B

0 42.2% (7.5) 77.7% (0.7) 42.2% (7.5) 24.5% (12.9)
1 48.3% (7.9) 77.7% (0.5) 48.4% (7.9) 26.1% (11.9)
2 37.9% (5.2) 78.1% (0.9) 38.0% (5.2) 27.9% (9.6)
3 41.4% (15.2) 77.6% (0.7) 41.4% (15.3) 25.7% (10.7)
4 39.5% (7.1) 79.3% (0.5) 39.5% (7.1) 23.2% (8.8)
5 42.3% (11.6) 78.6% (0.7) 42.3% (11.7) 25.0% (9.3)
6 39.9% (10.0) 78.0% (0.7) 39.6% (9.7) 20.5% (11.4)
7 41.6% (7.6) 77.5% (0.9) 41.6% (7.6) 25.3% (12.6)
8 39.1% (7.4) 77.4% (0.5) 39.1% (7.5) 23.1% (7.7)
9 40.7% (11.0) 77.3% (1.1) 40.9% (11.3) 21.6% (9.2)

Table 2: Solution Quality after 60 sec., on Group B

# 1s 2s 5s 20s
0 86.1%, 74.3% 86.4%, 76.9% 87.3%, 77.2% 87.6%, 77.6%
1 85.9%, 75.0% 86.3%, 76.0% 86.3%, 77.0% 87.1%, 77.2%
2 86.3%, 75.9% 86.6%, 77.1% 87.2%, 77.5% 87.6%, 77.8%
3 85.7%, 75.5% 86.1%, 76.5% 86.5%, 77.3% 87.3%, 77.5%
4 85.8%, 76.5% 86.3%, 77.8% 86.6%, 78.3% 87.2%, 79.1%
5 85.9%, 76.3% 86.8%, 77.3% 87.0%, 77.8% 87.5%, 78.5%
6 86.1%, 75.1% 86.7%, 75.7% 87.1%, 77.2% 87.4%, 77.8%
7 85.2%, 74.7% 86.1%, 76.6% 86.8%, 77.0% 87.5%, 77.4%
8 86.0%, 72.4% 86.8%, 76.3% 87.5%, 76.6% 87.9%, 77.2%
9 86.0%, 74.8% 86.7%, 76.2% 86.8%, 76.4% 87.1%, 77.1%

Table 3: Solution Quality after N sec., on Group A and B

the solution value evolution over time. Table 3 reports this
information for Group A and B. Each cell reports the mean
solution quality obtained by the ANN approach (for the two
groups) after the specified number of seconds of search time.
As one can see, values close to the final solution are reached
already after ∼ 5s. The convergence rate is very fast, given
the size of the search space, and sufficient for dispatching
batches of medium-long jobs at run-time. Higher solver ef-
ficiency should be achievable with further research effort.

Concluding Remarks
We have discussed a method to model controlled systems
in Combinatorial Optimization. The main idea is to use ma-
chine learning (here, an ANN) to extract an approximate de-
scription of the system and plug it into a conventional com-
binatorial model (here, using CP). The method provides a
general and novel way to combine off-line and on-line opti-
mization. We have shown the approach feasibility on a work-
load dispatching problem for a multi-core CPU with multi-
ple on-line controllers. As a final stage, the obtained solu-
tions should be validated on the target systems. According
to a preliminary experimentation, this will likely provide an
interesting scientific topic. In fact, the optimizer apparently
tends to direct search to solutions for which the ANN pro-
vides a poor prediction. We plan to address this issue in a
number of ways, including the use of the optimizer to aug-
ment the training set until sufficient stability is reached. As
a natural extension, we plan to apply this methodology on
the real SCC platform. We also plan to tackle thermal aware
dispatching on HPC and Data-centers, since the problem has
many similarities to the one we have addressed.
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