
Non-Model-Based Search Guidance
for Set Partitioning Problems

Serdar Kadioglu, Yuri Malitsky
Brown University, Providence, RI 02912

{serdark,ynm}@cs.brown.edu

Meinolf Sellmann
IBM Research, Yorktown Heights, NY 10598

meinolf@us.ibm.com

Abstract

We present a dynamic branching scheme for set parti-
tioning problems. The idea is to trace features of the
underlying MIP model and to base search decisions on
the features of the current subproblem to be solved.
We show how such a system can be trained efficiently
by introducing minimal learning bias that traditional
model-based machine learning approaches rely on. Ex-
periments on a highly heterogeneous collection of set
partitioning instances show significant gains over dy-
namic search guidance in Cplex as well as instance-
specifically tuned pure search heuristics.

Search is an integral part of solution approaches for NP-hard
combinatorial optimization and decision problems. Once the
ability to reason deterministically is exhausted, state-of-the-
art solvers try out different alternatives which may lead to
an improved (in case of optimization) or feasible (in case
of satisfaction) solution. This consideration of alternatives
may take place highly opportunistically as in local search ap-
proaches, or systematically as in backtracking-based meth-
ods.

Efficiency could be much improved if we could effec-
tively favor alternatives that lead to optimal or feasible solu-
tions and a search space partition that allows short proofs of
optimality or infeasibility. After all, the existence of an “or-
acle” is what distinguishes a non-deterministic from a deter-
ministic Turing machine. This of course means that assum-
ing P != NP , perfect choices are impossible to guarantee.
The important insight is to realize that this is a worst-case
statement. In practice, we may still hope to be able to make
very good choices on average.

The view outlined above has motivated research on ex-
ploiting statistical methods to guide the search. The idea of
using survey propagation in SAT (A. Braunstein 2005) has
led to a remarkable performance improvement of system-
atic solvers for random SAT instances. In stochastic offline
programming (Malitsky and Sellmann 2009), biased ran-
domized search decisions are based on an offline training
of the solver. This approach later led to the idea of instance-
specific algorithm configuration (ISAC (S. Kadioglu 2010)).
Here, offline training is used to associate certain features of

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the problem instance with specific parameter settings for the
solver, whereby the latter may include the choice of branch-
ing heuristic to be used. In (Samulowitz and Memisevic
2007) branching heuristics for quantified Boolean formu-
lae (QBF) were selected based on the features of the cur-
rent subproblem which led to more robust performance and
solutions to formerly unsolved instances.

In this paper, we combine the idea of instance-specific al-
gorithm configuration with the idea of a dynamic branch-
ing scheme that bases branching decisions on the features
of the current subproblem to be solved. Like the ISAC con-
figuration system, our approach is not based on graphical
or any other machine learning models. Instead, we cluster
training instances according to their features and determine
an assignment of branching heuristics to clusters that results
in the best performance when the branching heuristic is dy-
namically chosen based on the current subproblem’s nearest
cluster. We test our approach on the MIP-solver Cplex that
we use to tackle set partitioning problems. Our experiments
show that this approach can effectively boost search perfor-
mance even when trained on a rather small set of instances.

Related Work
In short, we follow-up on the idea of choosing a branch-
ing heuristic dynamically based on certain features of the
current subproblem. This idea, to adapt the search to the in-
stance to be solved, is by no means new. Algorithm config-
uration methods like stochastic offline programming (Malit-
sky and Sellmann 2009) or ISAC (S. Kadioglu 2010) deter-
mine the search heuristic based on the root-node features of
the problem instance. The local search SAT solver SATen-
stein (A. R. KhudaBukhsh 2009) parametrizes its search so
that it can be tuned for particular problem instance distribu-
tions.

The dynamic search engine (S. L. Epstein 2002) goes
further than the previously mentioned approaches in that it
adapts the search heuristics based on the current state of
the search. In (Leventhal and Sellmann 2008), value selec-
tion heuristics for Knapsack were studied and it was found
that accuracy of search guidance may depend heavily on the
effect that decisions higher in the search tree have on the
distribution of subproblems that are encountered deeper in
the tree. The latter obviously creates a serious chicken-and-
egg problem for statistical learning approaches: the distri-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

493

bution of instances that require search guidance affects
the choice of heuristic but the latter then affects the dis-
tribution of subproblems that are encountered deeper in
the tree. In (Samulowitz and Memisevic 2007) a method for
adaptive search guidance for QBF solvers was based on lo-
gistic regression. The issue of subproblem distributions was
addressed by adding subproblems to the training set that
were encountered during previous runs.

Inspired by the success of the approach in (Samulowitz
and Memisevic 2007), we aim to boost the Cplex MIP solver
to faster solve set partitioning problems. To this end, we
modify the branching heuristics, basing it on the features
of the current subproblem to be solved. The objective of
this study is to find out whether such a system can be ef-
fectively trained to improve the performance of a general-
ized solver for a specific application. We will need to spec-
ify features that characterize instances to a set partitioning
problem. Then, we need to find a methodology that allows
us to learn for which subproblem (as characterized by their
features) we wish to invoke which branching heuristic.

In (Samulowitz and Memisevic 2007), a logistic regres-
sion model was used to predict the heuristic that results in
the lowest runtime with the highest probability. Empirical
hardness models like this are quite common for this kind
of task and have been used successfully for solver portfo-
lio generation (Gagliolo and Schmidhuber 2006; Gomes and
Selman 2001; L. Xu 2008) in the past. The problem with
such models is that the learning models place a rather restric-
tive bias on the functions that can be learned. Consequently,
predictions of which solver or which heuristic performs best
for which instance can easily result in choices that underper-
form by one or two orders of magnitude in actual runtime.

Recently, training methods have been proposed that im-
pose only a very limited bias. Before we explain our ap-
proach in detail, let us first review the idea of instance-
specific algorithm configuration that is not model-based.

Instance-specific Algorithm Configuration
The instance-specific algorithm configuration (ISAC) ap-
proach (S. Kadioglu 2010) works as follows. In the learning
phase, we are provided with the parametrized solver A, a list
of training instances T , and their corresponding feature vec-
tors F . First, we normalize the features in the set and mem-
orize the scaling and translation values for each feature.

Then, we use an algorithm to cluster the training in-
stances based on the normalized feature vectors (e.g.,
g-means (Hamerly and Elkan 2003)). The final result of the
clustering is a number of k clusters Si, and a list of clus-
ter centers Ci. For each cluster of instances Si we compute
favorable parameters Pi via some instance-oblivious tuning
algorithm (such as GGA (C. Ansotegui-Gil 2009)).

When running algorithm A on an input instance x, we
first compute the features of the input and normalize them
using the previously stored scaling and translation values for
each feature. Then, we determine the cluster with the near-
est center to the normalized feature vector. Finally, we run
algorithm A on x using the parameters learnt for this cluster.

Learning Dynamic Search Heuristics
ISAC is interesting as it provides a low-bias learning ap-
proach for instance-specific choices of an algorithm. An as-
pect that is missing, however, is a dynamic choice of heuris-
tics during search.

We can adapt the approach by modifying the systematic
solver that we use to tackle the combinatorial problem in
question. We propose the following approach:

1. First, we cluster our training instances based on the nor-
malized feature vectors like in ISAC.

2. We parametrize the solver by leaving open the association
of branching heuristic to cluster.

3. At runtime, whenever the solver reaches a new search
node (or at selected nodes), we compute the features of
the current subproblem to be solved.

4. We compute the nearest cluster and use the corresponding
heuristic to determine the next branching constraint.

Now, the problem has been reduced to finding a good
assignment of heuristics to clusters. At this point we have
stated the problem in such a way that we can use a stan-
dard instance-oblivious algorithm configuration system to
find such an assignment. We will use GGA (C. Ansotegui-
Gil 2009) for this purpose.

Note how our approach circumvents the chicken-and-egg
problem mentioned in the beginning that results from the
tight correlation of the distribution of subproblems encoun-
tered during search and the way how we select branching
constraints. Namely, by associating heuristics and clusters
simultaneously we implicitly take into account that changes
in our branching strategy result in different subproblem dis-
tributions, and that the best branching decision at a search
node depends heavily on the way how we will select branch-
ing constraints further down in the tree.

That being said, the clusters themselves should reflect
not only the root-node problems but also the subproblems
that may be encountered during search. To this end, we can
add subproblems encountered during the runs of individual
branching heuristics on the training instances to the clus-
ters. This changes the shape of the clusters and may also
create new ones. However, note that we do not use these sub-
problems to learn a good assignment of heuristics to clusters
which will be purely based on the original training instances.
This assures that we do not base the assignment of heuristics
to clusters on subproblems that will not be encountered.

Boosting Branching in Cplex for SPP
We will now apply the methodology established above to
improve branching in the state-of-the-art MIP solver Cplex
when solving set partitioning problems. Set-partitioning is
one of the most prominent combinatorial optimization prob-
lems, with applications from crew-scheduling to combinato-
rial auctions to coalition structure generation.

Definition 1 Given items 1 . . . n and a collection of m sets
of these items, which we call bags, and a cost associated
with each bag, the set partitioning problem (SPP) consists in

494

finding a set of bags such that the union of all bags contains
all items, the bags are pairwise intersection-free, and the
cost of the selection is minimized.

We express this problem as an IP where xi is a binary
variable deciding whether bag i should be included, ci is the
cost of including the bag, and Sj represents the bags that
item j appears in:

min

m∑
i=1

cixi

s.t.
∑
i∈Sj

xi = 1 1 ≤ j ≤ n

xi ∈ {0, 1} 1 ≤ i ≤ m
To apply our methodology, we need to define instance fea-

tures for set partitioning problems, and we need to devise
various branching heuristics that our solver can choose from.

Set Partitioning Features
In order to characterize SPP instances, we first compute the
following vectors:
• the normalized cost vector c′ ∈ [1, 100]m,
• the vector of bag densities (|Si|/n)i=1...m,
• the vector of item costs (

∑
i,j∈Si

c′i)j=1...n,

• the vector of item coverings (|{i | j ∈ Si}|/m)j=1...n,
• the vector of costs over density (c′i/|Si|)i=1...m,
• the vector of costs over square density (c′i/|Si|2)i=1...m,
• the vector of costs over k log k-density

(c′i/(|Si| log |Si|))i=1...m, and

• the vector of root-costs over square density (
√
c′i/|Si|2)i=1...m.

As features we then compute the averages, median, stan-
dard deviations, and the entropies of all these statistics for
all vectors. In addition to the eight vectors above we add one
more feature that represents the number of sets divided by
the number of items, therefore ending up with 33 features.
One of the benefits of this feature set is that it is invariant
under column and row permutations of the problem matrix.

Branching Heuristics
We also need to provide a portfolio of different branching
selection heuristics. We consider the following, all of which
we implement using Cplex’s built-in branching methods.

Most-Fractional Rounding (Fractional Rounding):
One of the simplest MIP branching techniques is to select
the variable that has a relaxed LP solution whose fractional
part is closest to 0.5 and to round it first.

Most-Fractional Up (Fractional Up): For binary IPs like
SPP it has often been noted that rounding the branching vari-
able up first is beneficial. The common understanding is that
forcing a variable to 1 will force many other binaries to 0
and thus increases the integrality of many variables when
diving in this direction. This in turn may lead to shallower
subtrees and integer feasible solutions faster. With this mo-
tivation in mind we introduce this branching heuristic which
selects the variable with the most fractional LP value and
enforce its ceiling as lower bound first.

Best Pseudo-Cost Lower Estimate First (Pseudo Best):
One of the most substantial contributions to search in mixed
integer programming was the discovery that the running av-
erage of the per unit cost-deprivation of prior branching de-
cisions on a variable provides a very good estimate of the per
unit deprivation that we are likely to encounter when impos-
ing a new branching constraint on a variable. In practice it
was found that these pseudo-costs (M. Benichou 1971) are
surprisingly accurate and they are widely used in state-of-
the-art MIP solvers.

For this branching heuristic we select the variable that has
the lowest pseudo-costs and branch in the direction that is
estimated to hurt the objective least first.

Best Pseudo-Cost Up (Pseudo Up): With the same moti-
vation as for most-fractional branching we choose the vari-
able with the lowest pseudo-costs, but this time we always
round the variable up first.

Lowest Fractional Set Down (Non-Unary 0): We intro-
duce a new non-unary branching heuristic for SPP that is
based on a construction heuristic for capacitated network de-
sign problems (Holmberg and Yuan 2000).

Inspired by this primal heuristic we propose the follow-
ing. We select the variables in the order of lowest fractional
LP value, up until the total sum of all fractional values is
closest to 0.5. For example, say the variables with the lowest
fractional values are X7 with a current LP value of 0.05, X1

with a value of 0.1, X9 with 0.15, and X3 with 0.9. Then
we would select X7, X1, X9 as their sum is 0.3. Had we in-
cluded X3 the sum would have been 1.2 which has an abso-
lute difference from 0.5 of 0.7 whereas the sum without X3

is only 0.2 away. On the other hand, had X3 had a fractional
value of 0.3 we would have included it as the sum is now 0.6
which is only 0.1 away from the desired value of 0.5.

Now, we split the search space by requiring that all vari-
ables equal 0, or that their sum is at least 1. We branch in
the zero direction first. In the example above, the branching
constraints added are X7, X1, X9 = 0 first and on backtrack
X7 +X1 +X9 ≥ 1. Note that both constraints are violated
by the current LP relaxation.

Highest Fractional Set Up (Non-Unary 1): We use a
modification of the previous approach, but this time we fo-
cus on the highest variables first. We select, in order, the
variables with the highest fractional LP values. For each we
consider the “missing fraction” which is 1 minus the cur-
rent LP value. Again we add these missing fractions until
we achieve a sum that is closest to 0.5. In this case, we set
all variables to 1 first and on backtrack enforce that their sum
is lower or equal the number of variables in the set minus 1.

For example, assume X4 has a current LP value of 0.95,
X5 0.9, X2 0.85, and X3 0.1. Then, we branch by enforc-
ing X4, X5, X2 = 1 first. Upon backtracking we add the
constraint X4 +X5 +X2 <= 2.

Numerical Results
Implementation
We embedded the above heuristics in the state-of-the-art
MIP solver Cplex Version 12.1. Note that we only modify

495

the branching strategy by implementing a branch callback
function. When comparing with default Cplex we use an
empty branch callback to ensure the comparability of the
approaches.1 The empty branch callback causes Cplex to
compute the branching constraint using its internal default
heuristic. We do not change any other Cplex behavior, the
system uses all the standard features like pre-solving, cut-
ting planes, etc. Also, the search strategy, i.e., what open
node to consider next, is left to Cplex. Note however that,
when Cplex dives in the tree, it considers the first node re-
turned by the branch callback first so that, e.g., it does make
a difference whether we round a variable up or down first.

Trace: In our new approach, which we refer to as Trace,
the branch callback works as follows. First, we compute the
features of the current subproblem. We do this by adapt-
ing the new upper and lower bounds on variables as given
by Cplex in an internal data structure which incrementally
adjusts the 33 feature values. We do this for two reasons.
First, it is difficult to efficiently get access to the internal
pre-solved problem from Cplex. Secondly, due to cuts added
and our non-unary branching constraints the resulting MIP
will in general no longer be a pure set partitioning problem
for which the features were defined. By using Cplex’ bounds
on the variables at least we benefit from any inferences that
Cplex may have conducted which may allow it to set vari-
ables to one of their bounds even if these variables were not
branched on in the path from the root to the current node.

We determine how to branch by using the normalized fea-
tures to find the nearest cluster center and use the heuris-
tic associated with that cluster. To learn a good assignment
of heuristics to clusters offline we employed GGA. On our
training set with 300 instances learning took 28 CPU days.

We will compare Trace with the Cplex default as well
as each of the pure heuristics (with pure we mean that we
choose one heuristic and stick to it throughout the search),
each of which we use to solve all our instances. This com-
parison by itself is what is commonly seen in operations re-
search papers when it comes to determining the quality of
branching heuristics.

Online Best Cluster Approach (OBCA): We add two
more approaches to our comparison. The first is the online
best cluster approach (OBCA). OBCA determines offline
which pure heuristic works best for each cluster. During the
search, it determines which cluster is nearest to the current
subproblem and uses the associated heuristic for branching.
The difference to Trace is that the latter uses GGA to assign
heuristics to clusters. Note that Trace may very well assign a
heuristic to a cluster that is not the best when used through-
out the entire search.

Naturally, OBCA’s assignment of heuristics to clusters
is highly biased by the instances in those clusters. Conse-
quently, we consider a version of OBCA where we add sub-
problems to the set of instances which are encountered when

1Note that Cplex switches off certain heuristics as soon as
branch callbacks, even empty ones, are being used so that the entire
search behavior is different.

solving the original training instances using the pure heuris-
tics. This way, we might hope to give better search guidance
for the subproblems that we will encounter during search.
We refer to this version as OBCA+

ISAC
The second approach that we add to our comparison is ISAC.
We consider the choice of a pure branching heuristic as a
Cplex parameter and use ISAC to determine for which in-
stance it should employ which pure search heuristic. Again,
we consider a version where we only use our training in-
stances to determine the clusters, as well as an ISAC+ where
we also add the subproblems encountered during search of
pure heuristic to the training set.

Benchmark Instances
An important drawback of the research presented here

(and algorithm tuning and solver portfolios in general) is
that we need enough training instances to allow the sys-
tem to learn effectively. This is a hard pre-condition that
must be met before the work presented here can be applied.
Any benchmark set that consists of only a few dozen in-
stances is not enough to allow any meaningful learning. In
fact, we would argue that benchmarks with a low number of
instances (say, less than 100) can hardly be used to draw any
conclusions that would generalize. However, the fact is that
a lot of research is still based on such benchmark sets, and
often it is even the case that approaches are designed and
tested on the very same set of instances. From the research
on algorithm tuning we understand in the meantime that re-
sults obtained in this way cannot be assumed to generalize
to other instances.

To access a meaningful number of both training and test
instances we developed an SPP instance generator. Unlike
most generators in the literature, we designed the generator
in such a way that it produces a highly heterogeneous set of
benchmark instances. The generator first picks uniformly at
random a number of bags between 200 and 2000, as well as
a number of items between 20 and 50. It then flips three fair
coins. The first coin determines whether the costs for each
bag are chosen uniformly at random between 1 and 1,000
or whether this random number also gets multiplied by the
number of items in each respective bag (making bags with
more items more costly in general than bags with low num-
bers of items). The second coin determines whether, for the
instance under construction, all sets will contain the same
number of items or whether the number of items for each
bag is determined individually by choosing a density uni-
formly at random between 10% and 30% of the total number
of items. The last coin determines how we fill each bag. We
either pick a subset of the desired size uniformly at random
out of all such subsets, or we cluster the items that get added
to bags by choosing a normal distribution around some item
index and adding items in the proximity of that target item
with higher probability than other items. Finally, to ensure
feasibility, for each item the generator adds one bag which
contains only that item at a high cost of 105.

The generated SPP instances were evaluated with default
Cplex. To ensure instances of meaningful hardness, we kept

496

Training Set Default Fractional Oracle ISAC ISAC+ OBCA OBCA+ Trace
300 instances (UP)
Average (σ) 57.1 (63.2) 44.6 (53.2) 38.0 (45.1) 41 (48.6) 42 (48.2) 41.1 (47.7) 50.9 (61.9)) 38.4 (45.5)

Median 31.9 23.2 18.5 21.1 23.1 20.6 25.7 17.6
Min 0.04 0.04 0.02 0.02 0.32 0.04 0.06 0.04
Max 298 299 153 245 256 244 300 241

PAR 10 (σ) 57.1 (63.2) 44.6 (53.2) 38.0 (45.1) 41 (48.6) 42 (48.2) 41.1 (47.7) 68.9 (247) 38.4 (45.4)
Shifted Geo Mean 43.2 36.2 32.9 34.2 35.2 34.7 39.1 33.2

Average # nodes (σ) 46K (61K) 30K (51K) 28K (49K) 30K (51K) 30K (51K) 24K (51K) 30K (51K) 23K (51K)
Nodes per second 806 673 736 732 715 584 590 599

Solved 300 300 300 300 300 300 298 300
Unsolved 0 0 0 0 0 0 2 0
% Solved 100 100 100 100 100 100 99.3 100

Table 1: Training Results. All times are CPU times in seconds. Timeout was 300 seconds.

the first 500 instances for which Cplex needed at least 1,000
search nodes to solve the instance, but took at most five min-
utes to solve. We split these 500 instances into 300 training
and 200 testing instances. Note that this is a very modest
training set. A learning approach like the one presented here
will generally benefit a lot from larger training sets with at
least 1,000 training instances, especially when the instances
exhibit such a great diversity. We limited ourselves to a
lower number of training instances for several reasons. First,
it makes learning more challenging. Secondly, it is more
realistic that only a limited number of training instances
would be available (although again, we must assume there
are more than a few dozen). Finally, for ISAC+ and OBCA+
we wanted to add subproblems encountered while solving
the original 300 training instances using the pure heuristics.
Doing so resulted in 14 clusters with a total of over 1,900 in-
stances which were used for training by ISAC+ and OBCA+
as well as to determine the clusters for Trace (recall however
that for the latter we do not use the subproblem instances for
training by GGA).

ResultsWe present our experimental results in Table 1 and 2.
All experiments were run on Dell PowerEdge M610s, with
16 Xeon 2.4 CPUs and 24Gb of memory.

In the tables, apart from the usual average CPU time, stan-
dard deviation, median time, and number of instances solved
(timeout was 300 seconds), we also give the Par10 score (a
weighted average where unsolved instances are scored with
10 times the timeout) and the shifted geometric mean. The
latter is the geometric mean of the runtimes plus 10 sec-
onds, and is used for benchmark sets where runtimes of in-
dividual instances can differ greatly. This causes the long
running instances to dominate the average runtime compar-
ison. The runtimes are shifted by ten seconds to prevent in-
stances that are solved in extremely short amounts of time to
greatly influence the mean – after all, in practice we rarely
care whether an instance is solved in 10 or 100 milliseconds.

Considering the pure heuristics first, in all measures we
observe that on both training and test set the somewhat
simplistic most fractional up and most fractional round-
ing heuristics fare best and even outperform Cplex’ default
heuristic. In the table we only present the performance of the
best pure heuristic, Fractional (UP).

In the column “Oracle” the tables give the performance of

the fastest pure heuristic for each individual instance. This is
a natural limit for the ISAC approach that, at the very best,
could choose the fastest pure heuristic for each instance.

As we can see, there is significant room for improvement.
Unsurprisingly, ISAC is able to realize some of this potential
on the training set, yet it does not generalize too well. On the
test set it would have been better to just use the best heuristic
that we had found on the training set. Adding subproblems
to the training set in ISAC+ does not help either.

Considering OBCA, we find that changing the branch-
ing heuristic during search is clearly beneficial. OBCA can
reduce the runtime by over 15% compared to the Cplex
default. Surprisingly, the performance of OBCA+ is much
worse. Recall that we added some subproblems to the train-
ing set to allow OBCA+ to get a more realistic view into
the problems where it will need to make a branching deci-
sion. Clearly, this did not work at all. If anything, we misled
OBCA by making it consider subproblems it is unlikely to
see when the branching heuristic is changed during search.

To avoid exactly this problem, we had first invented Trace.
Recall that Trace only considers subproblem instances for
clustering purposes, but bases its assignment of heuristics
to clusters solely on the performance when running one of
the original training instances while changing the branching
heuristics in accordance to the heuristic/cluster assignment
during search. As the experimental results show, Trace sig-
nificantly reduces the runtime by over 20% when compared
with the Cplex default. Note that the new branching heuristic
is not directly embedded into the system and therefore can-
not exploit branching heuristics like strong-branching which
requires a tight integration with the solver. In light of this, an
improvement by 20% over one of the most efficient Set Par-
titioning solvers is very encouraging and a proof of concept
that dynamic branching strategies can be learned effectively,
even on a relatively small heterogenous set of instances.

At the same time, Trace works very robustly. Its stan-
dard deviations in runtime are lower that those of any pure
branching heuristic, and the spread of runtimes (min to max)
is also greatly reduced. None of the instances are barely
solved within the allowed timeout which cannot be said for
any pure heuristic.

On the other hand, we see that changing heuristics dur-
ing search imposes a noticeable cost – the number of nodes

497

Test Set Default Fractional Oracle ISAC ISAC+ OBCA OBCA+ Trace
200 instances (UP)
Average (σ) 46.4 (52.7) 42.2 (51.8) 35.0 (40.7) 42.4 (50.7) 42.3 (50.4) 38.7 (45.3) 52.9 (61.7) 35.3 (40.3)

Median 24.2 20.4 18.0 21.1 21 18.8 28.9 18.9
Min 0.06 0.04 0.04 0.04 0.04 0.04 0.06 0.04
Max 254 267 201 267 267 227 300 183

PAR 10 (σ) 46.4 (52.7) 42.2 (51.8) 35.0 (40.7) 42.4 (50.7) 42.3 (50.4) 38.7 (45.3) 66.4 (216) 35.3 (40.3)
Shifted Geo. Mean 38.1 35.2 32.0 35.6 35.6 33.9 41 32.6

Average # nodes (σ) 44K (69K) 30K (64K) 29K (63K) 30K (63K) 30K (63K) 24K (63K) 30K (63K) 22K (64K)
Nodes per second 949 711 828 708 710 620 567 623

Solved 200 200 200 200 200 200 199 200
Unsolved 0 0 0 0 0 0 1 0
% Solved 100 100 100 100 100 100 99.5 100

Table 2: Test Set Results. All times are CPU times in seconds. Timeout was 300 seconds.

per second is clearly less due to the costly re-computations
of the subproblem features. This is outweighed by a very
significant reduction in choice points, though: Trace consis-
tently visits only about 50% of the number of nodes of the
Cplex default.

Conclusion
We introduced the idea to use an offline algorithm tun-
ing tool to learn an assignment of branching heuristics to
training instance clusters which is used dynamically dur-
ing search to determine a preferable branching heuristic for
each subproblem encountered during search. This approach,
named Trace, was evaluated on a set of highly diverse set
partitioning instances. We found that the approach clearly
outperforms the Cplex default and also the best pure branch-
ing heuristic considered here. While not limited by it, it
comes very close to choosing the performance of an oracle
that magically tells us which pure branching heuristic to use
for each individual instance.

We conclude that mixing branching heuristics can be very
beneficial, yet care must be taken when learning when to
choose which heuristics, as early branching decisions deter-
mine the distribution of instances that must be dealt with
deeper in the tree. We solved this problem by using the
offline algorithm tuning tool GGA to determine a favorable
synchronous assignment of heuristics to clusters so that in-
stances can be solved most efficiently.

Our approach requires a reasonable amount of training in-
stances, as well as a number of branching heuristics, and of
course meaningful features that can characterize subprob-
lems during search. For practitioners, who actually need
their problems to be solved repeatedly, access to a good
number of training instances is less of a problem as it poses
for academics. For us, the main obstacle of applying Trace
to other problems is therefore the definition of good problem
features. We are currently working on features for general
MIP problems which we hope can alleviate this issue for a
wide variety of problems.

References
A. Braunstein, M. Mezard, R. Z. 2005. Survey propaga-
tion: An algorithm for satisfiability. Random Structures and
Algorithms 27:201–226.

A. R. KhudaBukhsh, L. Xu, H. H. H.-K. L.-B. 2009. Saten-
stein: Automatically building local search sat solvers from
components. Proc. of the 21th Int. Joint Conference on Ar-
tificial Intelligence (IJCAI) 517–524.
C. Ansotegui-Gil, M. Sellmann, K. T. 2009. A gender-based
genetic algorithm for the automatic configuration of solvers.
Proc. of the 15th Int. Conference on the Principles and Prac-
tice of Constraint Programming (CP) 142–157.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(304):295–328.
Gomes, C., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence Journal 126(1-2):43–62.
Hamerly, G., and Elkan, C. 2003. Learning the k in k-means.
Neural Information Processing Systems, MIT Press, Cam-
bridge.
Holmberg, K., and Yuan, D. 2000. Lagrangean heuristic
based branch-and-bound approach for the capacitated net-
work design problem. Operations Research 48:461–481.
L. Xu, F. Hutter, H. H. K. L.-B. 2008. Satzilla: Portfolio-
based algorithm selection for sat. JAIR 32(1):565–606.
Leventhal, D., and Sellmann, M. 2008. The accuracy of
search heuristics: An empirical study on knapsack problems.
Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR)
142–157.
M. Benichou, J.M. Gauthier, P. G. G. H.-G. R.-O. V. 1971.
Experiments in mixed-integer programming. Math. Pro-
gramming 1 76–94.
Malitsky, Y., and Sellmann, M. 2009. Stochastic offline
programming. Proc. of the 21th Int. Conference on Tools
with Artificial Intelligence(IJAIT).
S. Kadioglu, Y. Malitsky, M. S. K. T. 2010. Sac - instance
specific algorithm configuration. Proc. of the 19th European
Conference on Artificial Intelligence (ECAI).
S. L. Epstein, E. C. Freuder, R. J. W. A. M. B. S. 2002. The
adaptive constraint engine. Proc. of the 8th Int. Conference
on the Principles and Practice of Constraint Programming
(CP) 525–542.
Samulowitz, H., and Memisevic, R. 2007. Learning to solve
qbf. Proc. of the 22nd National Conference on Artificial
Intelligence (AAAI).

498

