
Solving Dots-And-Boxes

Joseph K. Barker and Richard E Korf
{jbarker,korf}@cs.ucla.edu

Abstract
Dots-And-Boxes is a well-known and widely-played combi-
natorial game. While the rules of play are very simple, the
state space for even very small games is extremely large, and
finding the outcome under optimal play is correspondingly
hard. In this paper we introduce a Dots-And-Boxes solver
which is significantly faster than the current state-of-the-art:
over an order-of-magnitude faster on several large problems.
Our approach uses Alpha-Beta search and applies a number
of techniques—both problem-specific and general—that re-
duce the search space to a manageable size. Using these tech-
niques, we have determined for the first time that Dots-And-
Boxes on a board of 4 × 5 boxes is a tie given optimal play;
this is the largest game solved to date.

Introduction
Dots-And-Boxes is a combinatorial game popular among
children and adults around the world. It is easily played with
pen and paper and has extremely simple rules. Despite its
apparent simplicity, a vast number of unique games can be
played on even a very small board.

In a game of Dots-And-Boxes, the players draw a rectan-
gular grid of dots and take turns drawing lines between pairs
of horizontally- or vertically-adjacent dots, forming boxes.
A game’s size is defined in terms of the number of boxes, so
a 3×3 game has nine boxes. A player captures a box by com-
pleting its fourth line and initialing it, and then must draw
another line. After all lines on the grid have been filled in,
the player who has captured the most boxes wins. A player
is not required to complete a box if they are able to do so.

As a two-player, perfect-information game, it is natural to
ask what the game outcome is if both opponents play opti-
mally. This is called solving the game. Due to the very large
size of Dots-And-Boxes state spaces, only games as large as
4× 4 boxes have previously been solved (Wilson 2010).

This paper presents a solver for Dots-And-Boxes that can
determine the value of the largest-solvable games over an
order of magnitude faster than the previous state-of-the-art
solver. We use Alpha-Beta minimax search and a number
of domain-specific enhancements. Many of these techniques
are drawn from existing literature but are generally unusable
by the previous state-of-the-art solver. In addition, there has

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A 4 × 4 game of Dots-And-Boxes in progress. A
has captured two boxes to B’s one and has the lead.

been little discussion on use of these techniques in the con-
text of computational search. We present the first thorough
discussion of these techniques and their effectiveness.

We also discuss the use of some generic search techniques
in Dots-And-Boxes. These techniques are commonly used
in heuristic search, but there are non-obvious adaptations of
them to the domain that greatly improve their effectiveness.

In addition to outperforming the state-of-the-art solver on
several benchmark problems, we have solved the game on a
board of 4×5 boxes. This is the largest game solved to date,
and is a tie given optimal play by both opponents.

Problem Overview
Depending on how we are exploring Dots-And-Boxes, there
are two ways we can describe a game “state”. While playing
a game, it is irrelevant who has captured which boxes; all
that matters is the edge configuration and how many boxes
have been captured by each player. This representation we
refer to as a scored state. However, we note that, no matter
the score, an optimal strategy for a player is to maximize the
number of remaining boxes they can capture. Thus, the opti-
mal strategy at any point depends only on the configuration
of filled-in edges and not the score. A state that encodes only
which edges are filled in we refer to as an unscored state.

While the rules are simple, the state space of games on
even small boards is very large. An m × n game has p =
m(n+1)+(m+1)n edges and 2p possible unscored states,
as any combination of filled-in lines is a legal state. Even
worse, a legal game can be played by filling in edges in any

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

414



order. A naı̈ve, depth-first exploration would thus generate
p! states, mostly duplicates reached through different order-
ings of the same moves. Without detecting and pruning du-
plicate states, the problem quickly becomes unsolvable. For
example, the largest problem previously solved—the 4 × 4
game—has 40 edges and thus has a state space of 240 and
a naı̈ve search space of 40!. Symmetries of the board (more
fully discussed later) can be used to reduce the state space
somewhat, although only by a constant factor.

Dots-And-Boxes is impartial, which means that the set
of available moves depends only on the board configuration
and not who the current player is. This is as opposed to a par-
tial game like Chess, where each player can only play pieces
of a certain color. Most impartial games use the normal play
convention, where the last player to move wins; these games
can be efficiently solved by use of the Sprague Grundy The-
orem (Berlekamp, Conway, and Guy 2003). Since players
win at Dots-And-Boxes by having the highest score, how-
ever, this theorem is not applicable; this makes Dots-And-
Boxes somewhat unusual as an impartial game.

There are two senses in which one can solve Dots-And-
Boxes. One can either ask whether a player has a winning
strategy (i.e., can guarantee they capture more than half the
available boxes), or one can ask by what margin a player
wins in an optimal strategy (i.e., how many more boxes than
their opponent they can capture). For example, 3 × 3 Dots-
And-Boxes is a win for the second player by three boxes:
no matter the first player’s strategy, the second player can
ensure that they capture at least three more boxes. In this
paper, we address the second question.

Due to the regularity of the Dots-And-Boxes problem-
space graph, and the fact that we are not finding a binary
win/loss value, we found the commonly-used Proof-Number
Search (PNS) (Allis, van der Meulen, and van den Herik
1994) to not be effective in this domain. Instead, we use
the standard Alpha-Beta minimax search algorithm. We do
a complete Alpha-Beta search of the search graph, estab-
lishing the exact win margin of the game. We solve the win
margin primarily because this is the approach of the previ-
ous state-of-the-art solver; it also provides more information
without significantly impacting runtime (discussed further
under experiments).

Previous Work
A number of books (Berlekamp 2000; Guy 1991;
Berlekamp, Conway, and Guy 2003) discuss strategies for
playing Dots-And-Boxes, but not solving it. In addition,
there are a number of strong Dots-And-Boxes agents (Gross-
man 2010; Roberts 2010) that can play competitively,
but not solve larger instances. The existing state-of-the-art
solver was written by David Wilson (2010) and has solved
the 4 × 4 game as well as a set of previously unsolved,
partially-filled-in 5× 5 games from (Berlekamp 2000). Wil-
son has provided us with his source code and so we use his
actual implementation for comparison.

Wilson’s solver uses retrograde analysis (Ströhlein 1970;
Thompson 1986). For every unique game state it finds the
number of remaining boxes capturable through optimal play
by working backwards from the final state. The optimal

strategy for a given state is determined by looking at the
already-computed values of its successors and picking the
optimal move. The algorithm starts at the final game state,
in which all edges are filled in. It then determines the values
for every state with all but one edge filled in, considering the
move leading to their single successor (the final game state);
this last move will always be a capture, leaving the prede-
cessors with a value of one or two. The algorithm proceeds
in this way, finding the value of states with n edges using the
values of states with n + 1 edges, until it reaches the start-
ing state with no edges filled in, at which point it knows the
value of the entire game. Since it is working backwards, the
solver cannot know which already-captured boxes belong to
whom, and is thus solving unscored states.

Duplicate states have the same number of edges and thus
occur at the same search depth; as this approach generates
each state at a given depth exactly once, it guarantees that
exactly the 2p unique states (ignoring symmetries) are gen-
erated instead of the p! states of a naı̈ve search.

However, as retrograde analysis works backwards from
the end state it cannot know a priori which states are part
of an optimal strategy and must do a complete exploration
of the problem space; 2p is less than p! but still a very
large number. In addition, this approach has very large stor-
age requirements: at a minimum, all nodes at a given depth
must be generated (and stored) before nodes at the preceding
depth can be considered. Wilson’s solver uses disk storage,
which mitigates this problem somewhat, but even this ap-
proach quickly reaches practical limitations. The 4×5 prob-
lem, with 49 edges and 5.6 × 1014 states, has

(
49
25

)
nodes in

its widest layer; even after accounting for symmetries, this
problem is 1,024 times larger than the 4 × 4 problem. The
4 × 4 game takes 11,000 seconds with Wilson’s solver; the
4× 5 problem would take 8 terabytes of disk space, 9 giga-
bytes of RAM and—assuming runtime scales linearly with
the size of the state space—130 days to solve.

Alpha-Beta minimax search is a very well-known game-
solving algorithm. It performs a depth-first search of the
search space while maintaining local lower (alpha) and up-
per (beta) bounds on the values a subtree can have that could
affect the minimax value of the root. Any subtree whose
value is proven to fall outside this range can be eliminated
without completely exploring it. In contrast to retrograde
analysis, then, Alpha-Beta can prune irrelevant states from
search and avoid exploring the entire search space. How-
ever, as a depth-first algorithm, it cannot easily detect if a
newly-generated state has been previously seen and may do
redundant work to determine the new state’s value.

Techniques Applied
Chains
In most games, states exist whose optimal moves are easy
to determine. For trivial examples, consider games like Tic-
Tac-Toe or Connect Four where one wins by having a certain
number of pieces in a line. If the current player can make a
move that completes a winning line, or prevents the oppo-
nent from completing a winning line on their next move,
then the optimal move must be to fill in that position.

415



Figure 2: Examples of chains

In Dots-And-Boxes, similar situations arise in states with
chains, which are sequences of one or more capturable
boxes. Examples of two chains are shown in figure 2. If only
one end of a chain is initially capturable (i.e., is a box with
three edges filled in), we call it half-open (labeled A in fig-
ure 2). If both ends are initially capturable, it is a closed
chain (labeled B in figure 2). Most of the moves on a state
with chains can be provably discarded as non-optimal, sig-
nificantly reducing the branching factor.

In a state with a half-open chain, only two move se-
quences can possibly be part of an optimal strategy: capture
every available box (and then make another move), or cap-
ture all but two boxes and then fill in the end of the chain—
leaving two capturable boxes for the opponent. The remain-
ing configuration of two boxes capturable with a single line
is called a hard-hearted handout. For the half-open chain
labeled A in figure 2, the moves required to leave a hard-
hearted handout (colored gray) are shown as dotted lines.

The possibly-optimal moves in states with a closed chain
are similar: capture every available box (and then make an
additional move), or capture all but four boxes and fill in
the edge that separates them into two hard-hearted handouts.
The chain labeled B in figure 2 is closed; dotted lines show
the moves required to leave two hard-hearted handouts.

In states with more than one chain, we can completely fill
in all but one of the chains and follow the appropriate strat-
egy for the last-remaining chain. In these cases, a half-open
chain should be left for last, if possible, as this requires sacri-
ficing only two boxes when leaving a hard-hearted handout.

For an intuition of these rules, refer to figure 2. One op-
tion for the current player is to capture all available boxes in
chains A and B; she must then make one additional move in
region C which will leave all six remaining boxes to be cap-
tured by the opponent. This results in a final score of 12-6 in
favor of the first player. Alternatively, the first player could
leave the hard-hearted handout in A for the opponent but
capture all remaining boxes. The opponent’s best response
would be to capture the two boxes in the hard-hearted hand-
out and then make a move that would leave the boxes of re-
gion C capturable by the current player. This strategy would
result in a score of 16-2 in favor of the first player.

These rules are most thoroughly described (with a proof
sketch of their validity) in (Berlekamp 2000).

Our solver handles chains with a preprocessing step.
When expanding a node with chains, we first capture all
of the boxes that are provably part of an optimal strategy
using the preceding rules. If this results in the option of
leaving a hard-hearted handout, our solver only considers

the two possibly-optimal options: capture the handout (and
then make another move) or leave the handout for the op-
ponent. Note that in the second case the opponent’s optimal
strategy will also be to capture the handout; this means that
both options in fact result in our solver considering the same
state, but with a different player to move. This strategy effec-
tively collapses consecutive moves into a single compound
move and reduces the overall branching factor of the prob-
lem space, at the cost of more expensive node expansions.

Transposition Tables
Transposition tables are a well-known technique for re-
ducing duplicate work in depth-first searches. A transposi-
tion table is a cache of explored states that associates with
each stored entry its backed-up minimax value. If a newly-
generated state has been previously explored its stored value
can be retrieved, avoiding the duplicate work of determining
its value a subsequent time.

In most games, the identity of the current player must be
stored in each transposition-table entry, as the optimal strat-
egy (and hence the value of the board) depends on which
player’s turn it is. This means that the same board configu-
ration can potentially be stored twice; once for each player to
move. Since Dots-And-Boxes is impartial, each state has the
same optimal strategy regardless of the current player and
we do not need to encode the current player in our entries.
This results in a space reduction. It also makes individual
entries in the table more powerful than in other domains, as
they can match more states in a search. In particular, it is
possible to prune a node as a duplicate even if that state has
never before been explored with the current player to move.

A more subtle detail arises from our choice to solve the
margin of victory, rather than a binary win/loss value. If we
solve the win/loss value, we will never compute the exact
margin of victory of any particular node and cannot store
this value in the transposition table. Instead, we can only
store whether the state was a win for the current player given
their score when it was explored; thus, entries must store the
current player’s score and whether the state is a win or a loss
given that score. This restricts the power of the transposition
table. Consider a stored entry that labels a board a win for
the current player given a particular score. If we explore that
state with a lower score for the current player we cannot
prove it a win, since the lower current score results in a lower
final score in optimal play and the entry does not encode by
how much the current player can win.

A solver that computes the win margin, however, deter-
mines the number of remaining incomplete boxes capturable
in optimal play; this information is useful regardless of the
current score. This means that a stored transposition-table
entry can be used for any state being explored, regardless
of the current-player’s score. This makes transposition table
entries in a margin-of-victory solver more powerful than the
equivalent entries in a win/loss solver. In addition, the trans-
position table can store more entries in memory, as entries
need not store the score so far.

These facts help explain the counterintuitive fact that find-
ing the margin of victory can be done in comparable time to

416



computing a simple win/loss value, even given that we are
solving a strictly harder problem.

Finally, we note a non-standard technique we use in en-
coding our transposition-table entries. In general, a table en-
try can store a bound on the minimax value rather than the
exact value itself. If a stored value is exact, the current node
can be pruned without searching; otherwise, we can use the
stored value to tighten the alpha or beta bounds when search-
ing beneath the current state.

Surveying the literature, we find that by far the most com-
mon technique for storing minimax values in a transposition
table is to store two fields: a minimax value and a flag indi-
cating whether that value is an upper bound, a lower bound,
or exact. An alternative approach is to store both an explicit
lower and upper bound, with equal bounds implying an exact
value. The latter technique captures strictly more informa-
tion; however it requires a bit more space and is only valu-
able in cases where a search can generate both upper and
lower bounds on the minimax value of the same node. This
happens relatively rarely in most domains, making this tech-
nique not worth the additional space requirements (Breuker
1998); this opinion is supported by the very infrequent dis-
cussion of this technique in the literature.

In Dots-And-Boxes, however, we found the technique of
storing two bounds to be noticeably more effective than stor-
ing a single bound and a flag, providing a uniform decrease
in search time despite the greater space requirements; this
is somewhat surprising. While we have not verified this, we
speculate that the reason for its effectiveness comes from the
impartiality of Dots-And-Boxes. Due to chains, it is com-
mon for alpha-beta to encounter two descendants of a node
with identical boards but different players to move. In these
cases, it is plausible for the minimax value to fall below the
alpha bound in one case (producing an upper bound) and
above the beta bound in the other (producing a lower bound).

Symmetries
There are a number of trivial symmetries in Dots-And-Boxes
that reduce the problem space. The mirror image of a state is
also a legal game whose optimal strategy mirrors that of the
current state. All Dots-And-Boxes instances have horizon-
tal and vertical symmetry, and square boards have diagonal
symmetry. We store canonical representations of states in the
transposition table so that all states that are identical under
symmetries map to the same entry. These symmetries reduce
the size of the search space by a factor of 4 on most boards
and a factor of 8 on square boards.

We make use of an additional, non-obvious symmetry to
further reduce the size of the search space. We observe that,
for purposes of strategy, the two edges that make up any cor-
ner of a Dots-And-Boxes board are identical; that is, given
a board with a pair of unfilled corner edges, filling in either
edge results in states with identical minimax values.

To understand this property, consider an alternate rep-
resentation of Dots-And-Boxes called Strings-And-Coins,
which is played on graphs. Boxes in Dots-And-Boxes be-
come nodes (“coins”) in Strings-And-Coins; lines separating
boxes become edges connecting nodes (“strings”) to each
other (or to a special “ground” node, for nodes at the edge of

Figure 3: Two equivalent game states, in Dots-And-Boxes
(left) and Strings-And-Coins (right) notation. Player A has
captured one box (or, equivalently, one coin).

Figure 4: Two equivalent Dots-And-Boxes states. They dif-
fer only by which of pairs of corner edges have been filled.

the board). Players take turn cutting strings; if all four strings
attaching a coin are detached, the player pockets the coin and
takes another turn. Figure 3 gives an example of equivalent
states in Dots-And-Boxes and Strings-And-Coins.

Consider the two strings connecting a corner coin to the
“ground”: if we cut either string the resulting graphs are iso-
morphic. As such, the optimal strategy of play on either one
must be the same, and the states are duplicates. An example
of corner-edge symmetry is given in figure 4.

For our purposes, this technique allows us to reduce the
branching factor of nodes that have a pair of unfilled corner
edges; for these states we need only consider filling in one
of the two corner edges, as filling in the other results in a
duplicate state. A simple way to do this is to consider filling
in the topmost edge of a corner pair first and only consider
the bottommost edge in states where the topmost edge is al-
ready filled. When using this technique, however, note that
using reflections to generate canonical representations for
the transposition table becomes complicated. For example,
a diagonal reflection of a state with only a top corner edge
filled results in a state with only a bottom corner edge filled.
Such a state could never be reached in search and would thus
not be a valid canonical representation.

Move Ordering
The order that Alpha-Beta explores children of a node
strongly influences the amount of work required to deter-
mine its value. An effective move-ordering heuristic sorts
moves in decreasing order of value for the current player, un-
der the intuition that making stronger moves first will tighten
search bounds for later moves, creating more search cutoffs.

An obvious heuristic would be to consider capturing
moves first; however, all such moves are part of chains and

417



are dealt with by the rules of the previous section. Thus,
our move ordering only considers non-capturing moves. Of
those, the heuristic considers moves that fill in the third edge
of a box last, as they leave a capturable box for the opponent.
The remaining moves are explored by considering edges in
an order radiating outwards from the center of the board.

This is a very effective heuristic, despite its extreme sim-
plicity. On the 4 × 4 solution, for example, this approach
reduced the runtime by a factor of 17 over a simple left-to-
right, top-to-bottom move order.

Verifying Correctness
We tested correctness using two significant values: the mar-
gin of victory given optimal play and the optimal opening
move. For each problem considered in Experiments, we gen-
erated these values using Wilson’s solver, as well as our
solver with each search feature described. The result was
the same in all cases, giving us a high degree of confidence
that the proofs generated by our solver are correct.

Experiments
We conducted a number of experiments on Dots-And-Boxes
to quantify the contribution of our search enhancements.
We recorded the run time against 30 benchmark tests and
then removed each enhancement individually, generating the
same data to see its relative contribution. We include the run-
time of Wilson’s solver for comparison. These experiments
were performed on a 3.33 GHz Intel Xeon CPU with 4 GB
of RAM allocated for the transposition table.

Our results present only timing information and not the
numbers of nodes expanded. This is because the concept of
“expanding a node” differs in several of these techniques;
evaluating the children of a node in Retrograde Analysis is
very different than in Alpha-Beta (even ignoring the cost of
disk I/O). This is true even within our various Alpha-Beta
implementations. For example, the constant factor required
to analyze chains at each state greatly increases the time per
node, but results in dramatically fewer node expansions.

We performed our experiments on 18 problems
from (Berlekamp 2000); these are the rows labeled 2B
through 19B in table 1 (B for Berlekamp). In addition, we
considered empty boards of various dimensions, shown in
rows labeled 3 × 3 through 4 × 4 in table 1. These boards
are provided in order of increasing number of edges.

The columns of table 1 show summarize our results. Col-
umn 2 gives the runtime or our complete Alpha-Beta solver.
Column 3 gives the runtime of Wilson’s retrograde analy-
sis solver. Column 4 shows the speedup of our solver, given
as a ratio of column 2 divided by column 3. The remaining
columns show the result of disabling features in our alpha-
beta solver, given as a ratio of the runtime with the feature
removed divided by the runtime with all features enabled
(column 2). We disabled chain analysis (column 5), caus-
ing the solver to consider all moves on boards with chains
(not just provably-optimal moves). We tested the contribu-
tion of our center-biased move-ordering heuristic by com-
paring it to a left-to-right, top-to-bottom move ordering (col-
umn 6). We ignored corner-edge symmetry (column 7), re-

quiring the search to consider both moves that fill in a pair of
corner edges (even though these result in duplicate states).
We modified the transposition table to store only a single
bound (along with a flag) as opposed to an upper and a
lower bound (column 8). We considered a partial transposi-
tion table, where stored entries only match the current state
if they share the same player to move (column 9). Finally,
we solved the simple win/loss value of the game rather than
the win margin (column 10).

While the contribution of each technique is not uniform
on all problems, there are some clear trends. Of all the
techniques considered, filling in chains most consistently
produces an improvement on our benchmarks—producing
over an order-of-magnitude improvement on most of them.
Chains arise very often in any game of Dots-And-Boxes, so
it is not surprising that this technique provides such a big
improvement, despite the overhead required.

Three of the remaining techniques—accounting for cor-
ner symmetries, storing two bounds in the transposition ta-
ble, and using an impartial transposition table—provide rel-
atively uniform improvements across the benchmarks. Cor-
ner symmetries speed up search by a factor of two to four,
while the two transposition table techniques each contribute
up to a factor of two speedup in general. Each of these tech-
niques provides strictly more information to the search than
their alternative at essentially no cost, so it is not surprising
that they consistently improve performance. However, the
margin by which they do so is worth noting.

The most interesting anomaly comes from our move-
ordering heuristic. On larger games played on empty boards,
our center-biased move-ordering heuristic is extremely ef-
fective, reducing the runtime by a factor of 17 on the 4 × 4
game; on other benchmarks, however, the improvements are
much more modest. On those games, the board is not ini-
tially empty and a significant number of the opening moves
create capturable boxes for the opponent and would be con-
sidered last by the move ordering; this would have the ef-
fect of essentially ignoring the center-outwards ordering of
moves, and may explain its marginal contribution.

By far the most surprising result comes from solving the
win margin of the game, rather than the win/loss value. On
most of the benchmarks (apart from the anomalous twelfth
Berlekamp problem), computing the win margin has only
a small effect on performance: in general performance is
somewhat degraded on Berlekamp’s problems and some-
what improved on the empty boards. While these results are
mixed, the two solution approaches are comparable in speed,
making it a reasonable choice to solve the more informative
win-margin problem. Given that solving the win margin is
strictly more informative than the win/loss value, it is very
unexpected that it can be found in comparable time, and even
more surprising that the win margin is easier in some cases.

Finally, we have solved the 4× 5 Dots-And-Boxes game,
determining it to be a tie given optimal play. This is the first
time this game has been solved and it is the largest Dots-
And-Boxes game solved so far. The search took ten days to
complete on a 3.33 Xeon with a 24GB transposition table.
Our solver completed over ten times faster than our conser-
vative estimate of 130 days using Wilson’s solver.

418



Problem αβ, All Retrograde αβ No Left-Right No Corner One-Bound Partial Win/Loss
Features Analysis Speedup Chains Move Order Symmetry TTable TTable Search

3x3 0.05s 1.62s x32.48 x2.60 x2.00 x3.58 x1.80 x1.40 x0.40
1x8 0.08s 2.24s 28.03 3.25 5.50 4.13 1.63 1.25 1.25
2x5 0.32s 4.03s 12.59 2.75 3.62 3.65 1.94 1.12 1.34
1x9 0.20s 13.03s 65.13 6.35 8.65 2.34 2.25 0.85 0.65

1x10 4.92s 107.56s 21.87 3.12 5.17 2.81 2.86 0.71 1.10
3x4 1.46s 39.39s 27.00 3.68 10.02 3.86 2.06 1.17 1.75
2x6 12.00s 72.02s 6.00 3.05 2.36 3.90 1.87 1.10 1.52

1x11 5.60s 980.34s 175.09 10.04 13.72 2.44 2.36 0.88 0.73
1x12 268.88s 7995.39s 29.74 7.44 12.39 3.26 4.98 4.91 5.85
2x7 143.88s 2450.13s 17.03 5.97 3.54 3.54 2.26 1.22 3.46
3x5 310.18s 4988.18s 16.08 10.62 4.03 4.59 1.96 1.50 1.14
4x4 274.44s 10977.38s 40.00 6.33 17.19 3.88 2.10 1.70 4.48
2B 20.40s 296.45s 14.53 15.17 1.33 2.71 1.75 1.38 0.88
3B 2.86s 9.85s 3.44 16.11 1.17 1.67 1.48 1.47 1.07
4B 1.79s 35.42s 19.79 13.93 1.32 2.08 1.37 1.46 0.82
5B 0.31s 7.40s 23.87 51.87 1.22 2.00 1.96 1.22 2.00
6B 0.83s 5.11s 6.17 37.16 1.09 2.09 1.98 1.36 0.58
7B 21.36s 276.31s 12.94 5.11 1.45 2.22 1.83 1.35 0.30
8B 11.96s 67.88s 5.68 16.31 0.94 1.76 1.61 1.43 0.63
9B 41.83s 2231.62s 53.35 13.25 1.20 2.30 1.65 1.49 0.68

10B 1.59s 37.98s 23.89 23.84 1.44 2.13 1.76 1.32 0.95
11B 1.07s 9.02s 8.43 23.64 1.47 2.71 1.44 1.43 0.64
12B 7.94s 88.07s 11.09 29.37 1.91 2.90 2.50 1.52 34.38
13B 0.65s 8.38s 12.90 19.72 0.97 0.98 1.42 1.49 0.80
14B 3.02s 19.76s 6.54 11.72 1.18 1.68 1.38 1.45 0.85
15B 3.50s 30.84s 8.81 17.66 1.12 1.30 1.47 1.53 0.95
16B 5.77s 155.26s 26.91 11.77 1.06 0.99 1.52 1.44 0.86
17B 8.04s 227.62s 28.31 13.58 0.95 1.28 1.62 1.44 0.54
18B 86.87s 6168.57s 71.01 37.63 2.33 2.97 2.61 1.49 0.34
19B 14.72s 85.10s 5.78 24.34 1.22 3.22 2.38 1.51 1.54

Table 1: Timing results for several empty boards and 18 problems from (Berlekamp 2000).

Discussion
There are several reasons why Dots-And-Boxes is a game
worth studying. First and foremost, it is an extremely popu-
lar and widely known game, and is familiar to a wide variety
of people from around the world. In addition, it is an exceed-
ingly simple game; the difficulty in solving the game comes
primarily from the size of the problem space and not from
any inherent complexity in the rules themselves. Finally, the
game is an unusual example of an impartial game that can-
not be addressed by the Sprague-Grundy theorem; most of
the games addressed in the literature are partial.

Despite this, there has been remarkably little coverage
of Dots-And-Boxes in the literature; what material exists
does not discuss applying computational search. As a con-
sequence, the value of each of the existing techniques is un-
known. Our paper is the first to synthesize these techniques
and present them in the context of heuristic search, provid-
ing a thorough discussion of their utility.

The combination of these techniques, along with some
non-obvious modifications generic techniques, have allowed
us to solve the previously unsolved 4×5 game. More impor-
tantly, however, our solver establishes a formal benchmark
against which future research on this problem can be judged.

References
Allis, L. V.; van der Meulen, M.; and van den Herik, H. J. 1994.
Proof-number search. Artificial Intelligence 66(1):91 – 124.
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. 2003. Wnning
Ways For Your Mathematical Plays, volume 3. A K Peters.
Berlekamp, E. 2000. The Dots-and-Boxes Game. A K Peters.
Breuker, D. M. 1998. Memory versus Search in Games. Doctoral
thesis, Maastricht University.
Grossman, J. P. 2010. Dabble. http://www.mathstat.dal.ca/∼jpg/
dabble/.
Guy, R. K., ed. 1991. Combinatorial Games. American Mathe-
matical Society.
Roberts, P. 2010. Prsboxes. http://www.dianneandpaul.net/
PRsBoxes/.
Ströhlein, T. 1970. Untersuchungen ber kombinatorische Spiele.
Ph.D. Dissertation, Technischen Hochschule München.
Thompson, K. 1986. Retrograde analysis of certain endgames.
International Computer Chess Association Journal 9(3):131–139.
Wilson, D. 2010. Dots-and-boxes analysis index. http://
homepages.cae.wisc.edu/∼dwilson/boxes/.

419




