
Filtering Algorithms Based on the Word-RAM Model

Philippe Van Kessel
Université Laval

Département d’informatique et de génie logiciel
philippe.van-kessel.1@ulaval.ca

Claude-Guy Quimper
Université Laval

Département d’informatique et de génie logiciel
claude-guy.quimper@ift.ulaval.ca

Abstract

The Word-RAM is a model of computation that takes into ac-
count the capacity of a computer to manipulate a word of w
bits with a single instruction. Many modern constraint solvers
use a bitset data structure to encode the values contained in
the variable domains. Using the algorithmic techniques de-
veloped for the Word-RAM, we propose new filtering algo-
rithms that can prune Opwq values from a domain in a sin-
gle instruction. Experiments show that on a processor with
w “ 64, the new filtering algorithms that enforce domain
consistency on the constraints A ` B “ C, |A B| “ C
and ALL-DIFFERENT can offer a speed up of a factor 10.

Introduction
Constraint solvers derive a large part of their efficiency from
the constraint propagation process. During this process, the
filtering algorithm associated to each constraint excludes
partial solutions that cannot be completed into complete so-
lutions. Since these algorithms are called millions of times
during the search, it is essential to find the best way to im-
plement them.

The running time analysis is one way to predict the ef-
ficiency of an algorithm since it reveals how the computa-
tion time grows as the size of the instance increases. This
analysis is usually based on a theoretical computer called
random access machine (RAM) that shares properties with
real computers. However, one property that the RAM does
not take into account is that modern processors can handle
words of w 64 bits with a single instruction. Such a prop-
erty is considered in the word random access machine called
Word-RAM (see (Hagerup 1998)). Analyzing an algorithm
on the Word-RAM leads to a running time complexity that
is a function of w, the size of a word. Changing the way
of analyzing algorithms changes the way of designing them.
We propose new filtering algorithms designed for the Word-
RAM.

The paper is organized as follows. We present the the-
oretical foundations of the Word-RAM. We then present
new filtering algorithms for the constraints A ` B C,
|A´B| C, A fpBq where f is any bijective function,
and the global constraint ALL-DIFFERENT. We then empir-

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ically show that these new algorithms improve the efficiency
of the solver.

The Word-RAM
The Theory
A model of computation is a set of instructions of an abstract
machine and the cost of execution for each of these instruc-
tions. Such a model allows to compute the complexity of an
algorithm, i.e. the asymptotic cost of an execution when the
size of the instance tends to infinity. The random access ma-
chine (RAM) is the most commonly used model to analyze
an algorithm. A RAM is able to perform basic arithmetic
operations and comparisons (`, ´, ˆ, ˜, ^, _, ă, , ą,
etc.) and to randomly access the memory such as changing
the value of the ith element of a vector, all in constant time.

A Word-RAM is a RAM which is able to perform bitwise
operations on a word of w bits. Among the bitwise oper-
ations, the operator a ! b returns the bits in a shifted to
the left by b bits. This is equivalent to computing a2b. The
operation a " b returns the bits in a shifted to the right by
b bits. This is equivalent to computing

X

a2 b
\

. The binary
operators &, | and‘ perform a logical conjunction, a logical
disjunction, and an exclusive disjunction between each pair
of bits. The unary operator „ negates every bit in a word.
The unary operators LSB and MSB return the index of the
least significant bit and the most significant bit in a word.

The Word-RAM is a realistic model since modern proces-
sors support all of these operations. Even though the oper-
ators LSB and MSB are not always integrated to high-level
languages such as C, the C compiler gcc provides the built-in
functions builtin ctz and builtin clz that are
equivalent to the operators LSB and MSB.

With its bitwise operators, a Word-RAM with words of w
bits can manipulate up tow elements of the input in constant
time. This leads to a theoretical gain of up to a factor w. The
size of a word in modern processors is currently w 64.
However, special sets of instructions such as SSE4 in Intel
processors allow to perform special operations on registers
of 128 bits. In early 2011, Intel released the Sandy Bridge
processors with the Advanced Vector Extensions (AVX), a
set of instructions manipulating 256-bit registers.

Analyzing the running time complexity on the Word-
RAM leads to new ways of designing algorithms. We

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

577

present existing algorithms based on the Word-RAM model
that are already used in constraint solvers and then present
new filtering algorithms.

The Word-RAM Model in Constraint Solvers
Constraint solvers exploit the Word-RAM model in differ-
ent ways. As early as 1979, (McGregor 1979) uses bitsets
to encode the domains of the variables in a constraint sat-
isfaction problem. He then uses bitwise operations & and
| to compute the intersection and the union of the domains
with sets of values. (Haralick and Elliott 1980) use the same
strategy to implement an efficient version of forward check-
ing. (Lecoutre and Vion 2008) shows how this data structure
can be used to obtain a very efficient implementation of the
AC3 algorithm that achieves arc-consistency.

Most of these algorithms share a common approach: the
variable domains are encoded with bitsets. A bitset is a se-
quence of bits ad 1ad 2 . . . a0 where each bit av is associ-
ated to the value av . A bit is set to one if its corresponding
value belongs to the domain and is set to zero if it does not
belong to the domain. We denote by dompXq the bitset rep-
resenting the domain of the variable X . The pruning of the
domains can be done by computing a bitset s representing
the set of values that can be assigned to a variable while sat-
isfying the constraints. To filter the domain of X , one needs
to compute the intersection between the set of values s and
the domain dompXq. The bitwise operator & achieves this
computation and processes up to w values in a single opera-
tion.

Preliminaries
A set of values A denotes at the same time: the set of values
it contains, its bitset representation, and the integer whose
binary encoding is the same as the bit set. Thus the set A
t1, 5, 7u is equivalent to the bitset a7a6a5a4a3a2a1a0
10100010, where the least significant bit (a0) is associated
to the value 0 and the most significant bit (a7) is associated
to the value 7. The integer 162 represents as well the set A.
We consider bitsets of arbitrary length d and assume that any
bitwise operator can be implemented with a time complexity
O pd{wq where w is the size of a word.

A support to the constraint CpX1, . . . , Xnq is a tuple
pt1, . . . , tnq that satisfies the constraint C such that ti P
dompXiq for all i 1..n. A support for a value v P

dompXiq is a support such that ti v. Enforcing domain
consistency consists of removing from all domains the val-
ues that do not have a support.

A New Filtering Algorithm for the Constraint
SUM

The constraint SUM restricts the sum of two variables to be
equal to a third variable, i.e. A`B C. We present an al-
gorithm that enforces domain consistency on this constraint.
To understand the algorithm, one needs to understand the
properties of the shift operators ! and ". Consider the bit-
set 10100010 representing the set t1, 5, 7u. The bitset set
10100010 ! 1 101000100 represents the set t2, 6, 8u. In

other words, by shifting the bitset by one unit, all elements in
the original set are incremented by one. This relation holds.

A ! k ta` k | a P Au (1)

The same result applies for the operator ", although this
operator truncates bits that are shifted to a negative position.
For instance, the operation 10100010 " 3 10100 modi-
fies the set t1, 5, 7u to obtain t2, 4u. This relation holds.

A " k ta´ k | a P A^ a ě ku (2)

The shift operators are very convenient to add a constant
to all elements in a set. Algorithm 1 extensively uses this
property to enforce domain consistency on the constraint
A ` B C. The while loop on line 1 iterates through
all the values in the domain of variable A. It extracts the
smallest value v P dompAq on line 2, creates a bitset repre-
senting the set tvu on line 3, and removes v from dompAq
on line 4 to prevent a second iteration on the value v. This
way of iterating through the values of a domain is reused in
the next algorithms. It turns out to be the most effective way
in practice since it retrieves both the processed value v and
the bitset representing the set tvu.

Algorithm 1: FilterAPlusBEqualsC(A, B, C)
newAÐ dompAq, newB Ð 0, newC Ð 0
while dompAq ‰ 0 do1

v Ð LSBpdompAqq2
bitÐ 1 ! v3
dompAq Ð dompAq‘ bit4
shiftedB Ð dompBq ! v5
if shiftedB&dompCq ‰ 0 then

newC Ð newC | shiftedB6
newB Ð newB |pdompCq " vq7

else newAÐ newA‘ bit8
dompAq Ð newA
dompBq Ð dompBq&newB
dompCq Ð dompCq&newC9

This relation prunes the domain of C.

dom1pCq dompCq X
ď

vPdompAq

tb` v | b P dompBqu (3)

The computation of the set tb ` v | b P dompBqu is per-
formed on line 5 using the operator !, the union is per-
formed on line 6 with the operator |. The union is performed
only if tb`v | b P dompBqu intersects the domain dompCq.
Even though this test is not required, it prevents useless com-
putations of the union. The intersection with the domain of
C is performed on line 9.

The algorithm filters the domain of A by testing for the
existence of a support for each value v. If the set tb ` v |
b P dompBqu intersects the domain of the variable C, then
there is a value in dompBq whose sum with v produces a
value in dompCq and therefore v has a support in A. If the
set tb ` v | b P dompBqu does not intersect the domain of
C, then v must be removed from the domain of A (line 8).

578

This relation prunes the domain of B.

dom1pBq dompBq X
ď

vPdompAq

tc´ v | c P dompCqu (4)

The union can be computed only over the values v that have
a support inA since any value v that does not have a support
will produce a set tc´v | c P dompCqu that is disjoint from
dompBq. Since we assume that all values in the domains are
non-negative, the set tc´ v | c P dompCqu can be replaced
by tc ´ v | c P dompCq ^ c ě vu. This is computed on
line 7.

Running Time Analysis
If all domains are contained in an interval r0, ds, they can
be encoded with bitsets of rpd` 1q{ws words. All bitset op-
erations in Algorithm 1 are thus executed in time O pd{wq.
The while loop executes exactly |dompAq| times. The to-
tal running time complexity of the algorithm is therefore
O pd|dompAq|{wq. Note that this complexity does not de-
pend on the cardinality of dompBq nor the cardinality of
dompCq. If d ă w, each domain fits in a single word.
In this special case, we obtain a linear time complexity in
|dompAq|. Finally, the constraint A` B C is equivalent
to B ` A C. The algorithm can be adapted to iterate on
the domain with the smallest cardinality giving a complexity
of O pminp|dompAq|, |dompBq|qd{wq. This is particularly
significant when A or B is fixed to a value.

Extensions
A linear constraint of the form

řn
i“1Xi k can be de-

composed into a set of constraints Yi Yi 1 ` Xi with
Y0 0 and Yn k. Such a decomposition does not hinder
propagation since the constraint hypergraph is a hypertree.
Algorithm 1 enforces domain consistency on such a decom-
position in time O

`

nd2{w
˘

(assuming |dompXiq| d).
This is potentially w times faster than the algorithm devel-
oped by (Trick 2003) for the same constraint.

One can use the constraint SUM to encode a constraint
of difference A ´ B C. Indeed, rather than posting the
constraint A´B C on the variables, one can simply post
the equivalent constraint B ` C A which is a sum.

We assumed that the domains do not contain negative val-
ues. One can lift this assumption by associating the least
significant bit of all domains to the negative value m ă 0.
Line 2 can be replaced by v Ð m` LSBpdompAqq and the
algorithm remains correct.

A New Filtering Algorithm for the Absolute
Difference Constraint

We consider the constraint |A ´ B| C, i.e. C is con-
strained to be the absolute difference between A and B. We
assume that the variable domains contain non-negative val-
ues. The algorithm exploits this relation.

|A´B| C ðñ B ` C A_B ´ C A (5)

Algorithm 2 iterates through all the values v in dompCq.
Line 1 computes the set B` tb˘ v | b P dompBqu. If the

Algorithm 2: FilterAbsoluteValue(A, B, C)
newAÐ 0, newB Ð 0, newC Ð dompCq
while dompCq ‰ 0 do

v Ð LSBpdompCqq
bitÐ 1 ! v
dompCq Ð dompCq‘ bit
B` Ð pdompBq ! vq |pdompBq " vq1

if B`&dompAq ‰ 0 then
newAÐ newA |B`2
newB Ð newB |pdompAq ! vq |pdompAq "3
vq

else newC Ð newC ‘ bit4

dompAq Ð dompAq&newA5
dompBq Ð dompBq&newB6
dompCq Ð newC

set B` does not intersect the domain of A, there is no value
b P dompBq and value a P dompAq such that |a ´ b| v
and therefore v does not have a support in dompCq. Thus,
line 4 removes v from dompCq.

This relation prunes the domain of variable A.

dom1pAq dompAq X
ď

vPdompCq

tb˘ v | b P dompBqu (6)

Line 2 computes the union in Equation (6). The values v
that do not have a support in C are omitted in the computa-
tion of the union since B` and dompAq are disjoint. Line 5
computes the intersection of Equation (6).

This relation prunes the domain of variable B.

dom1pBq dompBq X
ď

vPdompCq

ta˘ v | v P dompCqu (7)

Like the computation of the domain of A, the values v that
do not have a support in dompCq can be omitted since they
produce sets that are disjoint from dompBq. Line 3 com-
putes the union of the sets ta ˘ v | v P dompCqu. Line 6
computes the intersection in Equation (7).

Running Time Analysis
The while loop of Algorithm 2 executes exactly |dompCq|
times. Let d be the largest value in the domains. All op-
erations execute in time O pd{wq. We therefore obtain a
running time complexity of O p|dompCq|d{wq. When all
domains fit in a single word, we obtain a linear time com-
plexity in |dompCq|.

A New Filtering Algorithm for Bijective
Constraints

We consider the problem of enforcing domain consistency
on a constraint A fpBq where f is a bijective function,
i.e. a function with an inverse f 1 such that A fpBq ðñ
f 1pAq B. Such a constraint is domain consistent if the bit
at position v in dompBq is set to one if and only if the bit at
position fpvq in dompAq is also set to one.

579

(Knuth 2008) defines a δ-right-shift as an operation
that takes for input a bitset xn 1 . . . x1x0, an integer δ
and a mask θn 1, . . . , θ0. The operation returns a bitset
x1n 1 . . . x

1
1x
1
0 such that x1i xi`δ if θi 1 and x1i xi

otherwise. The δ-right-shift is computed as follows.

x1 x‘ppx‘px " δqq& θq (8)

Similarly, the δ-left-shift is computed as follows.

x1 x‘ppx‘px ! δqq& θq (9)

A compression is an operation that takes as input a bitset
an 1an 2 . . . a0 and a mask mn 1mn 2 . . .m0 and returns
a bitset 0 . . . 0ajk 1

ajk 2
. . . aj0 such that the indices

jk 1 ą jk 2 ą . . . ą j1 ą j0 are the positions of the k
bits in the mask m that are set to one. For instance, consider
the bitset a7a6a5a4a3a2a1a0 and the mask 10011010, the
compression operation returns 0000a7a4a3a1. The com-
pression of a bitset of 2p bits is done with p` 1 consecutive
δ-right-shift operations where δ 20, 21, . . . , 2p. For
instance, using the masks θ1 00000001, θ2 0000110,
θ4 00001000, θ8 11110000 the δ-right-shift operations
produce the bitsets a7a6a5a4a3a2a1a0, a7a6a5a4a3a2a1a1,
a7a6a5a4a3a4a3a1, a7a6a5a4a7a4a3a1 and
0000a7a4a3a1. (Knuth 2008) shows how to compute
the p` 1 masks θ1, θ2, . . . in time Opp2q. This computation
can take place at compilation time. The inverse of a com-
pression is computed with δ-left-shift operations executed
in reverse order, i.e. δ 2p, 2p 1, . . . , 1.

If the function f is increasing and defined on all natu-
ral numbers, then the compression operation maps the bits
in dompAq to the bits in dompBq. To illustrate the idea,
consider the constraint A 2B. Suppose that dompAq
t0, 4, 6u 1010001 and dompBq t0, 2, 3u 0001101.
The compression of dompAq with the mask 1010101 maps
the bit in dompAq to the bits in dompBq.

To enforce domain consistency on the constraint A
fpBq, one needs to compute (at compilation) the mask m
that maps the bit in A to the bits in B. We then set to zero
all bits in dompAq that are zero in the compression of B.

dom1pAq dompAq& compressionpdompBq,mq (10)

The domain dompBq can be filtered using the inverse of a
compression.

dom1pBq dompBq& compression 1pdompAq,mq
(11)

Let d be the largest value in the domains. A δ-shift is com-
puted in time O pd{wq and there are Oplog dq such shifts to
compute. Enforcing domain consistency on an increasing
function is done in O ppd log dq{wq steps. When the do-
mains fit on a single word (d ă w), we obtain an algorithm
running in Oplog dq. This is particularly efficient when do-
mains are dense.

Finally, we consider the case where the function f is bi-
jective but is not necessarily increasing. In such a case,
the function f defines a permutation where each bit bi in
dompBq is associated to the bit afpiq in dompAq. To fil-
ter this constraint, we permute the bits bd 1bd 2 . . . b0 rep-
resenting dompBq to obtain b1 bfpd 1qbfpd 2q . . . bfp0q.

We then compute dom1pAq dompAq& b1. We proceed
similarly to prune the domain of B using the inverse per-
mutation f 1. Filtering the domains is therefore reduced
to permuting the bits in a bitset. (Knuth 2008) defines the
operation δ-swap with mask θ that swaps the bits xi with
xi`δ if the bit at position i in θ is set. Permuting the bitset
x7x6x5x4x3x2x1x0 with δ 3 and θ 00010101 pro-
duces x4x6x2x7x0x5x1x3. This operation is computed as
follows.

y Ð px‘px " δqq& θ (12)

x1 Ð x‘ y‘py ! δq (13)
(Knuth 2008) credits (Duguid 1959) and (LeCorre 1959)

who proved that Oplog dq δ-swap operations are sufficient
to obtain any permutation of d bits. Thus enforcing do-
main consistency on a bijective function can be done in
O ppd log dq{wq steps and in Oplog dq steps if each domain
entirely fits in a word (d ă w).

A New Filtering Algorithm for the
All-Different Constraint

Global constraints can also have filtering algorithms de-
signed for the Word-RAM. It is the case for the constraint
ALL-DIFFERENTpX1, . . . , Xnq that is satisfied when all
variables are pairwise distinct. (Régin 1994) published an
algorithm that enforces domain consistency on this con-
straint. His algorithm processes in three steps: 1) it com-
putes a maximum matching in a graph called the value
graph, 2) it computes the strongly connected components
of the residual graph, and 3) it filters the domains depending
on which parts of the residual graph is strongly connected
and which nodes lie on a path ending with an unmatched
node.

The computation of a maximum matching and the
strongly connected components of the graph heavily relies
on graph traversal algorithms such as depth-first search.
(Cheriyan and Mehlhorn 1996) show how to speed-up the
traversal of a graph using a Word-RAM. Two data struc-
tures are required to perform a depth-first search: a data
structure providing the set of neighbors of a node and a set
of nodes that have previously been reached. The neigh-
bors of a node a can be encoded in a bitset Npaq. The
reached nodes can also be stored in a bitset R. The oper-
ationsNpaq&„R return the set of neighbors of node a that
have not been reached. If this set is non-empty, the opera-
tions LSBpNpaq&„Rq return a neighbor that has not been
reached yet. These operations are done in time O pd{wq
where d is the number of nodes in the graph. If the graph
is dense, this operation is significantly faster than iterat-
ing over each element in Npaq to test whether the node
has been reached. Using these data structures, (Cheriyan
and Mehlhorn 1996) show how to perform a depth-first
search, a breadth-first search, and the computation of the
strongly connected components of a graph with n nodes all
in time O

`

n2{w
˘

which is advantageous for dense graphs1.

1They actually reported a complexity of O
`

nw ` n2
{w

˘

. We
save the term nw by using the operator LSB which Cheriyan and
Mehlhorn did not consider in their Word-RAM.

580

(Hopcroft and Karp 1973) show that performing Op
?
nq

breadth-first searches is sufficient to compute a maximum
matching. (Cheriyan and Mehlhorn 1996) reuse this result
and show how to compute a maximum matching in time
O
`

n2.5{w
˘

.
The value-graph G 〈V,E〉 as defined by Régin has

one vertex per variable and one vertex per value, i.e. V
tXi | i 1..nu Y

Ťn
i“1 dompXiq. There is an edge from a

variable node Xi to a value node v iff v P dompXiq. Any
matching of n edges is a support for the constraint. There is
no need to construct the value-graph since all the informa-
tion is contained in the domains which are already encoded
with bitsets. Indeed, the neighbors of the variable node Xi

are encoded in the bitset dompXiq. This encoding makes it
easy to reuse the graph algorithms designed for the Word-
RAM. Moreover, value-nodes have at most one neighbor in
the residual graph. It is therefore possible to test, in constant
time, whether a value-node has a neighbor that has not been
reached yet.

The search for an augmenting path in the residual graph
usually stops when visiting a free node, i.e. a node that is
not adjacent to an edge in the matching. Similarly, when
flagging the strongly connected components that can reach
a free node, it is sufficient to see whether a variable-node
Xi is adjacent to a free node without visiting all the free
nodes. This operation can be done by keeping a bitset F of
the free value-nodes. It becomes possible to efficiently test
whether a variable-node Xi is adjacent to a free node with
the operations dompXiq&F ‰ 0.

Using the data structures and algorithms described above,
one can obtain an implementation of Régin’s algorithm run-
ning in time O

`

n2.5{w
˘

. Following Régin, the algorithm
can be further improved by making it incremental. Rather
than recomputing the maximum matching from scratch each
time the filtering algorithm is called, one can reuse the last
computed matching and adapt it to the new value-graph.
This leads to an incremental complexity of O

`

δn2{w
˘

where δ is the number of values removed from the variable
domains since the last execution of the filtering algorithm.

Experiments
We implement the filtering algorithms enforcing domain
consistency on the constraintsA`B C, |A´B| C and
ALL-DIFFERENT in the constraint solver of the C++ Google
or-tools library (Google 2011). This solver uses the bitset
data structure to encode the variable domains and is opti-
mized to run in 64-bit mode (w 64). We slightly modify
the solver to allow the filtering of multiple values in a single
instruction (for instance, see line 9 of Algorithm 1).

We have three different implementations of a filtering al-
gorithm enforcing domain consistency on the constraintA`
B C. The first implementation, denoted SUMWordRam,
is based on Algorithm 1 with a running time complex-
ity of Opminp|dompAq|, |dompBq|qd{wq. The second im-
plementation, denoted SUMTable, uses the constraint POS-
ITIVETABLECONSTRAINT available in the or-tools. This
constraint takes an enumeration of all triplets pa, b, cq satis-
fying a`b c and enforces domain consistency. Finally, we

implement a brute force algorithm, denoted SUMBruteForce,
that tests, for each pair in tpa, bq | a P dompAq, b P
dompBqu, whether the triplet pa, b, a ` bq is a support for
the constraint. Each time a support is found, the values
forming this support are flagged. Unflagged values are then
removed from the domains. The algorithm runs in time
O p|dompAq||dompBq| ` | dompCq|q.

We implement the filtering algorithm that enforces do-
main consistency on the constraint |A ´ B| C based on
Algorithm 2. We denote this implementation ABSWordRam.
The second implementation uses the table constraint and
filters the domain based on an enumeration of all triplets
pa, b, cq satisfying |a ´ b| c. We denote this implementa-
tion ABSTable.

Since the or-tools do not provide an algorithm that en-
forces domain consistency on the ALL-DIFFERENT, we im-
plement two versions of the algorithm. All versions reuse
the techniques that were tested to be the most efficient ac-
cording to (Gent, Miguel, and Nightingale 2008). The com-
putation of the maximum matching is incremental. The al-
gorithms are only executed on the components of the graph
affected by the removal of a value in the domains. We use
a breadth-first search to compute the augmenting paths. The
first version we implement, denoted ALL-DIFFERENT, does
not use the potential that offers the word-RAM. The second
version uses the techniques described in the previous section
and is denoted ALL-DIFFERENTWordRam.

All experiments are run on a 64-bit Intel Processor i7
3.4GHz with 4Gb of memory. Since all the filtering al-
gorithms enforce domain consistency, we obtain the same
number of backtracks for a given instance. We report the
number of backtracks but the computation time is the only
point of comparison. We use a timeout of 10 minutes for
each instance and report the best time out of three runs.

The n-queen Problem
The n-queen problem consists of placing n queens on a
nˆ n chessboard such that two queens do not appear on the
same row, same column, or same diagonal. Let the queen
on column i be on row Xi. We set Ai Xi ` i and
Bi Xi ` pn ´ iq for i 1..n. We impose three con-
straints ALL-DIFFERENT, one on the variables Xi, one on
the variables Ai, and one on the variables Bi.

Table 1 shows that the algorithm
ALL-DIFFERENTWordRam improves the times by 25% over
the algorithm ALL-DIFFERENT. Similarly, the algorithm
SUMWordRam is 30% faster than SUMTable. Together, the
new algorithms cut the execution times by 45%.

The Magic Square Problem
The magic square consists of filling in a n ˆ n grid with
the integers from 1 to n2 such that all rows, all columns,
and both diagonals sum to the same number. We model this
problem with one constraint ALL-DIFFERENT and 2n ` 2
linear constraints. Each linear constraint is decomposed into
n´1 constraintsA`B C for a total ofOpn2q constraints
A`B C.

For these problems, the table constraint SUMTable is un-
able to compete with the constraint SUMBruteForce because

581

n-queen
ALL-DIFFERENT ALL-DIFFERENTWordRam

n bt SUMTable SUMWordRam SUMTable SUMWordRam

9 208 14 11 11 8
10 686 48 38 37 26
11 2940 210 163 157 112
12 13450 972 759 737 526
13 65677 4827 3782 3657 2610
14 344179 25842 20199 19464 13798
15 1948481 149567 116567 111822 80002

Magic Square
ALL-DIFFERENT ALL-DIFFERENTWordRam

n bt SUMBruteForce SUMWordRam SUMBruteForce SUMWordRam

5 782 613 89 603 61
6 1535 2953 330 2931 238
7 2584 10654 1003 10551 748
8 4336 36301 3501 36220 2844
9 8211 119710 11228 117856 8849
10 23902 596705 46818 587675 37781
11 41857 - 109521 - 90062

Golomb Ruler
ALL-DIFFERENT ALL-DIFFERENTWordRam

n bt SUMBruteForce SUMWordRam SUMBruteForce SUMWordRam

6 39 8 4 8 2
7 207 44 22 37 16
8 1284 275 175 228 127
9 5980 1823 1286 1538 990
10 33318 12976 10380 11037 8484
11 553793 309715 275332 276345 241827

All-Interval
ALL-DIFFERENT ALL-DIFFERENTWordRam

n bt ABSTable ABSWordRam ABSTable ABSWordRam

9 855 24 14 18 10
10 2903 93 56 69 37
11 10335 366 216 268 140
12 39270 1555 891 1131 578
13 155792 6823 3838 4857 2480
14 656435 31116 17351 22443 10967
15 2886750 146681 80817 105740 50960
16 13447418 - 402566 522795 251246

Table 1: Execution times, in milliseconds, to solve an instance of size n. The column bt reports the number of backtracks.

it consumes too much memory. We use a restart strategy in
order to solve larger instance. Most of the computation time
is spent in filtering the linear constraints. Table 1 shows that
SUMWordRam cuts the computation time by 92% on some
instances compared to the algorithm SUMBruteForce. The
saving offered by ALL-DIFFERENTWordRam is not signif-
icant since most of the time is spent in filtering the linear
constraints.

The Golomb Ruler Problem
The Golomb ruler problem consists of finding an increas-
ing sequence X1, . . . , Xn with minimal Xn such that the
differences Dij Xj ´ Xi are all distinct. We use
one constraint ALL-DIFFERENT over the variables Dij and
Opn2q constraints Xi ` Dij Xj . Table 1 shows that
ALL-DIFFERENTWordRam offers a gain ranging from 10%
to 27% compared to ALL-DIFFERENT. SUMWordRam im-
proves the time up to 35% compared to SUMBruteForce. To-

gether the word-RAM algorithms cut the computation time
by 75% on the small instances to 22% on the larger in-
stances.

The All-Interval Problem
The all-interval problem consists of finding a sequence
X1, . . . , Xn such that the differences Di |Xi ´ Xi 1|

are all distinct. We use a single constraint ALL-DIFFERENT
and n´ 1 constraints of absolute difference. Table 1 shows
that ALL-DIFFERENTWordRam is from 28% to 37% faster
than ALL-DIFFERENT, and that the use of ABSWordRam can
cut in half the times compared to ABSTable. When combined
together, the word-RAM algorithms reduce the computation
time by 65%.

Conclusion
Designing filtering algorithms for the Word-RAM leads to
significant gains in efficiency. The bitset data structure used

582

to encode variable domains is one way to exploit the Word-
RAM model. It would be interesting to try these algorithms
with the Intel AVX instructions that manipulate words of
256 bits.

References
Cheriyan, J., and Mehlhorn, K. 1996. Algorithms for dense
graphs and networks on the random access computer. Algo-
rithmica 15:521–549.
Duguid, A. M. 1959. Structural properties of switching
networks. Technical Report BTL-7, Brown University.
Gent, I. P.; Miguel, I.; and Nightingale, P. 2008. Generalised
arc consistency for the alldifferent constraint: An empirical
survey. Artificial Intelligence 172(18):1973–2000.
Google. 2011. http://code.google.com/p/or-tools/.
Hagerup, T. 1998. Sorting and searching on the word ram. In
Proceedings of the 15th Annual Symposium on Theoretical
Aspects of Computer Science (STAC’98), 366–398.
Haralick, R. M., and Elliott, G. L. 1980. Increasing tree
search efficiency for constraint satisfaction problems. Arti-
ficial Intelligence 14(3):263–313.

Hopcroft, J., and Karp, R. 1973. A n
5
2 algorithm for maxi-

mum matchings in bipartite graphs. SIAM Journal of Com-
puting 2:225–231.
Knuth, D. E. 2008. The Art of Computer Programming,
Pre-Fascicle 1A, volume 4. Addison-Wesley.
LeCorre, J. 1959. Unpublished work.
Lecoutre, C., and Vion, J. 2008. Enforcing arc consistency
using bitwise operations. Constraint Programming Letters
2:21–35.
McGregor, J. 1979. Relational consistency algorithms
and their application in finding subgraph and graph isomor-
phisms. Information Sciences 19:229–250.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In Proceedings of the 11th National
Conference on Artificiel Intelligence (AAAI-94), 362–367.
Trick, M. A. 2003. A dynamic programming approach for
consistency and propagation for knapsack constraints. An-
nals of Operations Research 118:73–84.

583

