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Abstract

We address the problem of making single-point decisions in
large partially observable games, where players interleave ob-
servation, deliberation, and action. We present information
set generation as a key operation needed to reason about
games in this way. We show how this operation can be used
to implement an existing decision-making algorithm. We de-
velop a constraint satisfaction algorithm for performing infor-
mation set generation and show that it scales better than the
existing depth-first search approach on multiple non-trivial
games.

Introduction
Many real-world decision problems can be framed as games,
including securities trading, business acquisitions and merg-
ers, and military operations. The focus of this paper is the
extensive form game. Typically expressed in tree form, this
formal construct can be used to reason about environments
which involve multiple agents who make finite sequences of
decisions in the presence of uncertainty about the state of the
world and the decisions made by other agents.

A Nash equilibrium specifies an optimal choice for ev-
ery decision point in the tree and, for two-player games,
can be found in time polynomial in the number of nodes
in the tree (Koller, Megiddo, and von Stengel 1994). How-
ever, many games are so large that it is not feasible to even
enumerate a decision for every possible contingency.

In this work, we develop a system for using a list of ob-
servations and limited tree search to make single-point de-
cisions. After making a single decision, the agent receives
additional observations based on chance events or actions
chosen by competing agents, and the process repeats. We
express these games in our description language, POGDDL,
which is an extension of the PDDL language commonly
used in AI planning (Edelkamp and Hoffmann 2004).

In contrast to fully observable games like chess or check-
ers, players in partially observable games do not know ex-
actly which node in the game tree corresponds to the current
true state. Instead, players know only that the true state of
the game is one of a subset of nodes in the tree, known as
the player’s current information set.
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An information set is similar to a belief state—a probabil-
ity distribution over possible worlds—and the two terms are
sometimes used interchangeably. Here, we emphasize that
the members of an information set are nodes in a game tree.
Each node corresponds to a unique path from the root of
the game tree and therefore to a unique sequence of actions.
Therefore, an information set implicitly encodes not only the
set of all possible current states but also the set of all plausi-
ble game histories.

The probability of reaching a node is the product of the
probabilities of the branches that lead to it. We can estimate
the probability that a particular node is the true state by sim-
ulating the corresponding game history and estimating the
probability of each opponent action along the way. Through
simulation, we can identify not only what the world state
may have been but also what the opponent’s knowledge state
would have been at each decision point.

Existing solutions to the information set generation prob-
lem are based on depth-first search in the game tree and do
not scale well (Russell and Wolfe 2005; Parker, Nau, and
Subrahmanian 2005). We present a novel information set
generation algorithm and demonstrate that it can find nodes
in the information set in many cases where existing methods
cannot.

Background
Kuhn formally described imperfect information games in
terms of nodes and branches of a tree (Kuhn 1953). To de-
scribe a game using logical constructs, we adopt the fol-
lowing conventions. In a game tree Γ, each non-terminal
node corresponds to a decision made by one of K players
P1, . . . , PK or a chance event (e.g., roll of a die) executed
by a special player denoted P0. The full game state s at a
node at depth t comprises the true logical state s.P and a list
of observations s.o(k)1:t for each player that constitute Pk’s
knowledge base at that node. Nominally, s.P is a subset of
a finite set P of propositional variables or ground predicates
defined by a game description. The variables in s.P are those
that are TRUE in s. If Γ includes numerical values (e.g., a
running score), s encodes those values as well. Let K(s)
denote the player whose turn it is to move at s.

Let a1:t denote a sequence of actions a1, . . . , at, and let
a1:tat+1 denote the extension of that sequence by at+1. We
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Figure 1: A simple poker game. Nodes connected by curved lines
are in the same information set. Nodes without curved lines are in
singleton information sets.

use S(a1:t) to denote the state that is reached when action
sequence a1:t is executed from the start state s0.

Given a sequence of observations o(k)1:t for Pk, the infor-
mation set I(o

(k)
1:t ) is the set of action sequences that lead

to a state where Pk would have those observations. That is,
a legal sequence a1:t ∈ I(o

(k)
1:t ) iff K(S(a1:t)) = Pk, and

S(a1:t).o
(k)
1:t = o

(k)
1:t .

For a state s corresponding to a terminal node, Uk(s) de-
notes the numerical payoff (utility) for Pk if that state is the
outcome of the game.

Figure 1 shows a simple poker game for two players. The
decision point for P0, the dealer, is depicted as a circle. De-
cisions for P1 and P2 are shown as triangles and diamonds,
respectively.

Both P1 and P2 initially hold two dollars and are required
to put one dollar in the pot as an ante. The dealer, holding
a King and a Jack (K > J), randomly deals one card to P1

and the other to P2, with P1 holding the King in the left sub-
tree and the Jack in the right subtree. P1 learns the outcome
of the deal; P2 does not. P1 and P2, in turn, then choose to
fold (left branch) or to bet their other dollar (right branch).

The payoffs shown at the terminals are for P1; P2’s pay-
offs are the negation of these values. If one player bets and
the other passes, the bettor wins a net payoff of 1 (the other
player’s ante). Otherwise, in the case of a showdown, the
player with the stronger hand wins a net payoff of two dol-
lars if both players bet or one dollar if both folded.

Because P2 does not observe the outcome of the deal, its
information is the same at B.1 and B.2. That is, {B.1, B.2}
is one of P2’s information sets (These nodes are connected
in Fig. 1 to indicate that they are in the same information
set). When P1 bets, P2 knows only that the true state of the
game is either B.1 or B.2; this encodes the fact that P2 does
not know whether P0 selected branch K1J2 or K2J1.

A strategy σk for Pk defines a probability for every out-
going branch from all members of Pk’s information sets. In
Fig. 1, P1 has two singleton information sets: {K} and {J}.
P1 must assign probabilities such that Kf + Kb = 1 and

Jf + Jb = 1. Likewise, P2 must assign probabilities to out-
going branches from nodes in {F.1, F.2} and {B.1, B.2}.
Note that while P2 would prefer Bb = 1 in B.1 and Bf = 1
in B.2, the uncertainty dictated by the rules of the game re-
quires that this value be the same in both cases (i.e., P2 views
this as a single decision).

Under perfect information, the equilibrium strategy for
both players would be to bet on the King and fold with the
Jack; the expected value would be 0. Because of the par-
tial observability, P1 can guarantee an expected payoff of at
least 1/6 by exploiting the uncertainty that it knows P2 will
have. The equilibrium solution requires that P1 should bluff
on the Jack with probability 1/3.

Logic Description Language
The Game Description Language (GDL) can be used to de-
scribe games of perfect information (Love, Hinrichs, and
Genesereth 2006). Edelkamp and Kissman have shown how
GDL descriptions can be converted to a Planning Domain
Description Language (PDDL) specification with only a mi-
nor extension to PDDL to support utility functions for each
player at terminal nodes (Edelkamp and Kissmann 2007).
Thielscher has developed GDL-II, an extension to GDL that
supports imperfect information games (Thielscher 2010). In
GDL, each player is notified of all the moves made by other
players, allowing each player to completely update its in-
ternal representation of the true world state. In GDL-II, by
contrast, the game description specifies an observation that
each player receives for each move. Players must use their
list of observations together with logical inference to deduce
possible world states.

Thielscher has shown that GDL-II can be embedded in
the situation calculus, providing a reasoning system that
is theoretically both sound and complete. Many practical
challenges remain, however. A system might theoretically
prove the formula (holds p1 king) XOR (holds
p2 king), but it is not clear how a standard theorem
prover would be able to manage analysis of the probability
for each possibility. For our simple poker game, it would be
dangerous for P2 to assume that (holds p1 king) and
(holds p2 king) are equally likely to be TRUE, given
that P1 bet. Rather than trying to reason about specific for-
mulae, we propose to reason about the probability of each
complete state in the information set or, equivalently, the
probability of the corresponding action sequences. Also, for
games with large information sets, it may be feasible only to
analyze a sampled subset of the information set.

We have developed the Partially Observable Game Do-
main Description Language (POGDDL) as an extension of
PDDL 2.2 (Edelkamp and Hoffmann 2004). Notably, this
subset of the PDDL language offers support for derived
predicates and numerical fluents.

We use the same extension described in (Edelkamp and
Kissmann 2007) to specify payoffs for each player:

(:gain <typed list(variable)> <f-exp> <GD>)

The first parameter specifies a list of players. The second
parameter is the numerical reward those players attain when
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(:constants
p1 p2 chance - role
bet pass - choice)

(:init
(= (potsize) 1)
(whoseturn chance)
(gambler p1) (gambler p2)
(isbet bet))

(:action deal-stronger
:parameters (?p - role)
:precondition (and
(whoseturn chance)
(gambler ?p))
:effect (and
(not (whoseturn chance))
(whoseturn p1)
(stronghand ?p)
(observe (p1 (stronger ?p))
(p2 (stronger unknown)))))

(:action p1-choose
:parameters (?c - choice)
:precondition (whoseturn p1)
:effect (and
(not (whoseturn p1))
(whoseturn p2)
(chose p1 ?c)
(observe (all (p1chose ?c)))))

(:action p2-choose
:parameters (?c - choice)
:precondition (whoseturn p2)
:effect (and
(not (whoseturn p2))
(chose p2 ?c)
(when (and
(isbet ?c)
(chose p1 bet))
(assign (potsize) 2))

(observe (all (p2chose ?c)))))

(:gain ?p (potsize)
(or
(and
(stronghand ?p)
(or
(chose ?p bet)
(exists (?o - role)
(and
(oppof ?p ?o)
(chose ?o pass)))))

(and
(chose ?p bet)
(exists (?o - role)
(and
(oppof ?p ?o)
(chose ?o pass))))))

Figure 2: POGDDL encoding of the simple poker game.
(See Fig 1.) Predicate declarations are omitted.

the goal condition, a logical formula given by the third pa-
rameter, is achieved in a terminal state.

The key syntactic extension that we add to support par-
tial observability is an observe construct, which appears
in the (possibly conditional) effects clause of an action and
specifies the observation each player receives for each ac-
tion. Crucially, these observations may vary by player.

Figure 2 shows a POGDDL encoding of the sim-
plified poker game from Figure 1. For P1, the infor-
mation set that corresponds to o1:1 = [(stronger
p1)] is {[(deal-stronger p1)]}, and for
o1:1 =[(stronger p2)], it is {[(deal-stronger
p2)]}. These correspond to {K} and {J}, respectively, in
Fig 1.

For P2, the information set for o1:2 =
[(stronger ?),(p1chose pass)] is
{[(deal-stronger p1),(p1-choose pass)],
[(deal-stronger p2),(p1-choose pass)]}
and for o1:2 =[(stronger ?),(p1chose bet)], it
is {[(deal-stronger p1),(p1-choose bet)],
[(deal-stronger p2),(p1-choose bet)]}. The
former corresponds to the set {F.1, F.2} in Fig. 1 and the
latter to {B.1, B.2}.

Note that in the POGDDL framework, action effects
and associated observations are deterministic. To simulate
stochastic effects or observations for a player’s actions, a
game designer can implement a deterministic player action
followed by a chance event.

Single-Point Decisions
Figure 3 shows a single-point decision procedure described
in (Parker, Nau, and Subrahmanian 2005). In the original
formulation, the algorithm takes a set of possible states as
an input parameter. This set is computed in a game-specific
way. We modify the algorithm to take instead only a list of

1: function CHOOSEMOVE(Obs o(k)1:t )
2: I = INFORMATIONSET(o(k)1:t )
3: L = LEGALMOVES(I)
4: for each a1:t ∈ I do
5: P̂ (a1:t)→ESTIMATEPROB(a1:t)
6: for each a ∈ L do
7: V̂ (a1:t, a) = EVAL(S(a1:ta))P̂ (a1:t)

8: return argmaxa∈L
∑

a1:t∈I
V̂ (a1:t, a)

Figure 3: Single-point decision strategy with information set gen-
eration.

observations; we then use our general information set algo-
rithm to identify possible game histories.

By simulating a plausible sequence and checking which
actions’ preconditions are satisfied in the resulting state, we
identify possible legal moves. Then for each possible state
and each legal action, we estimate the value of the suc-
cessor state using some heuristic evaluation function. This
may be computed as a function of the logical state vari-
ables (Kuhlmann, Dresner, and Stone 2006) or by using
Monte Carlo Search methods (Kocsis and Szepesvári 2006).

The estimated values are weighted by the agent’s estimate
of the probability of the corresponding game history. Some
of the actions in a1:t may be opponent moves, so this process
of estimating probabilities requires opponent modeling. A
key advantage of our Information Set Generation (ISG) ap-
proach is that Pk can partially simulate a possible sequence
of moves up to an opponent’s decision point. Let P-k be an
opponent of Pk, and suppose that K(S(a1:t−1)) = P-k.
By considering the observations that P-k would have had
at S(a1:t−1), Pk can generate P-k’s information set at that
point, and then analyze that decision point from P-k’s per-
spective, in order to estimate P (at|S(a1:t−1)). Note that this
method provides a general approach for Pk to reason about
what P-k knows. Implementations of this mode of reason-
ing has proven effective in systems designed to play specific
games, such as Scrabble (Richards and Amir 2007).

Information Set Generation
Algorithm DFS-Infoset, shown in Figure 4, outlines a
naı̈ve but generally applicable way for identifying sequences
of actions that are consistent with a player’s observations.
This straightforward approach is alluded to in (Parker, Nau,
and Subrahmanian 2005) and (Russell and Wolfe 2005).

Given a list of observations o(k)1:t , the algorithm traverses
the game tree in a depth-first manner, returning all sequences
of actions for which the observations for Pk would be ex-
actly those specified by o(k)1:t .

At the ith level of recursion, the function checks that the
simulated observation for Pk at a node at the ith level of the
tree is the same as the actual observation o(k)i given in the
input, and only makes a recursive call if they match.

While straightforward and generally applicable in theory,
the algorithm is often prohibitively expensive.

Suppose the first move of the game is a random face-
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1: function DFS-INFOSET(a1:t, o
(k)
1:T , I , s, t)

2: if t > T then
3: I ← I ∪ a1:t

4: else
5: for each legal action a at s do
6: s′ = GETNEXTSTATE(s,a)
7: if s′.o(k)t+1 = o

(k)
t+1 then

8: DFS-INFOSET(a1:ta, o(k)1:T , I , s′, t+ 1)

Figure 4: Information set generation as depth-first search. The
function should be called with an empty action sequence, Pk’s cur-
rent observation list, I = {}, s = s0, and t = 0. When the top-
level call returns, I holds the full information set.

down deal of one of n house cards, such that Pk’s obser-
vation is (dealt ?), regardless of which card is dealt.
Then, m moves later, that card is revealed to be c1, so
that o(k)m+1 = (house c1). Let the branching factor of the
game tree be b for levels 2 to m + 1. Now suppose that the
first branch searched at level 1 corresponds to move (deal
c0). The DFS-Infoset function may potentially search
a subtree of size bm exhaustively, pruning only at levelm+1
each time when it is discovered that the simulated observa-
tion (house c0) does not match the actual observation
(house c1).

Such effort is both intractable and unnecessary. Pk

should be able to infer from o
(k)
m+1 = (house c1) that

a1 =(deal c1), without having to search a large portion
of the game tree up to depth m+ 1. Systems targeted to one
game tend to hard-code such domain-specific understanding.

Information Set Generation as Constraint
Satisfaction
A better approach for the general case is to frame the in-
formation set problem as a constraint satisfaction prob-
lem that makes it possible to use all relevant observa-
tions to appropriately prune the search space. Algorithm
CSP-InfosetSample (Figure 5) follows this approach.

1: function CSP-INFOSETSAMPLE(SG, o(k)1:T , A[])
2: if INCONSISTENT(SG) then
3: return ∅
4: else if COMPLETE(A) then
5: return A
6: else
7: t← RANDOMUNSETTIMESTEP(SG)
8: L← PLAUSIBLYLEGALMOVES(SG)
9: a = RANDOMELEMENT(L)

10: A[t]← a

11: SG’ = PROPAGATE(SG, t, a, o(k)1:T )
12: return CSP-INFOSETSAMPLE(SG’, o(k)1:T , A)

Figure 5: Information Set Generation as a Constraint Satisfaction
Problem.

This algorithm solves a general T -variable constraint sat-
isfaction problem, where T is the total number of actions
that have been executed by all players up to the current point

1: function PROPAGATE(SG[], t, a, o(k)1:T )
2: Redo[i]← FALSE for 1 ≤ i ≤ T
3: Update SG[t-1] with precondition of a
4: Update SG[t] with effects of a
5: Redo[t-1], Redo[t+ 1]← TRUE

6: return REEVALUATE(SG, Redo, o(k)1:T )
7:
8: function REEVALUATE(SG[], Redo[], o(k)1:T )
9: while ∃i Redo[i] = TRUE do

10: for each t s.t. Redo[t] = TRUE do
11: Redo[t]←FALSE
12: [DefPre,DefEff,PossEff]←
13: PLAUSIBLEACTIONINFO(SG[t-1],SG[t],o(k)t )
14: for each p ∈ DefPre s.t. SG[t-1,p]=UNKNOWN do
15: SG[t-1, p]← TRUTHVAL(DefPre, p)
16: Redo[t-1]← TRUE

17: for each p ∈ DefEff s.t. SG[t,p]=UNKNOWN do
18: SG[t,p]← TRUTHVAL(DefEff, p)
19: Redo[t+ 1]← TRUE

20: return SG
21:
22: function INITGRAPH(o(k)1:T , s0 )
23: SG[0] = s0
24: for 1 ≤ t ≤ T do
25: [DefPre,DefEff,PossEff]←
26: PLAUSIBLEACTIONINFO(SG[t-1],SG[t],o(k)t )
27: for each p ∈ DefPre s.t. SG[t-1,p]=UNKNOWN do
28: SG[t-1, p]← TRUTHVAL(DefPre,p)
29: Redo[t-1]← TRUE

30: for each p ∈ P do
31: if p ∈ DefEff then
32: SG[t, p]← TRUTHVAL(DefEff,p)
33: else if p ∈ PossEff then
34: SG[t, p]←UNKNOWN
35: else
36: SG[t, p]← SG[t-1, p]
37: return REEVALUATE(SG, Redo, o(k)1:T )

Figure 6: Helper functions for CSP-INFOSETSAMPLE. TRUTH-
VAL(S,p) returns TRUE when p appears as a positive literal in S
and FALSE when p is a negative literal.

in the game. For 1 ≤ t ≤ T , the tth variable corresponds to
the tth action taken, and the possible values are the possi-
ble actions in the game. A player’s information set is the
set of all feasible solutions to the CSP. As written, the algo-
rithm returns a single feasible action sequence (or ∅, if the
algorithm’s non-deterministic choices lead to a conflict.) A
sample of possible nodes from the information set can be
obtained by running the algorithm repeatedly.1

The basics of the backtracking search are implemented in
CSP-INFOSETSAMPLE. The inputs are an initialized special
data structure which we call a stage graph (described in de-
tail below), the observation sequence for the active player up

1Alternatively, the algorithm can be modified to produce the full
information set by changing the random selection at line 9 to iterate
over all legal actions and then collect the sequences found at line 5
into a set. This may be prohibitively expensive in games with large
information sets.
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to the current point in the game, and an empty fixed-length
vector A representing an action sequence.

At the initial invocation, each action in A is undefined.
The result of the call to CSP-INFOSETSAMPLE is either a
conflict, or an action sequence representing a node from the
information set, or a recursive call with an additional slot in
A fixed to a single concrete action. In the latter case, the time
step selected is chosen at random (line 7) from among all
the remaining time steps for which actions have not already
been fixed by previous calls to the function. 2

Having selected a particular time step t, the algorithm
uses the game rules and information in the stage graph to
identify all possible actions whose preconditions and ef-
fects are not inconsistent with other actions in A that have
been fixed by previous calls and whose resulting observation
matches o(k)t . From this set of possible actions, one is ran-
domly selected (line 9). From the perspective of solving a
CSP, this corresponds to assigning a value to a variable. Fix-
ing a particular action a forA[t] (line 10) constrains the truth
value of some predicates at time t-1 because of the precon-
ditions of a and constrains some predicates at time t because
of the effects of a.3

The PROPAGATE function returns an updated stage graph
that encodes these ramifications (line 11). Then CSP-
INFOSETSAMPLE is recursively called with the updated
stage graph and action sequence. If a subset of actions se-
lected in A lead to a situation where there are no legal ac-
tions possible for one or more other time steps, then a con-
flict is generated and the function returns (line 3). Otherwise,
if an action is successfully assigned at every time step in A,
then the action sequence A corresponds to a node in the in-
formation set and is returned.

The PROPAGATE, REEVALUATE, and INITGRAPH func-
tions manage the stage graph data structure that serves to
reduce the branching factor of the search for solutions in
the CSP by eliminating many actions from consideration.
A stage graph is similar to the planning graph structures
used in the AI planning (Blum and Furst 1997). For each
time step, there is a stage that stores the set of potential ac-
tions that are plausible at that timestep and a vector with one
of three values for each proposition in the resulting state:
TRUE, FALSE, or UNKNOWN.

In function INITGRAPH, The 0th stage of the graph is ini-
tialized with the (known) start state; there is no action asso-
ciated with the 0th stage (line 23). For timesteps t from 1
to T , stage t of the graph is initialized (lines 24–36) by (1)
computing the set of actions for which the resulting observa-
tion would match the observation o(k)t actually received and
for which the preconditions do not conflict with the proposi-
tional values at stage t-1 (line 26); (2) setting known values
for the propositions at t that are common effects of all the

2Rather than choosing at random, a commonly applied heuris-
tic for such problems is to select the most constrained remaining
variable, i.e., the decision point for which there are the fewest pos-
sible actions, given the constraints imposed by the other existing
variable assignments.

3Our convention is that s0 is the initial state and that action ai

is applied to state si−1 to produce si, for i ≥ 1.

potential actions (line 32); (3) propagating the values from
stage t for propositions that are unaffected by any of the
potential actions (line 36); and (4) marking as UNKNOWN
those propositions that appear in the effects of at least one
plausible action but not in all (line 34). Additionally, if there
are any propositions entailed by the disjunction of the pre-
conditions of potential actions at t that were UNKNOWN at
stage t-1, those values are updated and stage t-1 is marked to
be re-evaluated. Specifically, the plausible action set at that
stage must be recomputed. (lines 27–29).

The PLAUSIBLEACTIONINFO function identifies actions
for a particular time step that are not inconsistent with in-
formation already stored in the stage graph. This is different
than simply identifying provably legal actions because of the
presence of UNKNOWN values in the stage graph.

Suppose we are considering plausible actions at time t. If
action a has precondition p1∧p2 and stage t holds that p1 =
TRUE and p2 = FALSE, then the action is definitely not
plausible. However, if p1 = TRUE and p2 = UNKNOWN,
then a might be legal. We cannot prove that it is legal, but
neither can we prove that it is not. We therefore say that it is
“plausible” and that it does not conflict with the information
in the stage graph.

Propositions (or their negations) that are entailed by the
disjunction of the preconditions of all plausible actions
must hold at the previous time step. These “definite pre-
conditions” are returned from PLAUSIBLEACTIONINFO as
DefPre. Similarly, the set of propositions that are entailed
by the disjunction of the effects of possible actions must hold
at t. These “definite effects” are returned as DefEff. Both
DefPre and DefEff include one set of known positive lit-
erals and one set of known negative literals.

Propositions that are entailed by the effects of one or more
of the possible actions but not all of them are “possible ef-
fects” and are returned as PossEff. The PLAUSIBLEAC-
TIONINFO function requires as parameters the observation
at time t and the graph stages for time steps t-1 and t. The
function ensures that an action is excluded from the plau-
sible set for t if and only if its precondition conflicts with
known predicate truth values at t-1 or its effects conflict with
known predicates at t.

During the initialization of stage t, it is possible to iden-
tify propositions whose truth values at t-1 are determined by
DefPre but whose values were UNKNOWN during the ini-
tialization of stage t-1 (lines 27–29). Therefore, a vector of
Boolean flags Redo is maintained that keeps track of stages
whose set of plausible actions may need to be recomputed.

The REEVALUATE function (lines 8–20) runs a fixed point
calculation that repeatedly computes plausible action sets
until there are no additional propositions at any stage whose
values can be changed from UNKNOWN to either TRUE or
FALSE.

When a particular action a is fixed for time step t in CSP-
INFOSETSAMPLE, the PROPAGATE function (lines 1–6) up-
dates the stage graph to reflect the fact that the precondi-
tions of a hold at t-1 and the effects of a hold at t. As in
stage graph initialization, the ramifications of these updates
are computed by invoking REEVALUATE.
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Time and Space Complexity The space taken by the
stage graph is O(|P|T ), where |P| is the number of ground
propositions in the game description.The overall running
time depends most crucially on the REEVALUATE function,
and in particular on the number of iterations of the loop at
lines 9–19. The number of iterations is bounded by the num-
ber of propositions marked as UNKNOWN during the stage
graph initialization phase. Each iteration of the while loop
in the REEVALUATE function (other than the last) reduces
the number of UNKNOWNs by at least 1, so there are at most
|P|T iterations.

The PLAUSIBLEACTIONINFO subroutine (not explicitly
shown) must identify plausible actions given the informa-
tion currently in the stage graph for the current and next
time steps. Identifying legal moves involves testing the sat-
isfiability of arbitrary Boolean expressions and is therefore
theoretically exponential in the size of the game description.
In practice, any tree search algorithm will be practical only
if the ability to identify legal moves is sufficiently computa-
tionally inexpensive so as to be used repeatedly as a subrou-
tine. Many interesting games, including those studied in this
work, satisfy this property.

The overall expense of information set generation de-
pends on the expected number of times that CSP-
INFOSETSAMPLE must be called in order to obtain a viable
action sequence. This efficiency varies greatly from game to
game and will require additional analysis.

Empirical Results
We have encoded three non-trivial games in POGDDL.
Racko and Battleship are popular table games; the Game
of Pure Strategy comes from the game theory literature.
For each game type, we varied complexity parameters
(number of cards, size of game grid, etc.) to measure the
performance and scalability of both DFS-Infoset and
CSP-InfosetSample. For each game instance, we gen-
erated ten random positions and tested each algorithm’s abil-
ity to sample from the current player’s information set. For
each position studied, each algorithm was allotted up to 30
seconds to search for nodes in the information set. (This cut-
off was chosen arbitrarily, but we did not notice a signifi-
cant variation in the relative strength of the algorithms when
other cutoffs were used.) The decision-making procedure re-
quested a maximum of 30 samples from each information
set.

Racko Racko consists of a deck cards numbered 1 to n
and a rack for each player with k ordered slots, with n >
2k. The cards are shuffled and then the first 2k cards are
dealt into the players’ rack slots, such that players see only
their own cards. The next card is placed face-up as the initial
discard pile, and the remainder of the cards are placed face
down as the draw pile. Each player’s goal is to get the cards
in his rack in ascending order. On each turn, a player may
exchange a card on his rack with the top card from the draw
pile or the most recently discarded card. The card that is
swapped out is placed face-up on the discard pile. The game

ends when one player’s rack is totally ordered or when a set
number of turns have been played.

Results for information set generation in Racko are shown
in Table 1 (left). The table shows experimental data for in-
stances of the game ranging in complexity from six slots
per player and 30 total cards to the standard configuration
of 10 slots per player and 60 total cards. Each entry in
the table shows the number of information set nodes iden-
tified within the time limit. CSP-InfosetSample suc-
cessfully samples information set nodes in each case, while
DFS-Infoset is not able to find a single information set
node in 19 of 20 games.

In the standard game, a player may have over ten bil-
lion nodes in its information set, so the ability to sample
from the information set (rather than enumerate it in full)
is crucial. As play proceeds and a player has opportuni-
ties to see what cards the opponent swaps out of its initial
rack, the size of the information sets decreases. The prop-
agation of the ramifications of these observations through
the stage graph allows the CSP-InfosetSample algo-
rithm to concretely identify the only plausible actions by
the dealer during the rack initialization phase, which greatly
improves the efficiency of search. This kind of inference
would be hard-coded in a system designed specifically to
play Racko. CSP-InfosetSample implements this rea-
soning in a generalized form.

Battleship In Battleship, players secretly deploy five ships
on a 10x10 grid. Each ship occupies 2–5 consecutive hori-
zontal or vertical grid spaces. Players then take turns calling
out grid cells where they believe the opponent’s ships are.
When a player calls out a cell, the opponent responds with
‘hit’ if the cell is occupied by a ship and ‘miss’ if it is not.
The opponent is required to declare which ship was hit and
must also declare ‘sunk’ if all other cells occupied by that
ship have already been hit. The first player to sink all of her
opponents ships wins.

We varied the number of ships in the game from
one to five and the size of the grid (per side) from
four cells to ten. In our experiments (Table 1, middle),
CSP-InfosetSample is always successful in sampling
information set nodes and in many cases produces the full
information set. By contrast, the DFS algorithm finds fewer
nodes in the information set and cannot find any information
set nodes for many of the larger instances (more than three
ships, or grids larger than 6x6).

Game of Pure Strategy The Game of Pure Strategy
(GOPS) is described in (Luce and Raiffa 1957). A subset of
a deck of cards is dealt such that each player has n cards and
n additional cards lie in the middle. One by one, the cards
in the middle are exposed. Players use the cards in their own
hands to bid on the card shown. Players simultaneously de-
clare their own bids, with the high bidder winning the card
and scoring the number of points shown on the card. The
player who has accumulated the most points at the end of
the n bidding rounds wins.

Our results for GOPS (Table 1, right) show that, once
again, CSP-InfosetSample succeeds in every case,
while the DFS-Infoset is unable to find any information
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crds 30 40 50 60 cells 4 6 8 10 crds 10 20 30 40
slts ships bids

CSP 6 131 106 109 149 1 86 287 177 555 2 300 300 300 300
DFS 0 30 0 0 86 232 114 166 300 300 60 30

CSP 7 175 158 126 158 2 70 121 2161 792 4 300 300 300 300
DFS 0 0 0 0 70 117 141 36 0 30 0 30

CSP 8 278 146 180 228 3 39 656 318 792 6 300 300 300 300
DFS 0 0 0 0 39 65 0 0 0 0 0 0

CSP 9 260 158 118 87 4 1598 90 345 865 8 300 300 300 300
DFS 0 0 0 0 194 1 0 0 0 0 0 0

CSP 10 308 273 106 179 5 NA 173 1087 1074 10 300 300 300 300
DFS 0 0 0 0 0 0 0 0 0 0 0

Table 1: (left) Racko. Variables: slots per player (row), total
cards (column). (middle) Battleship. Variables: ships per player
(row), grid cells per side (column). (right) Game of Pure Strategy
(GOPS). Variables: bidding rounds (row), extra cards (column).

set nodes in over half of the game instances.

Conclusions and Future Work
The ability to reason about information sets at a logical level
and to sample from them in a scalable way is necessary for
general single-point decision-making. In our experiments,
our constraint-based search methods far outperform exist-
ing depth-first search techniques on this task. The ability to
identify game histories that are consistent with a sequence
of observations makes it possible to recreate past positions
from an opponent’s perspective and to reason about the op-
ponent’s knowledge state at that position. Future work will
elaborate on the opponent modeling and tree search aspects
of game-play and how to combine these techniques to im-
prove the quality of decision-making.
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