

Learning Qualitative Models by Demonstration

Thomas R. Hinrichs and Kenneth D. Forbus
Department of EECS, Northwestern University

2133 Sheridan Road, Evanston IL 60208
{t hinrichs, forbus}@northwestern.edu

Abstract
Creating software agents that learn interactively requires the
ability to learn from a small number of trials, extracting
general, flexible knowledge that can drive behavior from
observation and interaction. We claim that qualitative
models provide a useful intermediate level of causal
representation for dynamic domains, including the
formulation of strategies and tactics. We argue that
qualitative models are quickly learnable, and enable model
based reasoning techniques to be used to recognize,
operationalize, and construct more strategic knowledge.
This paper describes an approach to incrementally learning
qualitative influences by demonstration in the context of a
strategy game. We show how the learned model can help a
system play by enabling it to explain which actions could
contribute to maximizing a quantitative goal. We also show
how reasoning about the model allows it to reformulate a
learning problem to address delayed effects and credit
assignment, such that it can improve its performance on
more strategic tasks such as city placement.

 Introduction
A flexible software learning agent should be able to learn
through close interaction with a human instructor and
progressively become more independent. A natural
question, then, is what sorts of knowledge and expectations
will enable it to learn from a small number of trials,
without unduly constraining what can be learned? We
claim that a qualitative model can provide useful leverage.
This is a kind of conceptual knowledge that can be learned
by demonstration using a combination of empirical and
analytical methods, and can be exploited in complex
performance tasks. Moreover, because it is declarative, it
can help to explain a system’s behavior.

This paper addresses three main questions: 1) How can a
qualitative model improve performance in a dynamic
domain? 2) How can such a model be learned by

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

demonstration? and 3) What ancillary domain procedures
and rules are needed to exploit a qualitative model and how
can they be learned? Our answers to these questions are
illustrated in the context of learning to play Freeciv1, an
open-source implementation of a civilization-style game.
This domain is challenging because of its complexity and
scale, but the mechanisms we present should be applicable
to any dynamic domain with quantitative goals that depend
on a causal or otherwise deterministic system with
continuous inputs and outputs.

We begin by discussing the role of qualitative models,
followed by our techniques for learning them and how they
are used in turn to learn decision strategies and procedures.
We describe an experiment demonstrating that learning
qualitative models and using them to support further
learning both lead to significant improvements. We then
describe related work, future work and conclusions.

Using Qualitative Models to Decompose Goals
Following Qualitative Process Theory (Forbus, 1984), we
define a qualitative model as a directed acyclic graph of
influences between quantities that are conditioned by
active process instances that drive change. These
influences fall into two broad categories: direct influences
of processes, represented by partial information about
derivatives and indirect influences that propagate their
effects, represented by qualitative proportionalities.
Together, they represent the causal structure of a system.
We believe that such qualitative models have a number of
roles to play in learning, including grounding for
instruction and advice, and as building blocks for higher-
level strategies. Here we focus on how qualitative models
can be used to guide the behavior of the game player by
linking executable actions to higher-level goals.

1 http://freeciv.wikia.org

207

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

Specifically, by representing the game’s performance
goal in terms of maximizing or minimizing a quantity, the
player can search back through the graph of qualitative
influences to make informed decisions about executable
actions. Although these decisions may not be optimal,
they provide an initial plan which can be debugged and
improved. Our primary role for qualitative models, then, is
decomposing goals into sub-goals.

Of course, regressing to primitive actions is not enough,
as they may not be currently legal. In this case, the player
must perform still more planning to regress back over the
preconditions until a legal action is found. We frame this
as a heuristic decision problem of selecting the most direct
plan among alternatives. To do this cheaply, we use
planning graph heuristics to find the shortest plausible
chain from legal action to goal action (Bryce and
Kambhampati, 2007).

Qualitative Models in Freeciv
We are exploring the role of qualitative models in the
context of learning to play Freeciv (see Figure 1). Freeciv
is a good testbed for learning because it embodies complex
dynamics, it is sufficiently complex to support
sophisticated strategies, and it enables experiments with
variable autonomy - the simulation itself provides feedback
and built-in bots can be configured to serve as opponents.

A significant aspect of Freeciv is managing the growth
of cities. Ultimately, all wealth is produced by working the
tiles within city boundaries. Each worked tile produces
some amount of food points, production points, and trade
points, depending on the terrain and resources present in
that location, such as wheat, fish, or iron. This income is
then applied to feed the citizens, build and maintain
infrastructure and units, and fill the treasury. The exact
relationships can be quite complex, factoring in, e.g.,
corruption, pollution, government types, and civil unrest.

A qualitative representation of these relationships captures
the influences between quantities as direct, e.g., the surplus
food per turn directly influences the amount of food in the
city’s granary or indirect, e.g., the food surplus is
qualitatively proportional to the food produced there, i.e., it
monotonically increases with it, all else being equal. A
further complication of this domain is that new entities,
such as cities and units, are created dynamically.

Learning Qualitative Models
The target representation for the learned qualitative model
is type-level influence statements, rather than propositional
influences. For example, instead of learning that the food
produced in Boston influences the surplus food in Boston,
that statement is lifted to a higher-level statement that the
food produced in any city influences the surplus in that
same city, e.g.,
(qprop+TypeType
 (MeasurableQuantityFn cityFoodSurplus)
 (MeasurableQuantityFn cityfoodProduction)
 freeCiv City freeCiv City equals)

The first two arguments are the quantity types related, the
3rd and 4th arguments are the types of entities for which a
qualitative proporitionality between their quantities holds,
given that the relationship in the 5th argument holds
between them. In general, the entities need not be the
same and the lifting process must search for a binary
relation that uniquely relates the entities. Lifting to the
type level like this can be viewed as migrating knowledge
from episodic memory to semantic memory. It also affords
a kind of higher-order qualitative reasoning that scales
better, is more easily matched and is likely to be better
suited for natural language understanding than
propositional representations or traditional logically
quantified formulae.

Initially, the learning agent (Forbus et al 2009) starts out
with no qualitative model or plans for playing the game,
but it does possess a small initial endowment of knowledge
about the game in order to recognize possible event
triggers, quantity types, and mutually exclusive properties.
Specifically, there are representations of:

1) Game types, such as units, cities and technologies,
2) Primitive action types, consisting of preconditions

and effect statements,
3) The set of asynchronous game event types, such as

UnitBuiltEvent or TechLearnedEvent, and
4) The set of primitive quantity types that may be

queried for values, including their units.
These are all formally represented in our knowledge

base, using Cyc-style microtheories to contextualize
Figure 1: Freeciv city, terrain and resources

208

knowledge2. We exploit microtheory inheritance to
efficiently retrieve domain-specific quantity types and
relationships between game entities.

In addition to these representations, we rely on two
kinds of spatial reasoning, due to the spatial nature of the
game. Path planning is assumed, as is spatial scanning,
implemented as a predicate which scans outwards from a
starting point for locations matching a given condition.

As the teacher demonstrates the game, the learning agent
monitors the communications between the game server and
the GUI client. It tries to explain several different aspects
of events: 1) the user's motivation in taking an action, 2)
the causes behind game events, 3) quantity changes that
happen due to actions within a turn, and 4) quantity
changes that occur over time across turns. By seeking to
explain these events in terms of qualitative influences and
processes, it creates defeasible hypotheses that, taken
together, comprise a qualitative model.

Learning Qualitative Influences
Just like a scientist, the learning agent makes the most
general hypothesis it can to explain an observation and
then rejects it later if it is found to be incorrect. We use
cases to extract, from the rich perceptual information
available in the game state, a concise record consisting of
relevant facts to be used in particular learning tasks. For
example, it records the type-level influence hypotheses in
influence cases, along with the propositional observations
that support them. These cases serve two functions: they
enable the agent to rapidly detect counter-examples to a
proposed hypothesis and they enable it to detect trends
over time. The learning process can be described in terms
of the events, conditions and preferences for proposing
hypotheses and the conditions for retracting them.

Two kinds of events drive influence learning: changes to
quantities that are detected at the beginning of a turn and
changes to quantities within a turn. In Freeciv, multiple
actions can take place within a turn, such as moving
different units and setting parameters of cities. The effects
of these actions are treated as instantaneous, or synchronic.
Other changes are expressed across turns, such as growth
of a city or accumulation of gold in the treasury. These
diachronic changes are interpreted as the result of
processes occurring over time. Qualitative Process Theory
(Forbus, 1984) requires that diachronic changes must
ultimately be caused by processes, via a direct influence.

The existence of synchronic changes breaks this
assumption, since such changes are ultimately driven by
discrete actions. This makes finding indirect influences
somewhat more subtle. Because we know whether a
change was instantaneous or not, we know whether we are

2 The contents of our knowledge base are mostly derived from
ResearchCyc, with our own extensions and reasoning engine.

looking for a process rate or an action. The challenge for
inducing indirect influences is to infer the causal direction.
We know intuitively that by placing a worker on a tile, we
change the food produced there, which contributes to the
food production in the city, which determines the food
surplus in that city. Yet, given just a set of numbers, it's
much harder for the software to figure out what causes
what.

Thus the first step in inducing indirect influences is to
determine the quantities at the fringe of the network - the
exogenous quantities that are determined by the actions
rather than influenced by other quantities. We do this in
two ways. First, if the arguments to an action directly
specify a quantity, such as setting the tax rates, this must
be an exogenous quantity, and we label it as such. The
second way is if the action introduces (or eliminates) a
binary relation that mentions a constant quantity whose
magnitude equals the amount of change of some other
quantity. For example, if an action assigns a worker to a
terrain tile, this adds a binary relationship
cityWorkingTileAt, that can be interpreted as switching in
the contribution of the tile production (a constant) to the
city production (a fluent). Being constant, such exogenous
quantities cannot be influenced by other quantities.

Next, synchronic changes are compared pairwise to
propose hypotheses. For changes to non-exogenous
quantities, it searches for likely candidates for influencers,
preferring quantities whose change had the same
magnitude, with the same units, on the same entity, but
progressively relaxing these preferences until a unique
influencer can be found. Quantities pertaining to different
entities must be related through an explicit binary
relationship between their entities in order to lift the
influence to the type level. Hypothesized influences that
are violated in prior cases or violate the constraints of QP
Theory (e.g. no quantity can be directly and indirectly
influenced simultaneously) are filtered out. The remaining
hypotheses are written out to the KB in an influence case
in such a way that they can be rapidly queried for
counterexamples. Cases are represented as microtheories
in an inheritance lattice and are further partitioned into
direct influence cases and indirect influence cases.
Efficient microtheory inheritance thus allows it to be
quickly determined whether a quantity type has a prior
direct or indirect influence hypothesis.

Our influence induction mechanism tends to over-
generate. Because this is an on-line algorithm, any
coincidence starts out as a potential influence and must be
pruned later if counterexamples arise. The most common
case is influences with ambiguous causal direction. When
two quantities change in lockstep, which causes the other?

209

One kind of counter-example that prunes hypotheses is
when a purported independent quantity changes but the
corresponding dependent quantity does not. Although this
can conceivably happen if there are multiple influencers
that exactly cancel each other out, it is vastly more likely
that the influence is simply wrong.

Learning direct influences is a bit simpler and less prone
to error, because there tend to be fewer of them, and by
assuming only a single direct influence on a quantity (its
rate of change) the magnitude of that rate can be
constrained to equal the magnitude of the change of the
dependent quantity. Here, instead of examining pairwise
changes, it looks for potential direct influencers whose
value corresponds to the change magnitude. It still over-
generates hypotheses, and prunes using a 3-strikes
heuristic: if a hypothesized influence is violated three times
in a row, retract it. Why not immediately? As it turns out,
there are sometimes exceptions, i.e., local discontinuities
that arise from processes reaching a limit point. So, for
example, when a city produces a settler, its normal growth
is interrupted and the size of the city drops by one. Since
this coincides with an event, we treat it as an exception,
rather than an erroneous hypothesis. If it were to happen
consistently, though, the influence would be rejected.

Another subtlety of learning direct influences is that
some quantities grow as step functions, increasing by one
only after many turns, such as citySize. Here, the learner
must interpolate a fractional growth rate over many turns
and look for possible influencers that are fractional or a
percentage. City growth rate is represented as a percentage
per turn, so it discovers this influence only after failing to
detect a simpler relation.

Figure 2 shows a portion of the learned qualitative
model for Freeciv after approximately 10 turns.

Learning Decisions and Procedures
To effectively exploit a qualitative model, an agent must
also acquire additional procedural knowledge, such as rules
to determine when to make certain decisions, plans for
achieving preconditions of primitive actions, and policies
for choosing among alternatives. These can all be learned
via demonstration and a small amount of user interaction.

We divide domain activity into decision tasks and action
plans. Conceptually, we think of decision tasks as
selecting one of N mutually exclusive alternatives, whereas
action plans are sequences of primitive actions that achieve
states in order to enable other actions or influence
quantities. This ontological distinction has implications for
both planning and learning. By itself, a decision consumes
no resources in the world, but instead may initiate a
process that consumes resources over time, such as
deciding what to research or build. Because decisions

persist over time, it is important to learn when to make and
revise different types of decisions, such as choosing what a
city should build when it is first founded, or whenever it
finishes building something. Event triggers like these lead
to a forward-driven control strategy for decisions.

Actions, on the other hand, are more backwards-driven
and may have preconditions whose attainment is arbitrarily
difficult to achieve. For example, consider chess, where
the entire game consists of achieving the preconditions of
capturing the opponent's king. Acquiring plans to achieve
action preconditions is a part of the learning process since
playing a game entails more than just directly manipulating
quantities or initiating processes.

As the learner watches an instructor play, it makes an
informed guess about whether a game action is a decision
task, based on whether it sets a functional property of an
entity. It asks for confirmation, since this isn't a
guaranteed discriminator. For example, although moving a
unit sets its location, we don't necessarily think of
movement as choosing alternative locations: Units move
in order to enable some other action.

Learning procedures
Whereas decision tasks are for the most part directly
available at any time, actions may have preconditions that
must be achieved in order to make them legal. Part of
learning by demonstration is learning procedures for
making an action legal. These procedures are encoded as
methods in a hierarchical task network (HTN).

For example, in Freeciv, the instructor may demonstrate
the founding of a city. This increases the population of the
civilization by incrementing the number of cities, so given
a performance goal to maximize the population, this is
interpreted as a good thing to do. Yet the learner must
generalize from the training example exactly how to enable

Figure 2: A portion of the learned qualitative model

210

that action. The primitive action takes a unit and a
proposed city name as arguments, and the precondition
tests the location of the unit to ensure that the city will be
built on dry land, but not too close to other cities.
However, the location is not a direct argument to the
action, but is merely referenced inside some of the
conjuncts of the precondition. Although this is a critical
independent variable, it is implicit in the execution trace.

To construct a plan to achieve the preconditions of
building a city the learner exploits prior hypothesized goals
plus the declarative precondition of the action to extract a
filter condition on locations that can be applied to a general
purpose scanning routine. It creates a plan to achieve the
preconditions for building a city by scanning for a legal
location, then sending a unit off to that location. This is a
combination of retroactively identifying what the user did
and inferring the criteria for choosing a location.

Specifically, the learner attempts to explain the
motivation behind the teacher's actions. If the action is a
step in a known plan, the goal that plan would achieve is
recorded as one possible goal for the agent. Later, when
trying to extract a precondition plan from the execution
trace, it searches these hypothesized goals to see if they
match conjuncts of the current actions' precondition. So
for example, when a unit is moved, movement serves the
(only) built-in plan of going somewhere, which serves the
goal of being somewhere. When the build city command
is detected, part of its precondition is for the unit to be in a
particular location. The conjuncts of the precondition that
mention the variable location are extracted into a filter rule
that can be passed into a general scanning routine that can
be used to find a legal binding for the hidden location
variable.

Learning quantitative relations
The mechanism above stops as soon as it finds a legal
location to build a city. However, learning good locations
is a critical part of playing well. Consequently, as soon as
a legal procedure is constructed, it posts a learning goal to
discover better locations that improve global performance.
It seeks to learn an evaluation function that maps a location
to a prediction of the goodness of that location, based on
whatever turns out to be the dependent variable. The
challenge in learning this function is not so much learning
the prediction, but rather, determining what the
independent and dependent variables are so that it can then
learn the function.

There are three subtasks in this process: identifying the
independent variable, identifying the dependent variable,
and incrementally inducing the function. These subtasks
are supported by some additional bookkeeping in the form
of an action case pertaining to the primitive action type
under consideration. Action cases are a subset of indirect

influence cases that are indexed by their primitive action
type. The representations of the observed added and
deleted statements in these cases help to identify the
independent and dependent variables.
Identifying the independent variable
The challenge with identifying the independent variable is
that it is implicit in the observable action. When the
teacher sends a doBuildCity command for a particular unit
to build a city with a particular name, the independent
variable isn't the city, but the location of the city.
Moreover, in order to evaluate a potential city site, we're
interested in the salient features of a location, such as the
terrain type and special resources present, rather than
simply its coordinates.

To do this, it finds a newly added relationship between
some argument of the observed action and the selected
legal location (in this case, objectAt relates the new city to
its location). It writes out rules to extract the intrinsic
properties of the location, given an observed doBuildCity
action. These rules allow it to reify the values of the
salient features in an action case when new cities are
founded.
Identifying the dependent variable
Identifying the dependent variable is a different problem.
The challenge here is that the difference between building
a city in a good location vs. a bad location isn't felt for a
long time. The overall performance goal doesn't look any
different in the short term. Consequently, the learner
regresses through the learned qualitative influences until it
finds a quantity that does exhibit variance between cases.
In the example of building cities, it must regress from the
top-level goal to maximize the overall civilization
population, to sub-goals to maximize city sizes, and from
there through a direct influence from city growth rate. The
growth rate of a city depends in part on the terrain and
resources at its center. It discovers this by determining that
these are the only properties of the independent variable
that correlate with variation in the dependent variable.
Inducing the evaluation function
When the qualitative model is sufficiently fleshed out to
permit regressing to the right quantity and there are
sufficient action cases stored to identify the dependent
quantity, it compiles out a rule to compute the score. As it
acquires new cases, it constructs a decision tree in a
manner similar to ID3 (Quillian, 1986). Each combination
of features discriminates to a range of maximum and
minimum dependent variable scores. This range is
necessary because the features do not functionally
determine the score. In fact, the initial growth rate of a city
only partly depends on the terrain and resources of the
center tile. A new city has two workers, so it also depends
on properties of a second location and on other types of
specials, such as rivers, that are not encoded as mutually-

211

exclusive attributes of a location. The predicted score for a
location is simply the midpoint of the range.

This example of learning better city locations shows
how decision policies can be learned by first empirically
learning a qualitative model, then analytically reasoning
about it to extract independent and dependent variables and
then re-formulating the problem as a kind of function-
approximation.

Experimental Evaluation
In order to show that a qualitative model can be rapidly
learned by demonstration and that it has a beneficial effect
on performance, we empirically evaluated the system
under different learning and performance conditions. With
only a single demonstration game, we wanted to measure
the improvement due to learning qualitative relations
alone, and the incremental benefit of learning a
quantitative evaluation function for city siting. To do this,
we needed a realistic performance metric.

Freeciv can be thought of as a race to achieve military
and technological supremacy. An important part of this is
the ability to grow a civilization as fast as possible,
especially early in the game. Consequently, the
performance goal selected for these experiments was to
maximize the population of the civilization over the first
75 turns. After that, expansion has typically saturated the
available land and different strategies must be adopted.

We created 10 different terrain maps by starting and
saving games on the first turn. We factored out
exploration by manually editing the saved games to reveal
the entire map. Figure 3 shows the population growth for
each of the ten terrain trials under three different
conditions: the legal player with no learned knowledge of
the game picks random legal actions, the rational player
with a learned qualitative model that allows it to select
actions that address goals, and the rational player with
learned evaluation scoring for placing cities in productive
locations.

After one training trial, we can see that the learner has
acquired enough of a qualitative model to significantly
improve over random play (p < 5�10-5). When it learns to
evaluate possible city locations, the performance is better
still (p < 3�10-3). This begins to approach an average
human player’s performance. In order to exceed this
performance, it would have to factor in travel cost to reach
a location. It sometimes defers settling its first city in
favor of moving halfway around the board to reach a
marginally better location. It also does not currently learn
to spend money to reduce production time. Reasoning
about such tradeoffs will be part of our future work.

Related Work
Previous work has shown learning by demonstration to be
very effective for learning concrete procedures. For
example, PLOW (Allen et al., 2007) uses spoken-language
annotation of teacher actions to learn procedures for filling
out web forms. Similarly, TellMe (Gil, Ratnakar and Fritz,
2011), uses controlled natural language to describe
procedures interactively to a system. Our work focuses on
learning conceptual knowledge from which the system
itself derives procedures, and the system only asks users
one type of question, otherwise using only observation for
input.

Our type-level qualitative representations are inspired by
Cycorp’s use of type-level representations to provide
concise axioms to support natural language processing and
reasoning in the Cyc knowledge base.

There has been other research on learning qualitative
models, e.g. Padé (Žabkar et al., 2011). Our focus here is
on learning incrementally from demonstration. Suc &
Bratko (1999) used qualitative representations to learn
strategies that “clone” the behavior of expert operators
solving continuous control problems (e.g. running a crane),
in contrast to our domain which involves more discrete
actions. Also, the influences in our Freeciv player are
often conditioned on the activation of processes.

An alternative approach to learning qualitative models is
used in QLAP, a program that uses Dynamic Bayesian
Networks (DBNs) to learn high-level states and actions
from continuous input (Mugan and Kuipers, 2012). QLAP
is an unsupervised learner and relies on a different set of
assumptions than we do. Continuous signals are
discretized early into qualitative magnitudes so that it can
use statistical inference to progressively introduce
landmarks that refine the qualitative representation. It is

Figure 3: Population growth

212

able to learn high-level states, but at the cost of requiring
many more training instances, which would be problematic
for our interactive learner.

Freeciv has been used previously as a testbed for
learning, most recently by (Branavan et al 2011), who
explored using Monte Carlo simulation to learn action
selection strategies. Their approach requires 8 instances of
the game running in parallel. Ulam et al. (2005) explored
the use of reinforcement learning to learn city defense
strategies. Our techniques lead to faster learning, due to
their use of qualitative models as an intermediate
representation. Hinrichs and Forbus (2007) used a hand-
coded qualitative model to learn strategies for city
management via a combination of analogy and
experimentation. This shows that qualitative models can
be used for other tasks than examined here, and we show
how such qualitative models can be learned.

Conclusions and Future Work
Learning qualitative models by demonstration is a step
towards making agents that increasingly think more
abstractly and farther ahead. We have shown that learned
qualitative models can provide a significant boost in
performance, and can be used to rapidly learn additional
strategies that provide further performance improvements.
This provides evidence that qualitative reasoning can help
an agent to control and focus its learning to incrementally
improve its behavior.

This works for two reasons: first, the strong expectation
about a qualitative model guides and constrains the
learning early on so that it needn’t wait for an eventual
reward in terms of game performance, and second, by
learning from demonstration, the teacher effectively
curates the learner’s experience so that it is not randomly
exploring the game. We expect to see further benefits as
we develop capabilities for communicating high-level
advice in terms of qualitative relations.
 There are a number of other directions we plan to
explore in future work. The first is to expand the
curriculum for the system, using these same ideas to teach
it about economics, exploration, research, and military
operations. The second is to explore extracting qualitative
models from the text of the manual, by extending previous
work on extracting instance-level qualitative models
(Kuehne & Forbus, 2004) to extracting type-level
qualitative representations from text. Finally, we plan to
explore learning in the context of the rest of the
apprenticeship trajectory, i.e. with the system taking on
increasing responsibility in working in the simulated
world.

Acknowledgements
This material is based upon work supported by the Air
Force Office of Scientific Research under Award No.
FA2386-10-1-4128.

References
Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H.,
Swift, M., and Taysom, W., 2007. PLOW: A Collaborative Task
Learning Agent. In Proceedings of the Twenty Second AAAI
Conference on Artificial Intelligence, 1514 1519.
Branavan, S.R.K, Silver, D., and Barzilay, R., 2011. Non Linear
Monte Carlo Search in Civilization II. In Proceedings of the
Twenty Second International Joint Conference on Artificial
Intelligence, 2404 2410.
Bryce, D. and Kambhampati, S., 2007. A Tutorial on Planning
Graph Based Reachability Heuristics. AI Magazine 28(1): 47 83.
Forbus, K.D., 1984. Qualitative Process Theory. Artificial
Intelligence 24:85 168.
Forbus, K., Klenk, M., and Hinrichs, T. 2009. Companion
Cognitive Systems: Design Goals and Lessons Learned So Far.
IEEE Intelligent Systems, 24(4), 36 46.
Gil, Y., Ratnakar, V., and Fritz, C., 2011. TellMe: Learning
Procedures from Tutorial Instruction. In Proceedings of the 16th
International Conference on Intelligent User Interfaces, 227 236.
Hinrichs, T.R. and Forbus, K.D., 2007. Analogical Learning in a
Turn Based Strategy Game. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence, 853 858.
Mugan, J. and Kuipers, B., 2012. Autonomous Learning of High
Level States and Actions in Continuous Environments. IEEE
Transactions on Autonomous Mental Development 4(1):70 86.
Quillian, J.R.,1986. Induction of Decision Trees. Machine
Learning 1(1):81 106.
Suc, D. and Bratko, I. 1999. Modeling of control skill by
qualitative constraints. In Proceedings of the 13th International
Workshop on Qualitative Reasoning, Loch Awe, Scotland.
Ulam, P., Goel, A., Jones, J., and Murdoch, M., 2005. Using
Model Based Reflection to Guide Reinforcement Learning.
IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games. 107 112.
Žabkar, J., Možina, M., Bratko, I., and Demšar, J. 2011. Learning
qualitative models from numerical data. Artificial Intelligence
175:1604 1619.

213

