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Abstract 
Creating software agents that learn interactively requires the 
ability to learn from a small number of trials, extracting 
general, flexible knowledge that can drive behavior from 
observation and interaction.  We claim that qualitative 
models provide a useful intermediate level of causal 
representation for dynamic domains, including the 
formulation of strategies and tactics. We argue that 
qualitative models are quickly learnable, and enable model
based reasoning techniques to be used to recognize, 
operationalize, and construct more strategic knowledge.  
This paper describes an approach to incrementally learning 
qualitative influences by demonstration in the context of a 
strategy game.  We show how the learned model can help a 
system play by enabling it to explain which actions could 
contribute to maximizing a quantitative goal.  We also show 
how reasoning about the model allows it to reformulate a 
learning problem to address delayed effects and credit 
assignment, such that it can improve its performance on 
more strategic tasks such as city placement. 

 Introduction  
A flexible software learning agent should be able to learn 
through close interaction with a human instructor and 
progressively become more independent.  A natural 
question, then, is what sorts of knowledge and expectations 
will enable it to learn from a small number of trials, 
without unduly constraining what can be learned?  We 
claim that a qualitative model can provide useful leverage.  
This is a kind of conceptual knowledge that can be learned 
by demonstration using a combination of empirical and 
analytical methods, and can be exploited in complex 
performance tasks.  Moreover, because it is declarative, it 
can help to explain a system’s behavior. 

This paper addresses three main questions: 1) How can a 
qualitative model improve performance in a dynamic 
domain? 2) How can such a model be learned by 
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demonstration? and 3) What ancillary domain procedures 
and rules are needed to exploit a qualitative model and how 
can they be learned?  Our answers to these questions are 
illustrated in the context of learning to play Freeciv1, an 
open-source implementation of a civilization-style game.  
This domain is challenging because of its complexity and 
scale, but the mechanisms we present should be applicable 
to any dynamic domain with quantitative goals that depend 
on a causal or otherwise deterministic system with 
continuous inputs and outputs.   

We begin by discussing the role of qualitative models, 
followed by our techniques for learning them and how they 
are used in turn to learn decision strategies and procedures.  
We describe an experiment demonstrating that learning 
qualitative models and using them to support further 
learning both lead to significant improvements.  We then 
describe related work, future work and conclusions. 

Using Qualitative Models to Decompose Goals 
Following Qualitative Process Theory (Forbus, 1984), we 
define a qualitative model as a directed acyclic graph of 
influences between quantities that are conditioned by 
active process instances that drive change.  These 
influences fall into two broad categories: direct influences 
of processes, represented by partial information about 
derivatives and indirect influences that propagate their 
effects, represented by qualitative proportionalities.  
Together, they represent the causal structure of a system.  
We believe that such qualitative models have a number of 
roles to play in learning, including grounding for 
instruction and advice, and as building blocks for higher-
level strategies.  Here we focus on how qualitative models 
can be used to guide the behavior of the game player by 
linking executable actions to higher-level goals. 

                                                 
1 http://freeciv.wikia.org 
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Specifically, by representing the game’s performance 
goal in terms of maximizing or minimizing a quantity, the 
player can search back through the graph of qualitative 
influences to make informed decisions about executable 
actions.  Although these decisions may not be optimal, 
they provide an initial plan which can be debugged and 
improved.  Our primary role for qualitative models, then, is 
decomposing goals into sub-goals. 

Of course, regressing to primitive actions is not enough, 
as they may not be currently legal.  In this case, the player 
must perform still more planning to regress back over the 
preconditions until a legal action is found.  We frame this 
as a heuristic decision problem of selecting the most direct 
plan among alternatives.  To do this cheaply, we use 
planning graph heuristics to find the shortest plausible 
chain from legal action to goal action (Bryce and 
Kambhampati, 2007). 

Qualitative Models in Freeciv 
We are exploring the role of qualitative models in the 
context of learning to play Freeciv (see Figure 1).  Freeciv 
is a good testbed for learning because it embodies complex 
dynamics, it is sufficiently complex to support 
sophisticated strategies, and it enables experiments with 
variable autonomy - the simulation itself provides feedback 
and built-in bots can be configured to serve as opponents. 

A significant aspect of Freeciv is managing the growth 
of cities.  Ultimately, all wealth is produced by working the 
tiles within city boundaries.  Each worked tile produces 
some amount of food points, production points, and trade 
points, depending on the terrain and resources present in 
that location, such as wheat, fish, or iron.  This income is 
then applied to feed the citizens, build and maintain 
infrastructure and units, and fill the treasury.  The exact 
relationships can be quite complex, factoring in, e.g., 
corruption, pollution, government types, and civil unrest.  

A qualitative representation of these relationships captures 
the influences between quantities as direct, e.g., the surplus 
food per turn directly influences the amount of food in the 
city’s granary or indirect, e.g., the food surplus is 
qualitatively proportional to the food produced there, i.e., it 
monotonically increases with it, all else being equal.  A 
further complication of this domain is that new entities, 
such as cities and units, are created dynamically.   

Learning Qualitative Models 
The target representation for the learned qualitative model 
is type-level influence statements, rather than propositional 
influences.  For example, instead of learning that the food 
produced in Boston influences the surplus food in Boston, 
that statement is lifted to a higher-level statement that the 
food produced in any city influences the surplus in that 
same city, e.g., 
(qprop+TypeType 
 (MeasurableQuantityFn cityFoodSurplus) 
 (MeasurableQuantityFn cityfoodProduction) 
 freeCiv City freeCiv City equals)   

The first two arguments are the quantity types related, the 
3rd and 4th arguments are the types of entities for which a 
qualitative proporitionality between their quantities holds, 
given that the relationship in the 5th argument holds 
between them.  In general, the entities need not be the 
same and the lifting process must search for a binary 
relation that uniquely relates the entities.  Lifting to the 
type level like this can be viewed as migrating knowledge 
from episodic memory to semantic memory.  It also affords 
a kind of higher-order qualitative reasoning that scales 
better, is more easily matched and is likely to be better 
suited for natural language understanding than 
propositional representations or traditional logically 
quantified formulae. 

Initially, the learning agent (Forbus et al 2009) starts out 
with no qualitative model or plans for playing the game, 
but it does possess a small initial endowment of knowledge 
about the game in order to recognize possible event 
triggers, quantity types, and mutually exclusive properties.  
Specifically, there are representations of:  

1) Game types, such as units, cities and technologies, 
2) Primitive action types, consisting of preconditions 

and  effect statements, 
3) The set of asynchronous game event types, such as 

UnitBuiltEvent or TechLearnedEvent, and 
4) The set of primitive quantity types that may be 

queried for values, including their units. 
These are all formally represented in our knowledge 

base, using Cyc-style microtheories to contextualize  
Figure 1: Freeciv city, terrain and resources 
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knowledge2.  We exploit microtheory inheritance to 
efficiently retrieve domain-specific quantity types and 
relationships between game entities. 

In addition to these representations, we rely on two 
kinds of spatial reasoning, due to the spatial nature of the 
game.  Path planning is assumed, as is spatial scanning, 
implemented as a predicate which scans outwards from a 
starting point for locations matching a given condition. 

As the teacher demonstrates the game, the learning agent 
monitors the communications between the game server and 
the GUI client.  It tries to explain several different aspects 
of events: 1) the user's motivation in taking an action, 2) 
the causes behind game events, 3) quantity changes that 
happen due to actions within a turn, and 4) quantity 
changes that occur over time across turns.  By seeking to 
explain these events in terms of qualitative influences and 
processes, it creates defeasible hypotheses that, taken 
together, comprise a qualitative model. 

Learning Qualitative Influences 
Just like a scientist, the learning agent makes the most 
general hypothesis it can to explain an observation and 
then rejects it later if it is found to be incorrect.  We use 
cases to extract, from the rich perceptual information 
available in the game state, a concise record consisting of 
relevant facts to be used in particular learning tasks.  For 
example, it records the type-level influence hypotheses in 
influence cases, along with the propositional observations 
that support them.  These cases serve two functions: they 
enable the agent to rapidly detect counter-examples to a 
proposed hypothesis and they enable it to detect trends 
over time.  The learning process can be described in terms 
of the events, conditions and preferences for proposing 
hypotheses and the conditions for retracting them. 

Two kinds of events drive influence learning: changes to 
quantities that are detected at the beginning of a turn and 
changes to quantities within a turn.  In Freeciv, multiple 
actions can take place within a turn, such as moving 
different units and setting parameters of cities.  The effects 
of these actions are treated as instantaneous, or synchronic.  
Other changes are expressed across turns, such as growth 
of a city or accumulation of gold in the treasury.  These 
diachronic changes are interpreted as the result of 
processes occurring over time.  Qualitative Process Theory 
(Forbus, 1984) requires that diachronic changes must 
ultimately be caused by processes, via a direct influence. 

The existence of synchronic changes breaks this 
assumption, since such changes are ultimately driven by 
discrete actions.  This makes finding indirect influences 
somewhat more subtle. Because we know whether a 
change was instantaneous or not, we know whether we are 
                                                 
2 The contents of our knowledge base are mostly derived from 
ResearchCyc, with our own extensions and reasoning engine. 

looking for a process rate or an action. The challenge for 
inducing indirect influences is to infer the causal direction.  
We know intuitively that by placing a worker on a tile, we 
change the food produced there, which contributes to the 
food production in the city, which determines the food 
surplus in that city.  Yet, given just a set of numbers, it's 
much harder for the software to figure out what causes 
what. 

Thus the first step in inducing indirect influences is to 
determine the quantities at the fringe of the network - the 
exogenous quantities that are determined by the actions 
rather than influenced by other quantities.  We do this in 
two ways.  First, if the arguments to an action directly 
specify a quantity, such as setting the tax rates, this must 
be an exogenous quantity, and we label it as such.  The 
second way is if the action introduces (or eliminates) a 
binary relation that mentions a constant quantity whose 
magnitude equals the amount of change of some other 
quantity.  For example, if an action assigns a worker to a 
terrain tile, this adds a binary relationship 
cityWorkingTileAt, that can be interpreted as switching in 
the contribution of the tile production (a constant) to the 
city production (a fluent).  Being constant, such exogenous 
quantities cannot be influenced by other quantities. 

Next, synchronic changes are compared pairwise to 
propose hypotheses.  For changes to non-exogenous 
quantities, it searches for likely candidates for influencers, 
preferring quantities whose change had the same 
magnitude, with the same units, on the same entity, but 
progressively relaxing these preferences until a unique 
influencer can be found.  Quantities pertaining to different 
entities must be related through an explicit binary 
relationship between their entities in order to lift the 
influence to the type level.  Hypothesized influences that 
are violated in prior cases or violate the constraints of QP 
Theory (e.g. no quantity can be directly and indirectly 
influenced simultaneously) are filtered out.  The remaining 
hypotheses are written out to the KB in an influence case 
in such a way that they can be rapidly queried for 
counterexamples.  Cases are represented as microtheories 
in an inheritance lattice and are further partitioned into 
direct influence cases and indirect influence cases.  
Efficient microtheory inheritance thus allows it to be 
quickly determined whether a quantity type has a prior 
direct or indirect influence hypothesis. 

Our influence induction mechanism tends to over-
generate.  Because this is an on-line algorithm, any 
coincidence starts out as a potential influence and must be 
pruned later if counterexamples arise.  The most common 
case is influences with ambiguous causal direction.  When 
two quantities change in lockstep, which causes the other? 
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One kind of counter-example that prunes hypotheses is 
when a purported independent quantity changes but the 
corresponding dependent quantity does not.  Although this 
can conceivably happen if there are multiple influencers 
that exactly cancel each other out, it is vastly more likely 
that the influence is simply wrong. 

Learning direct influences is a bit simpler and less prone 
to error, because there tend to be fewer of them, and by 
assuming only a single direct influence on a quantity (its 
rate of change) the magnitude of that rate can be 
constrained to equal the magnitude of the change of the 
dependent quantity.  Here, instead of examining pairwise 
changes, it looks for potential direct influencers whose 
value corresponds to the change magnitude.  It still over-
generates hypotheses, and prunes using a 3-strikes 
heuristic: if a hypothesized influence is violated three times 
in a row, retract it.  Why not immediately?  As it turns out, 
there are sometimes exceptions, i.e., local discontinuities 
that arise from processes reaching a limit point.  So, for 
example, when a city produces a settler, its normal growth 
is interrupted and the size of the city drops by one.  Since 
this coincides with an event, we treat it as an exception, 
rather than an erroneous hypothesis.  If it were to happen 
consistently, though, the influence would be rejected. 

Another subtlety of learning direct influences is that 
some quantities grow as step functions, increasing by one 
only after many turns, such as citySize.  Here, the learner 
must interpolate a fractional growth rate over many turns 
and look for possible influencers that are fractional or a 
percentage.  City growth rate is represented as a percentage 
per turn, so it discovers this influence only after failing to 
detect a simpler relation. 

Figure 2 shows a portion of the learned qualitative 
model for Freeciv after approximately 10 turns. 

Learning Decisions and Procedures 
To effectively exploit a qualitative model, an agent must 
also acquire additional procedural knowledge, such as rules 
to determine when to make certain decisions, plans for 
achieving preconditions of primitive actions, and policies 
for choosing among alternatives.  These can all be learned 
via demonstration and a small amount of user interaction. 

We divide domain activity into decision tasks and action 
plans.  Conceptually, we think of decision tasks as 
selecting one of N mutually exclusive alternatives, whereas 
action plans are sequences of primitive actions that achieve 
states in order to enable other actions or influence 
quantities.  This ontological distinction has implications for 
both planning and learning.  By itself, a decision consumes 
no resources in the world, but instead may initiate a 
process that consumes resources over time, such as 
deciding what to research or build.  Because decisions 

persist over time, it is important to learn when to make and 
revise different types of decisions, such as choosing what a 
city should build when it is first founded, or whenever it 
finishes building something.  Event triggers like these lead 
to a forward-driven control strategy for decisions. 

Actions, on the other hand, are more backwards-driven 
and may have preconditions whose attainment is arbitrarily 
difficult to achieve.  For example, consider chess, where 
the entire game consists of achieving the preconditions of 
capturing the opponent's king.  Acquiring plans to achieve 
action preconditions is a part of the learning process since 
playing a game entails more than just directly manipulating 
quantities or initiating processes. 

As the learner watches an instructor play, it makes an 
informed guess about whether a game action is a decision 
task, based on whether it sets a functional property of an 
entity.  It asks for confirmation, since this isn't a 
guaranteed discriminator.  For example, although moving a 
unit sets its location, we don't necessarily think of 
movement as choosing alternative locations:  Units move 
in order to enable some other action. 

Learning procedures 
Whereas decision tasks are for the most part directly 
available at any time, actions may have preconditions that 
must be achieved in order to make them legal.  Part of 
learning by demonstration is learning procedures for 
making an action legal.  These procedures are encoded as 
methods in a hierarchical task network (HTN). 

For example, in Freeciv, the instructor may demonstrate 
the founding of a city.  This increases the population of the 
civilization by incrementing the number of cities, so given 
a performance goal to maximize the population, this is 
interpreted as a good thing to do.  Yet the learner must 
generalize from the training example exactly how to enable 

 
Figure 2: A portion of the learned qualitative model 
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that action.  The primitive action takes a unit and a 
proposed city name as arguments, and the precondition 
tests the location of the unit to ensure that the city will be 
built on dry land, but not too close to other cities.  
However, the location is not a direct argument to the 
action, but is merely referenced inside some of the 
conjuncts of the precondition.  Although this is a critical 
independent variable, it is implicit in the execution trace. 

To construct a plan to achieve the preconditions of 
building a city the learner exploits prior hypothesized goals 
plus the declarative precondition of the action to extract a 
filter condition on locations that can be applied to a general 
purpose scanning routine.  It creates a plan to achieve the 
preconditions for building a city by scanning for a legal 
location, then sending a unit off to that location.  This is a 
combination of retroactively identifying what the user did 
and inferring the criteria for choosing a location. 

Specifically, the learner attempts to explain the 
motivation behind the teacher's actions.  If the action is a 
step in a known plan, the goal that plan would achieve is 
recorded as one possible goal for the agent.  Later, when 
trying to extract a precondition plan from the execution 
trace, it searches these hypothesized goals to see if they 
match conjuncts of the current actions' precondition.  So 
for example, when a unit is moved, movement serves the 
(only) built-in plan of going somewhere, which serves the 
goal of being somewhere.  When the build city command 
is detected, part of its precondition is for the unit to be in a 
particular location.  The conjuncts of the precondition that 
mention the variable location are extracted into a filter rule 
that can be passed into a general scanning routine that can 
be used to find a legal binding for the hidden location 
variable. 

Learning quantitative relations 
The mechanism above stops as soon as it finds a legal 
location to build a city.  However, learning good locations 
is a critical part of playing well.  Consequently, as soon as 
a legal procedure is constructed, it posts a learning goal to 
discover better locations that improve global performance.  
It seeks to learn an evaluation function that maps a location 
to a prediction of the goodness of that location, based on 
whatever turns out to be the dependent variable.  The 
challenge in learning this function is not so much learning 
the prediction, but rather, determining what the 
independent and dependent variables are so that it can then 
learn the function. 

There are three subtasks in this process: identifying the 
independent variable, identifying the dependent variable, 
and incrementally inducing the function.  These subtasks 
are supported by some additional bookkeeping in the form 
of an action case pertaining to the primitive action type 
under consideration.  Action cases are a subset of indirect 

influence cases that are indexed by their primitive action 
type. The representations of the observed added and 
deleted statements in these cases help to identify the 
independent and dependent variables. 
Identifying the independent variable 
The challenge with identifying the independent variable is 
that it is implicit in the observable action.  When the 
teacher sends a doBuildCity command for a particular unit 
to build a city with a particular name, the independent 
variable isn't the city, but the location of the city.  
Moreover, in order to evaluate a potential city site, we're 
interested in the salient features of a location, such as the 
terrain type and special resources present, rather than 
simply its coordinates.  

To do this, it finds a newly added relationship between 
some argument of the observed action and the selected 
legal location (in this case, objectAt relates the new city to 
its location).  It writes out rules to extract the intrinsic 
properties of the location, given an observed doBuildCity 
action.  These rules allow it to reify the values of the 
salient features in an action case when new cities are 
founded. 
Identifying the dependent variable 
Identifying the dependent variable is a different problem.  
The challenge here is that the difference between building 
a city in a good location vs. a bad location isn't felt for a 
long time.  The overall performance goal doesn't look any 
different in the short term.  Consequently, the learner 
regresses through the learned qualitative influences until it 
finds a quantity that does exhibit variance between cases.  
In the example of building cities, it must regress from the 
top-level goal to maximize the overall civilization 
population, to sub-goals to maximize city sizes, and from 
there through a direct influence from city growth rate.  The 
growth rate of a city depends in part on the terrain and 
resources at its center.  It discovers this by determining that 
these are the only properties of the independent variable 
that correlate with variation in the dependent variable. 
Inducing the evaluation function 
When the qualitative model is sufficiently fleshed out to 
permit regressing to the right quantity and there are 
sufficient action cases stored to identify the dependent 
quantity, it compiles out a rule to compute the score.  As it 
acquires new cases, it constructs a decision tree in a 
manner similar to ID3 (Quillian, 1986).  Each combination 
of features discriminates to a range of maximum and 
minimum dependent variable scores.  This range is 
necessary because the features do not functionally 
determine the score.  In fact, the initial growth rate of a city 
only partly depends on the terrain and resources of the 
center tile.  A new city has two workers, so it also depends 
on properties of a second location and on other types of 
specials, such as rivers, that are not encoded as mutually-
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exclusive attributes of a location.  The predicted score for a 
location is simply the midpoint of the range. 

This example of learning better city locations shows 
how decision policies can be learned by first empirically 
learning a qualitative model, then analytically reasoning 
about it to extract independent and dependent variables and 
then re-formulating the problem as a kind of function-
approximation. 

Experimental Evaluation 
In order to show that a qualitative model can be rapidly 
learned by demonstration and that it has a beneficial effect 
on performance, we empirically evaluated the system 
under different learning and performance conditions.  With 
only a single demonstration game, we wanted to measure 
the improvement due to learning qualitative relations 
alone, and the incremental benefit of learning a 
quantitative evaluation function for city siting.  To do this, 
we needed a realistic performance metric. 

Freeciv can be thought of as a race to achieve military 
and technological supremacy.  An important part of this is 
the ability to grow a civilization as fast as possible, 
especially early in the game.  Consequently, the 
performance goal selected for these experiments was to 
maximize the population of the civilization over the first 
75 turns.  After that, expansion has typically saturated the 
available land and different strategies must be adopted. 

We created 10 different terrain maps by starting and 
saving games on the first turn.  We factored out 
exploration by manually editing the saved games to reveal 
the entire map.  Figure 3 shows the population growth for 
each of the ten terrain trials under three different 
conditions: the legal player with no learned knowledge of 
the game picks random legal actions, the rational player 
with a learned qualitative model that allows it to select 
actions that address goals, and the rational player with 
learned evaluation scoring for placing cities in productive 
locations. 

After one training trial, we can see that the learner has 
acquired enough of a qualitative model to significantly 
improve over random play (p < 5�10-5).  When it learns to 
evaluate possible city locations, the performance is better 
still (p < 3�10-3).  This begins to approach an average 
human player’s performance.  In order to exceed this 
performance, it would have to factor in travel cost to reach 
a location.  It sometimes defers settling its first city in 
favor of moving halfway around the board to reach a 
marginally better location.  It also does not currently learn 
to spend money to reduce production time.  Reasoning 
about such tradeoffs will be part of our future work. 

Related Work 
Previous work has shown learning by demonstration to be 
very effective for learning concrete procedures.  For 
example, PLOW (Allen et al., 2007) uses spoken-language 
annotation of teacher actions to learn procedures for filling 
out web forms.  Similarly, TellMe (Gil, Ratnakar and Fritz, 
2011), uses controlled natural language to describe 
procedures interactively to a system. Our work focuses on 
learning conceptual knowledge from which the system 
itself derives procedures, and the system only asks users 
one type of question, otherwise using only observation for 
input. 

Our type-level qualitative representations are inspired by 
Cycorp’s use of type-level representations to provide 
concise axioms to support natural language processing and 
reasoning in the Cyc knowledge base. 

There has been other research on learning qualitative 
models, e.g. Padé (Žabkar et al., 2011).  Our focus here is 
on learning incrementally from demonstration.  Suc & 
Bratko (1999) used qualitative representations to learn 
strategies that “clone” the behavior of expert operators 
solving continuous control problems (e.g. running a crane), 
in contrast to our domain which involves more discrete 
actions.  Also, the influences in our Freeciv player are 
often conditioned on the activation of processes. 

An alternative approach to learning qualitative models is 
used in QLAP, a program that uses Dynamic Bayesian 
Networks (DBNs) to learn high-level states and actions 
from continuous input (Mugan and Kuipers, 2012).  QLAP 
is an unsupervised learner and relies on a different set of 
assumptions than we do.  Continuous signals are 
discretized early into qualitative magnitudes so that it can 
use statistical inference to progressively introduce 
landmarks that refine the qualitative representation.  It is 

 
Figure 3: Population growth 
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able to learn high-level states, but at the cost of requiring 
many more training instances, which would be problematic 
for our interactive learner. 

Freeciv has been used previously as a testbed for 
learning, most recently by (Branavan et al 2011), who 
explored using Monte Carlo simulation to learn action 
selection strategies.  Their approach requires 8 instances of 
the game running in parallel.  Ulam et al. (2005) explored 
the use of reinforcement learning to learn city defense 
strategies.  Our techniques lead to faster learning, due to 
their use of qualitative models as an intermediate 
representation.  Hinrichs and Forbus (2007) used a hand-
coded qualitative model to learn strategies for city 
management via a combination of analogy and 
experimentation.  This shows that qualitative models can 
be used for other tasks than examined here, and we show 
how such qualitative models can be learned. 

Conclusions and Future Work 
Learning qualitative models by demonstration is a step 
towards making agents that increasingly think more 
abstractly and farther ahead.  We have shown that learned 
qualitative models can provide a significant boost in 
performance, and can be used to rapidly learn additional 
strategies that provide further performance improvements.  
This provides evidence that qualitative reasoning can help 
an agent to control and focus its learning to incrementally 
improve its behavior. 

This works for two reasons: first, the strong expectation 
about a qualitative model guides and constrains the 
learning early on so that it needn’t wait for an eventual 
reward in terms of game performance, and second, by 
learning from demonstration, the teacher effectively 
curates the learner’s experience so that it is not randomly 
exploring the game.  We expect to see further benefits as 
we develop capabilities for communicating high-level 
advice in terms of qualitative relations. 
 There are a number of other directions we plan to 
explore in future work.  The first is to expand the 
curriculum for the system, using these same ideas to teach 
it about economics, exploration, research, and military 
operations.  The second is to explore extracting qualitative 
models from the text of the manual, by extending previous 
work on extracting instance-level qualitative models 
(Kuehne & Forbus, 2004) to extracting type-level 
qualitative representations from text. Finally, we plan to 
explore learning in the context of the rest of the 
apprenticeship trajectory, i.e. with the system taking on 
increasing responsibility in working in the simulated 
world.  
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