
Crossing Boundaries: Multi-Level Introspection in a Complex Robotic
Architecture for Automatic Performance Improvements

Evan Krause1 and Paul Schermerhorn2 and Matthias Scheutz1
Human-Robot Interaction Laboratory

Tufts University1 and Indiana University2, USA
{ekrause,mscheutz}@cs.tufts.edu, pscherme@indiana.edu

Abstract

Introspection mechanisms are employed in agent architec-
tures to improve agent performance. However, there is cur-
rently no approach to introspection that makes automatic ad-
justments at multiple levels in the implemented agent system.
We introduce our novel multi-level introspection framework
that can be used to automatically adjust architectural config-
urations based on the introspection results at the agent, in-
frastructure and component level. We demonstrate the utility
of such adjustments in a concrete implementation on a robot
where the high-level goal of the robot is used to automatically
configure the vision system in a way that minimizes resource
consumption while improving overall task performance.

Introduction
Self-adjusting agent architectures based on introspection
typically either employ component-specific introspection
mechanisms or attempt to integrate all levels of self-
reasoning and self-adjustment into a single system-wide
mechanism (Morris 2007; Haidarian et al. 2010; Sykes et
al. 2008; Georgas and Taylor 2008). Component-specific
mechanisms have the advantage that they are modular and
that components with these mechanisms can be integrated
into existing architectures, but they typically lack knowledge
about the whole system and how to best manage it. System-
wide approaches, on the other hand, break encapsulation by
requiring observable data and component implementations
from all levels to be exposed to the system, and thus can
create performance bottlenecks, aside from making the inte-
gration of new components difficult and reducing the oppor-
tunity for component reuse.

We believe that using either approach alone misses im-
portant opportunities for exploiting synergies of the two ap-
proaches to improve agent performance and, therefore, pro-
pose to integrate introspection mechanisms at all levels of
an agent system. Specifically, we introduce a conceptual
framework for multi-level introspection in cognitive agents
and describe a concrete instantiation of the framework in a
complex robotic architecture which demonstrates the inte-
gration of introspection at various levels of organization and
their interaction across abstraction boundaries.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Motivation and Background
Over the past decade there has been a growing effort to
develop various agent systems with self-adjusting mech-
anisms to enable robust and long term operation in the
face of software, hardware and environmental uncertainty.
Aaron Morris, for example, presents in his thesis on sub-
terranean autonomous vehicles a system-wide introspection
layer that combines observations from both the infrastruc-
ture and component-level of the robotic architecture into a
single data signature to represent introspective state (Mor-
ris 2007). Haidarian et al. (2010) have been developing a
domain-independent general introspection mechanism they
have dubbed the Meta-Cognitive Loop (MCL). MCL at-
tempts to generalize introspection by boiling down all po-
tential anomalies into a set of general-use anomaly-handling
strategies. This approach has only been integrated into sys-
tems at the infrastructure level and does not address how or
if MCL is intended to be integrated in a distributed fashion.

Edwards et al. (2009) propose a layered hierarchical self-
adjusting system that not only allows components to observe
and manage themselves (ending the need for all components
to report to a central manager), but also allows the adaptive
components to themselves be managed by other higher level
adaptive components. Unfortunately, there appears to be
no method for observed data from low-level components to
be used by high-level adaptive components unless the high-
level components are continually monitoring the low-level
data. There is, in effect, no way for low-level components
to notify high-level components when additional assistance
is needed.

A great deal of this work has focused on failure detec-
tion and recovery (Sykes et al. 2008; Haidarian et al. 2010;
Morris 2007), and system reconfiguration to accomplish
a high-level goal (Georgas and Taylor 2008; Edwards et
al. 2009), and while these are important aspects of any
successful system, introspection mechanisms also provide
the opportunity for systems to self-adjust to achieve bet-
ter task performance. A few recent approaches have uti-
lized self-adjusting mechanisms for performance improve-
ment (e.g., Perez-Palacin and Merseguer; Crowley, Hall, and
Emonet (2011; 2007)), but the application to cognitive sys-
tems remains largely unexplored.

Self-adjusting mechanisms are either implemented by
means of a single system-wide mechanism and operate only

214

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

at the infrastructure level, or are realized as highly special-
ized mechanisms for specific structural-level components.
While both types of introspection are integral to any success-
ful architecture, we claim that such mechanisms need to be
simultaneously integrated at all levels of an agent system in
a granular and distributed fashion, so that synergies between
the introspection mechanisms and their ways of making ad-
justments at the different levels can be utilized to produce
more robust systems than any of these mechanisms alone
would be able to produce.

A Three-Level Introspection Framework
Architectures of cognitive agents consist of various, typi-
cally heterogeneous components and the way they are con-
nected (e.g., planners, action execution, vision processing,
etc.). Similarly, architectures of agent infrastructures (some-
times also called MAS middleware) consist of various het-
erogeneous components for managing control and informa-
tion flow in distributed systems (e.g., white and yellow page
services, discovery agents, etc.). Both kinds of architec-
tures have components that are computational processes that
perform operations specific to their functional roles in the
agent system: in cognitive architectures, components might
perform analyses of images or sounds, parsing of natural
language expressions, or truth maintenance in a knowledge
base; in infrastructures, specialized components might per-
form service discovery, communication and load balanc-
ing functions, while others implement functionality specific
to the agent architecture implemented in the middleware.
The crucial idea of multi-level introspection is to integrate
component-level, infra-structure-level, and agent-level in-
trospection. The first is performed inside every computa-
tional component, the second is performed via specialized
components, and third is performed inside some specialized
components (e.g., a reasoner).

Moreover, introspection at all three levels follows the
same three phases necessary to adjust components, their ar-
rangements, and agent goals: self-observation, self-analysis,
and self-adjustment (Anderson and Perlis 2005). The self-
observation phase is responsible for taking note of any data
that will be useful for analysing the state of operation. Self-
analysis uses the observed data along with a set of domain-
specific expectations to make hypotheses about the cur-
rent state of things (e.g., an expensive process is no longer
needed), and the self-adjustment phase makes adjustments
based on the findings of the self-analysis (e.g., suspend that
process until it is needed again). Based on the introspec-
tion level, different adjustment operations are appropriate: at
the component level, component-internal algorithms are se-
lected to optimize component operation, while at the infras-
tructure level system configurations are adjusted to better
utilize computational resources; finally, at the agent-level,
goals and subgoals together with their priorities are adjusted
to improved the agents’ task performance.

Component-Level Introspection
Individual components in an agent architecture perform
highly-specialized tasks that may operate independently or

Figure 1: Example relationship between a high-cost algo-
rithm Phc, and a low-cost algorithm Plc.

in tandem with one or more other components (e.g., a sen-
tence parser component in a cognitive architecture might
rely on the output of a speech recognition component, or a
service discovery component in the infrastructure might rely
on the yellow page component).

More formally, a component consists of a set of algo-
rithms, A = {a0, a1, ..., an}, where each ai is capable of
independently completing a given task. The probability of
a successful outcome s for a particular algorithm ai can be
expressed as P (s|f), where f is an array of contributing
factors, and can include such things as robot velocity, room
noise, sensor quality, and/or light levels. Depending on the
complexity of a particular ai, P (s|f) could be derived an-
alytically, found experimentally (e.g., by determining false-
positive and false-negative rates under various f), or more
abstractly by monitoring various properties of each algo-
rithm (e.g., running time, loop time, number of iterations,
time of last iteration, time of last client use). An example
relationship between a high-cost and low-cost algorithm can
be seen in Figure 1. From here it is easy to see that:

Phc(s|f) > Plc(s|f) for {0 ≤ f < cf}, and

Phc(s|f) < Plc(s|f) for {f > cf}
where cf is some critical threshold at which Phc(s|f) =
Plc(s|f).

Furthermore, it is often the case that each algorithm
within a set A offers important tradeoffs between cost,
speed, and effectiveness. A low-cost speech recognizer, for
instance, might perform well in low-noise environments, but
become ineffective in noisy rooms, while an alternate recog-
nizer might provide adequate results but at the price of high
resource use. Thus, the general goal of an introspection pol-
icy at the component-level will be to maximize P (s|f) while
also trying to minimize cost C(ai). Applying this policy π
to accomplish a particular component task, π is evaluated
against the current state of the component, including the cur-
rently selected algorithm, ai, to determine the appropriate
course of action, which can be a change of algorithm selec-
tion and/or a goal request to a higher level component.

215

Even though introspection at the component level is of-
ten highly specialized and tailored to the specific needs and
functions of each component, we have defined a general
high-level policy that can be implemented in any component
to improve system performance.

Infrastructure-Level Introspection
Complex agent architectures, especially for robots, are of-
ten implemented in an infrastructure or middleware (e.g.,
Scheutz et al. (2007)), which itself has an architecture, not
unlike the agent architecture, with knowledge about the un-
derlying operating environment such as available hardware,
communication between components, distribution of com-
ponents across multiple hosts, and resource management.

Infrastructure-level reflection is responsible for system
state, and while it is often the case that infrastructure-only
reflection can effectively monitor and respond to these con-
cerns, communication from other levels of reflection can al-
low substantial performance and utility improvements at this
level. For example, a component may be able to detect that
it is performing poorly but have no way to address the prob-
lem, while the infrastructure has no way of telling how any
given component is performing even though it is capable of
restarting or replacing the component. With inter-level com-
munication, introspection at the component-level can pro-
vide the needed information to the infrastructure.

Agent-Level Introspection
Cognitive agents typically have knowledge about the world,
their own capabilities, and their own goals (e.g., includ-
ing which goals to achieve, the time-frame in which each
goal needs to be achieved, and the relative importance of
concurrent goals). This knowledge is used by various de-
liberative mechanisms (planners, reasoners, etc.) to make
decisions and generate actions that lead to the accomplish-
ment of the agent’s goals. Agent-level introspection is then
largely responsible for observing the progress of plans, de-
tecting when plans are acceptable, when they need to be re-
generated, or when certain goals are unattainable and need
to be abandoned altogether. Note that agent-level intro-
spection is thus not concerned with the overall system state
(e.g., whether a certain component is operating correctly, or
whether there are adequate system resources).

Information from introspection mechanisms at the other
levels can be crucial for timely and successful adjustment at
the agent level. For example, assume the goal of a robot is to
(1) navigate from way-point A to way-point B and (2) take a
photograph of the location. If the camera component is inop-
erable, agent-only introspection would only detect a failure
after it had successfully reached way-point B and attempted
to use the camera. If, on the other hand, introspection mech-
anisms responsible for monitoring the camera were able to
report to the agent-level mechanism, the failure could be de-
tected both before the robot set out toward its destination,
and during task execution (i.e., while traveling to way-point
B, but before attempting to use the camera). The robot may
be able to recover in either scenario, but it is easy to see how
communication between introspection levels could mean the

difference between success and failure (e.g., when additional
time constraints are imposed).

Validation Experiments
We have implemented the introspection framework in the
robotic DIARC (distributed integrated affect, reflection,
cognition) architecture (Scheutz et al. 2007) to be able to
demonstrate the utility and effectiveness of the multi-level
introspection. Figure 2 shows a sample DIARC implemen-
tation, including the levels of introspection that are most
relevant to each component. We have chosen a simple
task and scenario in which each of the three levels of in-
trospection (agent, infrastructure, and component) engages
in the three phases of introspection described above (self-
observation, self-analysis, and self-adjustment). In this sce-
nario (schematically depicted in Figure 3), a robot is in-
structed to move down a corridor (starting at position A),
to find the “Research Lab” (D3). The location of the target
room is unknown, so the robot must visually identify signs
affixed to doors; these signs are all the same shade of blue
with the room name in black letters.

Agent-level introspection in DIARC is performed by
the DIARC goal manager, which selects the best avail-
able action to achieve the agent’s goals in its cur-
rent state (Schermerhorn and Scheutz 2010). The goal
AT(ROBOT,RESEARCH LAB) and the actions working to-
ward it are monitored to ensure progress, and new actions
are selected based on agent and world states. When other
goals are instantiated, the goal manager resolves resource
conflicts in favor of the higher-priority goal.

Infrastructure-level introspection in the employed ADE
infrastructure (Scheutz 2006) is handled mainly by a ded-
icated infrastructure component, the ADE system registry.
The registry monitors the system, including the resource uti-
lization on the computers hosting the components. If the
load becomes unbalanced, the registry can improve over-
all performance by migrating a component from a high-load
host to an idle host—assuming that no hardware constraint
(e.g., a connected camera) requires the component to run on
a specific host.

Since aspects of the agent- and infrastructure-level in-
trospection mechanisms have already been described else-
where, as indicated above, we focus here on component-
level introspection in a particular DIARC component: the
DIARC vision component. The vision component features
multiple detectors for a variety of object types, and uses in-
trospection to drive a policy for choosing between them. In
particular, for the current task, the set of algorithms A in-
cludes two detectors capable of detecting the target sign:
a1, a blob detector that scans captured frames for regions
matching a specified RGB color range and size, and a2, a
SIFT-based detector that compares SIFT features extracted
from frames with a database of features for the target sign.
a2 is more accurate than a1 with respect to successfully
detecting blue “Research Lab” signs in a camera frame
(i.e., Pa1

(s) < Pa2
(s)), but is also more costly in terms

of reduced frame rates and high CPU and GPU utilization
(C(a1) < C(a2)).

216

Figure 2: An example DIARC configuration used in the validation experiments. (a) represents the connection used by the Vision
Component to submit the “pause motion” goal, and (b) is used to carry out the goal if it is accepted by the Goal Manager.

Policy Options

A simple static policy would indicate which of the two de-
tectors to instantiate, either to maximize P (s) or to min-
imize C(a). A somewhat more sophisticated policy would
include additional information about f , the known set of fac-
tors that contribute to each detectors probability of success.
The most important such factor in the validation scenario is
v, the velocity at which the robot is moving down the corri-
dor, because it affects the likelihood that enough of a sign is
captured in a frame for a2, the SIFT detector, to identify it
given its reduced frame rate. If the designer knows the ve-
locity at which the robot will travel, the conditional probabil-
ities Pa1

(s|v) and Pa2
(s|v) can be used to determine which

detector to use.
Component-level introspection in the vision component

can improve performance over such static selections by us-
ing run-time information to select the best detector given the
circumstances. The velocity may not be known in advance,
for example, in which case the vision component could mon-
itor it and change detectors dynamically according to a pol-
icy π. In the more complex example presented here, se-
lecting a detector in advance is impossible, because neither
detector has both acceptable accuracy and acceptable cost;
a1 is too susceptible to false positive detections, while the
impact of a2 on system load is to high to allow other compo-
nents to operate effectively. Component-level introspection
allows the vision component to monitor operating conditions
and switch between the algorithms to approximate a single
detector with accuracy on a par with a2, but at an accept-
able level of cost. This works because the inaccuracy of the
color blob detector a1 with respect to “Research Lab” signs
is constrained to false positives. It is, in fact, very good at de-
tecting “Research Lab” signs, but not at distinguishing them
from other signs in the environment. In contrast, the high-
accuracy detector a2 will have very few false positives, in
addition to very few false negatives (assuming v is such that

the signs are likely to be fully captured in a frame processed
by a2). If a “Research Lab” sign is present, both a1 and a2
are very likely to detect it, and if a2 detects something, it is
very likely to be a “Research Lab” sign.

Because a1 and a2 meet these constraints, the policy can
take advantage of the cost/accuracy trade-off by running the
detector a1 under normal circumstances and switching to to
a2 when a1 detects something; a2 is used, in effect, only to
verify the judgement of a1. The policy π is, thus, defined in
terms of simple “if-then-else” rules based on the outcomes
of running detectors: if a1 detects a target, a goal is instanti-
ated that generates component-local actions (e.g., reconfig-
uring the set of running detectors) and possibly messages to
other components in the system (e.g., submitting a goal to
the goal manager, in this case to pause the motion to allow
a2 a chance to examine the scene). If a2 subsequently fails
to detect the target sign, π prescribes a switch back to the
low-cost detector to free up resources for other components.
Hence, π can be viewed as a mapping from detector-value
pairs onto the Cartesian product of the set of local actions
and the set of external actions available to the component.

Policy Evaluations
Three configurations were compared: static blob-only de-
tection (C1), static SIFT-only detection (C2), and dynamic
detector switching using introspection (C3). The character-
istic trajectory for each configuration is shown in Figure 3
(top). There are three doors with signs (D1, D2, and D3) in
this section of the hallway; D3 is the goal (“Research Lab”).
The CPU utilization for each is given in Figure 3 (bottom).

In (C1), the blob detector a1 is activated at the start
of the evaluation run (A in Figure 3 (top)). CPU uti-
lization is low throughout the run, but because there are
multiple signs of the same color present, (C1) fails to lo-
cate (D3), finishing much earlier than the others due to
a false-positive identification of the target sign at (D1)—

217

Figure 3: Schematic of evaluation runs (top) and CPU uti-
lization (bottom) for (C1) static blob, (C2) static SIFT, and
(C3) dynamic introspection configurations. The robot starts
in the center of the hallway in all conditions; the three tra-
jectories are offset here for display purposes.

the goal AT(ROBOT,RESEARCH LAB) appears to have been
achieved.

In (C2), the more expensive SIFT-detection a2 is acti-
vated at the start (A), leading to consistently higher CPU
utilization. This configuration is not fooled into stopping
at (D1) or (D2), but the run ends in failure at (E) after the
robot fails to identify (D3) and drives past. Because the
sign is in the frame of the side-mounted camera for a rela-
tively short amount of time, the slower SIFT method fails to
achieve a tracking lock (note that, although the failure could
be avoided by traveling at a slower velocity, the CPU uti-
lization would be the same and the overall duration of task
would be longer).

The analysis policy π for (C3) is designed with two com-
peting goals in mind: providing reliable results to client
ADE components, and minimizing resource consumption.
π consists of four rules:

R0 enable a2 when an external request to identify target
signs is received

R1 when a2 is active for 10 seconds without detecting the
target sign, switch to a1

R2 when a1 indicates a possible match, switch to a2 and
submit a “pause motion” goal to the goal manager

R3 when no external request for target signs has been re-
ceived for 10 seconds, deactivate sign detection

The robot begins at (A) with neither sign-detector active,
but immediately begins receiving periodic requests (from ac-
tions being administered by the goal manager) to look for
signs and, in accordance with (R0), instantiates a2. Via
self-observation, the component determines that no sign is
detected by the time 10 seconds have passed and (B) is

reached, so it determines that an adjustment is desirable and,
by (R1), switches to a1; CPU utilization drops from (C2)
levels to (C1) levels.

At (D1), the component observes a positive result from
a1. The adjustment dictated by (R2) switches to detec-
tor a2, causing an increase in CPU utilization, somewhat
higher than (C2) levels for the first few seconds while the
detection and tracking threads are initialized.1 Because the
changeover is not instantaneous, the initialization routine
uses cross-component communication to submit a “pause
motion” goal to the goal manager.2 No match is detected
at (D1) or (as the robot moves on) at (D2), and after the
component observes the 10 second period without a positive
detection event, adjusts according to (R1), causing a2 to be
replaced again by a1 at (C) and CPU utilization to drop.

At (D3) the sign is matched by a1, and (R2) the detector
exchange process is triggered again (along with the resulting
increase in CPU utilization). This time, the match is verified
and the result is returned to the goal manager in response to
the most recent request. The robot has arrived at its destina-
tion, so it turns toward the door and announces its arrival. No
further requests to look for doors are sent by the goal man-
ager, and once the time threshold has been reached, (R3)
is triggered and the sign-detection subsystem is deactivated
entirely.

The CPU results in Figure 3 clearly demonstrate the ben-
efits of introspection when the blob-based detector is ac-
tive. Moreover, despite the switching overhead, the average
CPU utilization across the run for the introspection version
(M=0.177, sd=0.144) was much lower than for the SIFT-
only version (M=0.297, sd=0.017), although not as low as
the blob-only configuration (M=0.069, sd=0.013). The ad-
vantages of introspection would become even more appar-
ent in terms of shorter overall runtime and lower overall
CPU utilization during the course of longer tasks. A video is
available at http://tiny.cc/introspect, showing each of the three
conditions in action. Note that, in order to highlight the
various transitions described above, verbal indications have
been temporarily inserted when the policy dictates a change.

Discussion
The validation results establish the potential benefits of
multi-level introspection in agent systems. Due to the three-
level design, policies at these levels can be effective (even
if not optimal) across a wide range of scenarios. This is be-
cause the effectiveness of a particular policy is a measure of

1This overhead became apparent during the course of these
evaluations; we have since implemented a suspend/resume mech-
anism to replace the start/stop process that eliminates the restart
penalty.

2There is no guarantee that this goal will be accepted; its prior-
ity is based on the value of the goal that triggered it (in this case
the AT(ROBOT, RESEARCH LAB) goal), while its urgency is typ-
ically higher, given the short time frame within which it must be
performed. Hence, it will typically be granted priority over the
triggering goal, but another goal may have higher priority and re-
quire the motor resource. In that case, the pause goal will fail and
an accurate reading will not be made—the same as in the other
conditions.

218

how much it contributes to achieving the goals of the entity
for which it is designed. So, for example, infrastructure-
level policies are dependent on the goals of the infrastruc-
ture (to facilitate communication, ensure reliability, etc.).
Similarly, the vision component’s goals have to do with its
local state (e.g., maximizing frame rates, response times,
etc.). The important thing to notice is that, because these
levels have (at best) limited access to the agent-level goals,
their goals are defined with reference only to their own
infrastructure- or component-internal states. For example,
locating the research lab is not a goal of the vision com-
ponent, even though its policies, to the extent that they are
effective, should contribute to that goal. Hence, well-formed
policies at these levels will be applicable and effective across
a wide variety of agent-level goals and scenarios.

While the distributed nature of our approach allows for
largely self-sufficient and modular introspection mecha-
nisms, an important aspect is also the ability of these mech-
anisms to reach across vertical and horizontal boundaries
when necessary. Cross-level communication in the system
can take many forms, but is achieved via a limited set of
mechanisms. The goal manager responsible for agent-level
goals is a DIARC component, so other components can sub-
mit requests just as they could to any other component, as
illustrated in the validation example when the vision com-
ponent sent the “pause motion” request. Although it would
definitely be possible for the vision component to have es-
tablished a connection with the robot base component and
sent the request there directly, that would require somewhat
more detailed knowledge of the interfaces implemented by
the relevant component, not to mention knowledge of which
component is the relevant one. Instead, the vision compo-
nent sent the request to the goal manager. Whether the robot
was a wheeled base (as in this case), a UAV, or a biped robot,
whether it was moving or already stationary, whether a sim-
ple motion command was sufficient to stop the robot or a
goal needed to be cancelled in a motion-planning compo-
nent, all were unknown and irrelevant to the vision compo-
nent. The vision component neither had nor needed to know
about any of the other components in the system. The goal
manager maintains detailed knowledge of most of the com-
ponents in the system so that other components do not have
to. Because of this, the vision component needed to know
about only the submit goal interface in the goal man-
ager. Moreover, because this is actually cross-level commu-
nication between the component and the agent levels, the
agent level is given the opportunity to evaluate how the re-
quested action will affect agent-level goals and determine
whether identifying the door is of greater importance than
continuing down the corridor.

Ideally, it will be possible for policies to be constructed
automatically, with little or no human intervention (e.g.,
specifying possible performance measures), and this is cur-
rently one limitation of our system. This will likely en-
tail extensive data collection, evaluating performance un-
der as many relevant condition variations and usage patterns
as possible (e.g., lighting conditions, for a vision compo-
nent) and possibly some kind of learning procedure to cate-
gorize different actions according to the performance mea-

sures (e.g., high accuracy, low resource use) and determine
how various conditions (e.g., how frequently a particular re-
quest is received) contribute to the success or failure of a
particular policy. In that case, the programmer could simply
specify the goals and their relative priorities, and the system
could generate a policy that would attempt to achieve those
goals. Moreover, because cross-level communication is pos-
sible, this would also open the door for run-time “tweak-
ing” of other components’ policy parameters, effectively en-
abling dynamically switchable policies based on the needs
and goals of higher level architecture components.

Conclusion and Future Work
We argued for the utility of employing multi-level introspec-
tion mechanisms in agent systems to automatically improve
agent performance and presented a three-level introspection
framework. Comprising agent, infrastructure, and compo-
nent levels, the framework acknowledges the distinct goals,
information, and responses available at these different lev-
els, in addition to the need for mechanisms that allow for
information sharing with or requesting aid from other levels
and components of an architecture.

We described a concrete instantiation of the framework
in the DIARC robotic architecture and presented exam-
ples demonstrating the utility of introspection on a physical
robot. Specifically, we showed that component-level intro-
spection can be integrated both independently of, and co-
hesively with, higher-level mechanisms to improve system
performance during a simple robotic task by lowering sys-
tem resource use and overall time to completion.

Future work will investigate how and the extent to which
policies at the different levels can be learned automatically
during task performance.

Acknowledgements
This work was in part funded by ONR MURI grant
#N00014-07-1-1049.

References
Anderson, M. L., and Perlis, D. R. 2005. Logic, self-
awareness and self-improvement: The metacognitive loop
and the problem of brittleness. Journal of Logic and Com-
putation 15(1):21–40.
Crowley, J. L.; Hall, D.; and Emonet, R. 2007. Autonomic
computer vision systems. In 2007 International Conference
on Computer Vision Systems, ICVS’07. Springer Verlag.
Edwards, G.; Garcia, J.; Tajalli, H.; Popescu, D.; Medvi-
dovic, N.; Gaurav, S.; and Petrus, B. 2009. Architecture-
driven self-adaptation and self-management in robotics sys-
tems. In Proceedings of the 2009 ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems,
142–151. Washington, DC, USA: IEEE Computer Society.
Georgas, J. C., and Taylor, R. N. 2008. Policy-based self-
adaptive architectures: a feasibility study in the robotics do-
main. In Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing sys-
tems, SEAMS ’08, 105–112. New York, NY, USA: ACM.

219

Haidarian, H.; Dinalankara, W.; Fults, S.; Wilson, S.; Perlis,
D.; Schmill, M.; Oates, T.; Josyula, D.; and Anderson, M.
2010. The metacognitive loop: An architecture for build-
ing robust intelligent systems. In PAAAI Fall Symposium on
Commonsense Knowledge (AAAI/CSK’10).
Morris, A. C. 2007. Robotic Introspection for Exploration
and Mapping of Subterranean Environments. Ph.D. Disser-
tation, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA.
Perez-Palacin, D., and Merseguer, J. 2011. Performance
sensitive self-adaptive service-oriented software using hid-
den markov models. In Proceedings of the second joint
WOSP/SIPEW international conference on Performance en-
gineering, ICPE ’11, 201–206. New York, NY, USA: ACM.
Schermerhorn, P., and Scheutz, M. 2010. Using logic to han-
dle conflicts between system, component, and infrastructure
goals in complex robotic architectures. In Proceedings of the
2010 International Conference on Robotics and Automation.
Scheutz, M.; Schermerhorn, P.; Kramer, J.; and Anderson,
D. 2007. First steps toward natural human-like HRI. Au-
tonomous Robots 22(4):411–423.
Scheutz, M. 2006. ADE - steps towards a distributed devel-
opment and runtime environment for complex robotic agent
architectures. Applied Artificial Intelligence 20(4-5):275–
304.
Sykes, D.; Heaven, W.; Magee, J.; and Kramer, J. 2008.
From goals to components: a combined approach to self-
management. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-
managing systems, SEAMS ’08, 1–8. New York, NY, USA:
ACM.

220

