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Abstract

Two information decay methods are examined that help
multi-agent systems cope with dynamic environments.
The agents in this simulation have human-like mem-
ory and a mechanism to moderate their communica-
tions: they forget internally stored information via tem-
poral decay, and they forget distributed information by
filtering it as it passes through a communication net-
work. The agents play a foraging game, in which per-
formance depends on communicating facts and requests
and on storing facts in internal memory. Parameters of
the game and agent models are tuned to human data.
Agent groups with moderated communication in small-
world networks achieve optimal performance for typ-
ical human memory decay values, while non-adaptive
agents benefit from stronger memory decay. The decay
and filtering strategies interact with the properties of the
network graph in ways suggestive of an evolutionary co-
optimization between the human cognitive system and
an external social structure.

Introduction
The human cognitive system has evolved as a general mech-
anism to process information and store knowledge provided
by our environment. Humans are social animals, and as such,
their cognition may serve as a model of information process-
ing in general multi-agent systems. A seemingly disadvan-
tageous property of human cognition is forgetting: memory
retrievals are contextualized according to recent exposure
to knowledge. Similarly, attentional resources are limited,
and humans will reduce their interactions with others when
necessary. Can such filtering heuristics help multi-agent net-
works cope with dynamic environments? This study exam-
ines memory decay and communication filtering in a multi-
agent simulation that uses cognitive models in place of sim-
ple agents.

In this paper, we use an interactive foraging task to ana-
lyze the interaction between human memory and a network
of peers in a multi-agent simulation. The empirical version
of the experiment (Figure 1, Reitter et al. 2011) serves to
parametrize and motivate a cognitive model, which is an
algorithm bounded by human processing limitations. The

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model allow us to manipulate network structure, individual
memory decay, and communication strategies in a system
consting of multiple independent, networked copies of the
model. We observe the interaction of these variables with
task success and accuracy in passed messages.

Rational Cognitive Architectures
We formulate our model within a cognitive architecture, that
is, within a principled set of human-like bounds. Such ar-
chitectures combine a number of goals. They represent the
invariant properties of the human mind, unifying and stan-
dardizing the basis on which cognitive models can oper-
ate. A model describes sensory processes, thought, mem-
orization, and action-taking within a defined task. It pre-
dicts and explains reaction times and an experimental par-
ticipant’s decisions and the associated learning effects and
bounds on performance, but also neurophysiological mea-
sures such as activation found in different brain regions. But
beyond the scientific explanation, cognitive modeling can
leverage its faithful representation of human abilities and
limitations to implement human-like systems, or complex
systems with emerging intelligence. The design of cognitive
architectures can be motivated by many factors. One intrigu-
ing idea has served as a remarkably useful default assump-
tion: that the environment contains clues to explain invariant
architectural properties of the mind. The mind’s design is ra-
tional, that is, adaptively addresses the needs imposed by the
structure and statistics of our environment (Anderson 1991;
Oaksford and Chater 1999).

Described this way, the rational assumption glosses over
the fact that most of the available information is created by
ourselves. Some of the fundamental principles underlying
the structures of society and information sharing must be
encoded in the mind. For instance, the predominant type of
network structure found in social networks (such as graphs
of friends, collaborators, lovers, business relationships) has
“small-world” properties, which have been proposed to be
created using the preferential attachment principle: each in-
dividual agent prefers to create connections with those who
already possess a large number of connections (Simon 1955;
Barabasi and Albert 1999).

An example of a cognitive property is the decay rate for
information stored in declarative memory in the cognitive
architecture ACT-R (Anderson 2007). Activation, a proxy
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Figure 1: The Geo Game interface for human players.

for the log-odds of a piece of information being needed, is
determined as a function of the time elapsed since past pre-
sentations. That is, it decays at a certain rate. The parameter
dictating this rate has been remarkably steady in the litera-
ture. From a rational perspective, the decay can be seen as an
adaptation to an average rate of change in the environment
(Anderson and Schooler 1991). The change rate is, how-
ever, by no means the only environmental property that may
have influenced human memory. Humans are surrounded by
mnemonic devices: visual ones for example, and also net-
works of (human) agents that retain their own memories and
communicate with each other to relay them. In short, these
networks serve as buffers and filters in relaying information.

Humans overcome their own limitations as well as envi-
ronmental shortcomings, not just through the evolutionarily-
determined, invariant cognitive properties, but also dynam-
ically based on experience. Metacognition refers to an on-
going monitoring loop that leads to success-driven choice of
strategies. The study presented in this paper will show how
decay of memories as well as metacognitive adaptation of
communicative behavior can optimize the spread of infor-
mation through a communication network.

We see decay, metacognition and adaptive communica-
tion as the result of an adaptation to the environment. Where
the environment is man-made (as is the case for naturalis-
tic communication networks), we expect co-adaptation on
network structure and memory decay. We will pay special
attention to the performance of our models with naturalistic
(small-world) network topologies and with decay parame-
ters near the values documented in the cognitive modeling
literature.

Background
Information foraging has been studied from a cognitive per-
spective in a number of environments, such as information
retrieval systems (Pirolli and Card 1999). Pirolli and Fu
(2003) developed an ACT-R model of information foraging

that reflects the constraints and mechanisms of our cogni-
tive architecture, especially the subsymbolic processes such
as spreading activation. Pirolli (2005) developed a rational
analysis of information foraging on the web to study the op-
timality of our strategies given known cognitive limitations.
While that approach to information foraging focused on a
single cognitive agent, Bhattacharyya and Ohlsson (2010)
simulated the results of decomposing a complex task and
assigning it to a network of cognitive agents. Performance
of the network reflects differing individual characteristics of
the agents such as working memory. Recent efforts have also
attempted to include human-like characteristics in networks
of artificial agents (e.g., Paruchuri et al. 2010).

The specific biases and communication modulation we
are concerned with relate to a depreciation of informa-
tion over time; this property has been observed in human-
produced data and leveraged by a number of algorithms. Ef-
fects at many levels of representation show such forgetting,
e.g., see Klinkenberg and Renz (1998) for concept drift in
categorization, and Jelinek et al. (1991) for cache models in
automatic speed recognition, and Reitter, Moore, and Keller
(2006) for the use of recency-based adaptation in predicting
task success. Coman et al. (2012) combine aspects of net-
worked communication and forgetting in a cognitive simu-
lation, showing the effects of group size and homogeneity of
initial attitudes on the adoption of ground truth by an agent
community.

The Geo Game
The Geo Game is an interactive simulation that involves a
network of participants who communicate with each other.
This design provides an experimental model of human com-
munities (Figure 1), where information may spread from
peer-to-peer by word-of-mouth, and an equivalent agent-
based simulation. It is intended as a model of real-world co-
operative foraging tasks. Communication paths are defined
by the edges of a social network graph; each participant may
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broadcast to their network neighbors by typing short mes-
sages and read the messages sent by those neighbors. Par-
ticipants are asked to engage in a foraging task: find named
items that are hidden in virtual cities shown on a map that
connects these cities with roads. The task requires them to
scout the area; it is more efficient if they have information
about where their items are located. Thus, the task opera-
tionalizes facts as city-item associations; messages typically
contain either requests for the location of an item, or facts.
When an item is taken at a location, it is re-created at a dif-
ferent, random location; this implements a dynamic ground
truth and invalidates existing facts. The number of items
taken is our primary measure of task success.

Previous work has examined the effects of communica-
tion strategies in a study with human participants. Studies of
local communication policies in the Geo Game have shown
the efficiency and the performance of teams and of indi-
viduals in different positions within a network (Reitter et
al. 2011). Human subjects exchanged natural-language mes-
sages with relevance to a task, thereby sharing knowledge
across a community. Communication took place along the
edges of a small-world graph. Cooperation and individual
efforts were incentivized. These experiments forced a real-
istic tradeoff between directing attention to communication
and to exploring the world: both activities lead to informa-
tion gain, but are associated with attentional costs. In one
condition (target), participants were asked to request spe-
cific information and only supply information that they knew
was needed. In another condition (dump), they were asked
to supply and forward as much information as possible. Par-
ticipants did not benefit from strategies that increased com-
munication volume, compared to a targeted strategy where
they request information as needed, pass on requests, and
judiciously reply and forward based on needs. These empir-
ical results form the basis for the multi-agent simulations
we discuss here, and in some analyses we will adopt the
dump/target contrast.

Model
We model the Geo Game as a multi-agent simulation, where
each agent is implemented as a cognitive model in the ACT-
R framework (Anderson 2007). Each agent moves from
city to city in the Geo Game world, looking for its goal
item. Agents regularly read incoming messages and decide
whether to forward them. When looking for a new goal
item, they request the help of their network neighbors via
the communication system, just like humans do (“Where is
the cake?”). Agents acquire facts from experience by mov-
ing between cities. They broadcast facts as they are learned,
provided they see a need for the facts to be known by their
network neighbors (i.e., a request was received earlier). They
may also re-broadcast facts and requests to pass them on
across the network. They always do so if they know of a
need for the fact, but in addition, a stochastic choice is made
to pass on these facts even if there is no known need. This
dampening may be meta-cognitively regulated. We gener-
ally avoid broadcasting the same fact or request multiple
times within a short time frame to preserve attentional re-
sources or bandwidth. These strategies serve to implement

basic human communication behavior: being relevant, de-
signing for the audience as far as memory allows, and being
economical in one’s communications.

The model stores facts about item locations having
learned about them from others, or having observing them
locally. Retrieval is governed by a learning function:

Bj = ln
n∑
i

t−α + β

Bj is the base-level activation if memory item j, which
determines (via a threshold function, and modulated by
noise) whether j can be retrieved from memory. ti indicates
the time since fact j was presented (at the ith occasion of all
n prior presentations). Presentations occur when the agent
becomes aware of the new fact, but also shortly afterwards,
while the information is still visible on the screen and if the
agent finds spare time for rehearsal.A minimum activation
is needed to allow retrieval. Retrieval is a stochastic process
due to the noise parameter β.

This model, with standard parameter values (α = .5), and
given the same time frame as used in the empirical litera-
ture, predicts performance at or somewhat below the empir-
ical levels for groups of 20 subjects and small-world graphs.
In these experiments, humans primarily used simple natural-
language messages to efficiently convey the two types of se-
mantics; we tune the model to display comparable messag-
ing rates. The model is implemented in ACT-UP, a scalable
and rapid-prototyping implementation of a subset of ACT-R
(Reitter and Lebiere 2010).

Simulations
We were interested in optimal values for α, and whether
those optima vary with the network topology. We contrast
various types of network topology, all of which are defined
initially and remain unchanged throughout each trial of sim-
ulated 30 minutes:
• small-world networks with a mean degree of d,
• Erdös-Renyi random graphs with a mean degree of d,
• tree hierarchies with a branching factor of d− 1, and,
• as a control, unconnected networks (representing no com-

munication between agents).
All of the multi-agent experiments are Monte-Carlo sim-

ulations that randomly choose a base-level learning expo-
nent (0.05 ≤ α < 0.85), a mean degree of the network
(|N | ∗ 0.08 ≤ d < |N | ∗ 0.28, where |N | ∈ 25, 250 is the
number of nodes in the network). Plots in this paper show
data from the networks large enough to give stable results
(|N | = 250, d̄ = 27.3). We randomize the initial ground
truth and agent states (locations of agents) for each trial. The
first set of simulations does not enable any metacognitive
decision-making; messages are passed between agents only
when they see a need (target strategy).

Decay in Individual’s Memories
If temporal decay of retrieval probability is a rational adapta-
tion to the environment, we would expect the model to per-
form particularly well at tasks requiring memorization for
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Figure 2: Task performance (items collected per agent) for
different network types over a range of base-level learning
decay values. The version of the game used here gives mod-
els ample time to communicate while changing location.
95% confidence intervals (uncorrected for multiple compar-
isons) are shown, which were obtained by bootstrapping.

decay variable settings that are realistic with respect to de-
cay commonly used in cognitive models. The dynamic envi-
ronment provides a changing ground truth, but, as we aim to
show here, it also consists of a network of individuals. As a
consequence, we would expect that realistic temporal decay
of the accessibility of memorized facts adds a performance
benefit for typical social network structures.

Figure 2 shows the effects of decay on performance, and
its interaction with communication structure. Decay seems
to negatively impact performance across the board. At a re-
alistic decay of 0.5, performance is comparable to the per-
formance that was obtained empirically.

However, examining task performance in more detail
shows a bimodal distribution, with peaks at about 4 and
92 items taken. Some agents achieve extraordinary perfor-
mance, whereas we found no observable correlation with the
node’s degree in the communication network (size of neigh-
borhood). As any means-based analysis is strongly affected
by outliers, we exclude results with performance ≥ 30 (the
top 17%) in Figure 3. We do so in this case only. Here, we
see a substantially changed effect of base-level decay: de-
cay improves performance by up to a factor of 2 for com-
municating and non-communicating agents. This improve-
ment slows down for decay values of around α > 0.5, pro-
vided agents communicate. For low and high decay values,
the benefits of communication seem diminished.

A modicum of decay seems to purge outdated information
from memory. The amount of decay in humans is considered
an innate constant and not controllable. These results lend

Figure 3: As in Figure 2, but excluding outliers (agents with
performance of 30 or better).

no support yet for the idea that networks with more com-
mon structural properties (high clustering factor, or scale-
invariance, or low betweenness, as in small worlds) show
some form of co-adaptation with (human) decay. However,
this effect is only seen for networked communication com-
pared to the case of agents searching for themselves.

Among the questions arising from these data is the one
referring to external validity. To what extent do these results
depend on the set of parameters used in this simulation?
Coman et al.’s (2012) recent results suggest co-adaptation
of forgetting and the size of the social group. Running the
same simulation in smaller teams (25 agents), we obtain
similar effects. Small teams fare considerably better: their
task performance measured in items obtained was approx-
imately twice as high. The effect of memory decay and its
interaction with network topology is consistent with that in
the large communities.

A fundamental task for each individual playing the Geo
Game is to decide how much to communicate, and how
much to concentrate on visiting different locations. We see
this as a trade-off between benefitting from a distributed sen-
sor network (the other agents) and the cost of communica-
tion. On a functional level, this amounts to a decision be-
tween internalizing facts (storage in individual memory) and
externalizing them (storage in the network). For this reason,
the following experiments parametrize the Geo Game such
that agents move ten times as fast between locations. This
speed-up further limits the time available for communica-
tion, but also for individual rehearsal of knowledge. Figure 5
demonstrates the baseline performance of the agents in this
round of simulations.

Metacognitive Communication Filtering
Humans can adapt their choice of action strategy upon ex-
plicit reflection, but also according to ongoing monitoring.
This ability is referred to as metacognition. In Geo Game,
communication bandwidth is limited. Agents have no a-
priori information about their position in the network, or
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Figure 4: Agents send more unnecessary messages when in-
ternal memories decay too slowly or too quickly.

variables influencing communicative choices, such as trust
for network neighbors. Communication is not universally
helpful. For instance, Figure 4 shows the model’s derived
utility of communication across a range of decay values.
When memory is particularly short-lived, the models ben-
efit much more from communication.

In our agent-based simulation, we introduce a mechanism
that adjusts the communication strategy dynamically based
on perceived success. Its goal is to maintain an expectation
s′ of how the utility of communication. The metacognitive
model will then send a message whenever it knows of a
need; in addition, it may send it according to a stochastic
decision function, i.e., with probability s′.

Instance-based learning (IBL, Gonzalez, Lerch, and
Lebiere 2003) is a design pattern that stores episodic infor-
mation of different categories in order to retrieve an ideal
version of each category. For instance, an IBL model may
experience task success in different runs, associated with
different strategies. Later, it may determine an evaluation
of each strategy according to its average task success. In
our model, IBL stores an episode ei =< si, ti > when-
ever an agent becomes aware of a useful fact after time pe-
riod ti, having used a certain communication strategy si (1.0
for communication, and 0.0 for no communication). That is,
when the item’s location was originally requested in a mes-
sage sent by the agent and received in a message from an-
other one, si = 1.0 and ti indicates the time passed since
the first request. When the item’s location was discovered
by exploration, si = 0.0 and ti indicates time spent between
item assignment and discovery. To decide how much to com-
municate, IBL produces a blended episode e′, where s′ is a
weighted mean of the stored episodes. We aim to minimize
the time it takes to obtain information about an item’s loca-

Figure 5: Agent performance after speed-up of the game
(which limits communication bandwidth).

tion by requesting t′ = 0.0 as part of the blending process.
Thus, recent episodes are weighted more heavily as well as
ones with a low ti. Based on the calculated s′, agents throttle
communication.

We found that the metacognitive filter, overall, hurts
performance (Figure 6). Yet, for small-world and random
graphs, performance is enhanced at realistic (human) de-
cay values (around 0.5). We also compare performance of
metacognition against more extreme communication strate-
gies (Figure 7): either targeting (only communicating when
information is needed), or dumping (always communicat-
ing). We find that task success is enhanced for a range of re-
alistic decay values (approx. 0.3–0.5). (This holds also true
for smaller networks (|N | = 25) for decay values 0.3–0.6.)

Figure 6: As Figure 5, but with throttling based on metacog-
nitive monitoring of the utility of communication.

246



Figure 7: Metacognition beats maximally and minimally
talkative agents at cognitive plausible values of individual
decay, but it is outperformed for high decay values.

Figure 8: Metacognition allows agents to make use of larger
network neighborhoods. (Random graphs behave like small
worlds and are omitted for clarity.

Metacognition can be seen as an additional filter for the
agents. In this game, agents have to choose between exter-
nalizing and internalizing information. For internally main-
tained knowledge, activation decay allows each agent to dis-
card old and possibly outdated information. For externally
maintained knowledge, metacognitive filtering can provide a

similar decay. At the network level, information is discarded
when it is no longer passed on. When agents choose to not
pass on messages based on a stochastic function, informa-
tion decays rather than persists in the network.

The Geo Game uses the number of items taken as a mea-
sure of success. This can be seen as a proxy for the availabil-
ity of information and integrates both the time spent waiting
for information, and the accuracy of information obtained.
Accuracy is particularly relevant in systems with changing
ground truth. We define accuracy as the proportion of correct
facts received by a node over the number of facts received
overall. We find that metacognition substantially improves
the accuracy of messages in the system for small-world and
random graph networks; it worsens accuracy for trees.

The mean size of a node’s network neighborhood (de-
gree) contributes to the availability of information; however,
can popular agents make better use of their large neighbor-
hoods? Figure 8 illustrates that the smart choice of commu-
nication strategy lets agents make better use of their large
neighborhoods. This does not apply in tree hierarchies. We
find that a small-world network topology does perform best,
but it requires selective filtering of messages. These simu-
lations used randomly sampled BLL parameters (0.3–0.6).
Random Graphs and small-world topologies showed very
similar behavior. We believe that saturation of the network
with messages in the non-filtered configuration may account
for the similarity in random graphs and small worlds. Simi-
larly, the task at hand does not necessarily benefit from the
higher clustering coefficient in small worlds. The average
degree that can affect attentional load in the agents was con-
trolled across these two types of networks.

Discussion
The ideas we explore here are basic: can forgetting help
multi-agent systems maintain a representation of true facts
when ground truth changes? Our cognitive models carry out
a foraging task; they are developed according to empirical
observations of humans working on this task. We find that
average task performance improves with increasing individ-
ual memory decay. This suggests that time-based decay is
a useful heuristic for agents that allows them to discard out-
dated information. It is important to examine the interactions
of forgetting with network topology, and to see how much
forgetting is useful.

We show two simple ways to improve information trans-
mission and flexibility in multi-agent communication net-
works with dynamic ground truths: temporal decay in each
agent’s belief state, and metacognitive reasoning to max-
imize communication efficiency. Both techniques are in-
spired by human cognition. They may be useful not just for
simple agents, but also in complex computer-based or mixed
human-computer systems.

Under the rational assumption that forgetting mechanisms
have co-evolved with social structure, we expect that cog-
nitively plausible forgetting is most useful for commonly
found network topology with small-world properties. Step-
ping outside of cognitively bounded simulation, we can ex-
plore more extreme assumptions in order to determine useful
strategies for multi-agent systems.
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Time-based decay plays a role in the context of distributed
memory. When agents communicate with each other, they
externalize memory storage. As agents maintain more reli-
able knowledge, we find that decay particularly helps com-
munities that have less clustering and relatively long dis-
tances, and that take many steps to propagate information:
tree hierarchies (Figure 5).

Network topology does not always affect task perfor-
mance. In our simulations, we find little differences between
networks with small world properties and random graphs;
however, tree structures reach at times higher performance.
We observe, however, that when network-level forgetting is
added, that is, when agents are judicious and adaptive in
how much information they relay to others, small world net-
works outperform tree structures in one particular measure:
the proportion of truth in the answers communicated. Real-
life organizational networks re-configure their topology in
time of crisis (via the Enron e-mail corpus, Diesner, Frantz,
and Carley 2005); the higher accuracy of messages may ex-
plain some of the shortcuts taken by humans.

Network-level forgetting can be implemented in many
ways. One seems particularly useful in the context of cog-
nitive systems. When agents dynamically adapt the rate of
communication according to their performance with and
without it, then this can outperform non-dynamic strategies
for certain levels of individual memory decay (Figure 7).
This range of decay parameters (0.3–0.5) includes the de-
cay level observed in empirical studies with humans (0.5). In
this context, the decay parameter influences not just forget-
ting of facts. It also determines how much agents prioritize
recent over longer-term experience in making their commu-
nication decision. Thus, more work is needed to determine
the exact mechanism behind this effect.

A preliminary regression model predicting task success as
a function of network parameters, decay and metacognition
is not shown for reasons of space; however, it suggests that
our findings are reliable. The cognitive models employed as
agents exemplify a hybrid multi-agent system: they are con-
strained by human memory and communication bandwidth.
In recent work, a model, even one of the same Geo Game
paradigm (Wang, Sycara, and Scerri 2011), which was not
constrained by cognitive architecture, has demonstrated dis-
advantages of collaboration. This was the case as communi-
cation in fully connected networks was moderated according
to several non-adaptive strategies. According to our results,
a number of properly parametrized mechanisms to discard
old beliefs and to moderate agent communications have to
come together to derive benefits from social cognition.
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