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Abstract 
Generating future states of the world is an essential 
component of high level cognitive tasks such as planning. 
We explore the notion that such future state generation is 
more widespread and forms an integral part of cognition. 
We call these generated states expectations, and propose 
that cognitive systems constantly generate expectations, 
match them to observed behavior and react when a 
difference exists between the two. We describe an ACT R 
model that performs expectation driven cognition on two 
tasks  pedestrian tracking and behavior classification. The 
model generates expectations of pedestrian movements to 
track them. The model also uses differences in expectations 
to identify distinctive features that differentiate these tracks. 
During learning, the model learns the association between 
these features and the various behaviors. During testing, it 
classifies pedestrian tracks by recalling the behavior 
associated with the features of each track. We tested the 
model on both single and multiple behavior datasets and 
compared the results against a k NN classifier. The k NN 
classifier outperformed the model in correct classifications, 
but the model had fewer incorrect classifications in the 
multiple behavior case, and both systems had about equal 
incorrect classifications in the single behavior case. 

Introduction   
Comparing current and desired states of the world and 
selecting the operators needed to go from the former to the 
latter is the essence of AI techniques like means-ends 
analysis (Simon 1981). We explore the idea that in addition 
to simply comparing current and desired states, we can 
drive cognition by generating a future state, called an 
expectation, at each step and comparing that generated 
state to the state of the world at the next step. When 
expectation and perception match, the expected next step is 
taken and the process is repeated. However, when there is a 
mismatch, attention is focused on the mismatch to resolve 
the problem.  
 The generation of future states and their use to drive the 
problem solving process has a long history in AI and 
related fields. As mentioned earlier, future-state generation 
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lies at the core of AI as “search in a state space” and 
expectations have been used to explain both human 
reasoning and understanding (Schank 1982) (Schank and 
Owens 1987). In Neuroscience, expectation generation is 
central to a number of neural theories from the 
functionality of the neocortex (Hawkins 2004) (Baars and 
Gage 2010) to object and scene recognition (Puri and 
Wojciulik 2008). In Robotics, the Polyscheme cognitive 
architecture (Cassimatis 2006) has been used to generate 
expectations to track vehicles (Pless et. al. 2010) and play 
hide-and-seek games with other agents (2005). In 
Cognitive Psychology, expectations have been used to 
successfully model sequence learning (Lebiere and 
Wallach 2001), game theory (Erev et. al. 2010), imagery-
driven planning (Wintermute and Laird 2008), control in 
dynamical systems (Gonzalez, Lerch and Lebiere 2003), 
appraisal (Hudlicka 2004) and detecting and recovering 
from errors in perception (Kurup, Lebiere and Stentz 
2011). However, in all these models, the approaches were 
proposed as solutions to particular problems rather than a 
general way to structure cognition, or used specific, non-
architectural methods to generate and match expectations. 
Expectation generation and matching is also central to 
Goal Driven Autonomy (GDA) algorithms (Aha et. al. 
2010) especially Learning GDAs (Jaidee, Muñoz-Avila 
and Aha 2011). The difference between the GDA approach 
and our proposal lies in the nature of the generation and 
matching processes.  GDA calls for a deliberative strategy 
of problem solving that applies knowledge to a dynamic 
environment while expectation-driven cognition calls for 
these processes to be fast, parallel, non-deliberative and 
architectural.   
 In addition, while the behavior classification task is used 
as an example, it is worthwhile to place our effort within 
the activity recognition literature. Our classifier is similar 
to template-matching approaches such as (Zelnik-Manor 
and Irani 2001) and (Laptev and Lindeberg 2003) and falls 
under the category of methods that use space-time features 
in a hierarchy of activity recognition approaches 
(Aggarwal and Ryoo 2011). 
 Our model of expectation-driven cognition is based on 
the ACT-R cognitive architecture, and in particular on two 
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mechanisms of its declarative memory, blending and 
partial matching. These mechanisms generalize the process 
of generating and matching expectations and allows the 
model to construct states that it has never encountered 
before. We introduce a model of pedestrian tracking and 
behavior classification that uses expectations to track 
pedestrians based on object location information. In the 
learning phase, the model uses mismatches between 
expectations to generate features and learns to associate 
these features with particular behaviors. During testing, it 
uses discovered features to retrieve the associated behavior 
from memory. We compare the model’s performance to 
that of a k-NN classifier. 

ACT-R 
The ACT-R cognitive architecture is a modular, neurally-
plausible theory of human cognition. ACT-R describes 
cognition at two levels – the symbolic and the sub-
symbolic. At the symbolic level, ACT-R consists of a 
number of modules each interacting with a central control 
system (Procedural module) via capacity-limited buffers. 
Modules represent functional units with the most common 
ones being the Declarative module for storing declarative 
pieces of knowledge, the Goal module for storing goal-
related information, the Imaginal module which supports 
storing the current problem state, and the Perceptual 
(Visual and Aural) and Motor (Manual and Speech) 
modules that support interaction with the environment. The 
only way to control a module and access the results of its 
processing is through that module’s buffer. Modules can 
operate asynchronously, with the flow of information 
between modules coordinated by the central procedural 
module. 
 Declarative memory stores factual information in 
structures called chunks. Chunks are typed units similar to 
schemas or frames that include named slots (slot-value 
pairs). Productions are condition-action rules, where the 
conditions check for the existence of certain chunks in one 
or more buffers. If these checks are true, the production is 
said to match and can be fired (executed).  Only one 
production can fire at a time. In its action part, a 
production can make changes to existing chunks in buffers 
or make requests for new chunks. ACT-R also has an 
underlying sub-symbolic (numerical/statistical) layer that 
associates values (similar to neural activations) to chunks 
and productions. These activation (utility in the case of 
productions) values play a crucial role in deciding which 
productions are selected to fire and which chunks are 
retrieved from memory. Only those chunks that have an 
activation value greater than a threshold (called the 
retrieval threshold) are retrieved. ACT-R also has a set of 
learning mechanisms that allow a model to learn new 

declarative facts and production rules, and to modify 
existing sub-symbolic values to reflect the statistics of the 
environment. A full account of ACT-R theory can be found 
in  (Anderson 2007) (Anderson and Lebiere 1998). 
 In this paper, we restrict further discussion about ACT-R 
to the declarative module since its performance is most 
relevant to our current work. As mentioned earlier, the 
declarative module stores factual information in the form 
of chunks and makes these available to the rest of the 
architecture via the retrieval buffer. There are two critical 
mechanisms for retrieving information in ACT-R’s 
declarative module – partial matching and blending - that 
are important to generating and matching expectations. 

Partial Matching 
In ACT-R, productions make requests for chunks in 
declarative memory by specifying certain constraints on 
the slot values of chunks. These constraints can range from 
the very specific where every slot and value of the desired 
chunk is specified to the very general (akin to free 
association) where the only specification is the type of the 
chunk. Request criteria also include negatives specifying 
that a slot should not have a particular value as well as 
ranges (in the case of numerical values). The standard 
request generally specifies the chunk type and one or more 
slot values but not all. If there are multiple chunks that 
exactly match the specified constraints, the chunk with the 
highest activation value is retrieved. The activation value 
of a chunk (1) is the sum of its base-level activation and its 
contextual activation. The base-level activation of a chunk 
is a measure of its frequency and recency of access. The 
more recently and frequently a chunk has been retrieved, 
the higher its activation and the higher the chances that it is 
retrieved reflecting pervasive cognitive phenomena such as 
the Power Law of Practice and the Power Law of 
Forgetting. Equation (2) describes how to calculate the 
base-level activation of a chunk i where tj is the time 
elapsed since the jth reference to chunk i, d represents the 
memory decay rate and L denotes the time since the chunk 
was created. 
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The contextual activation of a chunk is determined by the 
attentional weight given the context element j and the 
strength of association Sji between an element j and a 
chunk i.  An element j is in context if it is part of a chunk 
in a buffer (e.g., it is the value of one of the goal chunk’s 
slots). The default assumption is that there is a limited 
source activation capacity that is shared equally between 
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all context elements. The associative strength Sji is a 
measure of how often chunk i was retrieved by a 
production when source j was in context. In addition to the 
base-level and contextual values, some randomness is 
introduced into the retrieval process by the addition of 
noise, which makes retrieval conform to the softmax or  
Boltzmann distribution. 
 Without partial matching enabled, the retrieval 
mechanism only considers those chunks that exactly match 
the request criteria. However, in real world situations one 
is seldom exposed to the exact same information, and the 
mechanism therefore needs to generalize to similar 
situations. When partial matching is enabled, the retrieval 
mechanism can select the chunk that matches the retrieval 
constraints to the greatest degree. It does this by computing 
a match score for each chunk that scales down the chunk’s 
activation by its degree of mismatch to the specified 
constraints. Equation (3) specifies how to compute the 
match score.  

MP is the mismatch penalty, Sim(v,v’) is the similarity 
between the desired value v and the actual value v’ held in 
the retrieved chunk. With the use of partial matching, the 
retrieval mechanism can retrieve chunks that are closest to 
the specified constraints even if there is no chunk that 
matches the constraints exactly. This is particularly useful 
as shown below in situations where values are continuous 
and dynamic. Since the degree of match is combined with 
the activation to yield the match score, chunks that have 
higher activation will also tolerate a greater degree of 
mismatch.  This reflects the interpretation of activation as a 
measure of likelihood of usefulness (Anderson 1990). 

Blending 
The second aspect of retrieval is blending (Lebiere 1999), a 
form of generalization where, instead of retrieving an 
existing chunk that best matches the request, blending 
produces a new chunk by combining the relevant chunks. 
The values of the slots of this blended chunk are the 
average values for the slots of the relevant chunks 
weighted by their respective activations, where the average 
is defined in terms of the similarities between values. For 
discrete chunk values without similarities, this results in a 
kind of voting process where chunks proposing the same 
value pool their strengths. For continuous values such as 
numbers, a straightforward averaging process is used.  For 
discrete chunk values between which similarities (as used 
in partial matching) have been defined, a compromise 
value that minimizes the weighted sum of squared 

dissimilarities is returned. Formally, the value V obtained 
by a blended retrieval is determined as follows: 

where Pi is the probability of retrieving chunk i and Vi is 
the value held by that chunk. Blending has been shown to 
be a convincing explanation for various types of implicit 
learning (Wallach and Lebiere 2003). Blending of location 
information in chunks allows the model to predict future 
locations of objects by giving more weight to recent 
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Figure 1. Examples of behaviors (a) normal (Straight & 
Left), (b) Peek, (c) Detour, (d) Veer and (e) Walkback. 
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perceptual information while ignoring various individual 
fluctuations arising from noise. ACT-R’s blending 
mechanism can be thought of as a subset of more general 
approaches like Conceptual Blending (Fauconnier and 
Turner 1998) where the structure of the component 
concepts and the final concept is restricted to a single type 
and the compositional process for constructing the blended 
concept is weighted averaging. More comprehensive 
elements of Conceptual Blending such as non-trivial 
compositional rules, completion, elaboration and emergent 
structures are absent in ACT-R blending but could be 
performed using other cognitive mechanisms after the 
blending process. In addition, the partial matching and 
blending mechanisms in ACT-R are meant to capture the 
fundamental generalization characteristics over similarity-
based semantics of modeling paradigms such as neural 
networks (Rumelhart et. al. 1986) (O’Reilly and Munakata 
2000), albeit at a different level of abstraction. 
 Together, partial matching and blending allow the model 
to automatically generate expectations of future states from 
previously observed states.  

Classifying Pedestrian Behavior 
We tested the idea of using partial matching and blending 
for expectation-driven cognition by building a model of 
behavior classification for pedestrians at an intersection 
with a checkpoint (Fig 1). A pedestrian enters the scene 
from the left (a convenience for expository purposes) and 
walks towards the right on the sidewalk. At the 
intersection, the pedestrian can either go straight or turn 
left. These two behaviors – walking straight and turning 
left – represents the two normal behaviors in the scenario. 
An example of the tracks produced by pedestrians 
exhibiting these behaviors is shown in Fig 1(a). An 
additional four behaviors – peek, detour, veer and 
walkback - are termed suspicious. In the peek behavior 
(Fig 1(b)), the pedestrian steps out on to the street to look 
for a checkpoint around the building and finding that it is 

not present, proceeds to turn left at the intersection. In the 
detour behavior (Fig 1(c)), the pedestrian steps out on to 
the street to look for a checkpoint (as in the peek behavior) 
and finding it present proceeds to walk straight rather than 
turn left. In the veer behavior (Fig 1(d)), the pedestrian 
turns left at the intersection, sees the checkpoint, veers off 
and proceeds to walk straight on instead of continuing 
along to the left. Finally, in the walkback behavior (Fig 
1(e)), the pedestrian turns left at the intersection, spots the 
checkpoint, reverses course and proceeds to walk back to 
the starting location. The goal of the model is to track 
pedestrians across the scene and classify their behavior.  

Tracking Pedestrians 
A state-of-the-art object detection algorithm (Felzenswalb 
et. al. 2010) trained to detect people is used to identify the 
pedestrians in the scene. The output of the algorithm is in 
the form of bounding boxes for each person in the image, 
together with a confidence value. The ACT-R model 
converts this bounding box into a single x,y coordinate that 
is the mid-point along the base of the bounding box. The 
model represents this information together with the rate of 
change (delta) in a chunk in declarative memory.  The 
model tracks pedestrians as follows – at each timestep, the 
model generates an expected location (using the partially 
matched and blended location and delta values from 
declarative memory chunks associated with that person) 
for each person previously identified. It then assigns each 
location from perception to a person by picking the person 
closest to that location. If a location is left over (i.e., all 
known persons have been assigned to locations), a new 
person is identified at that location. ACT-R’s partial 
matching and blending ensure that the expected location 
generated by the model places greater emphasis on the 
recent history of an object while smoothing out random 
variations in projecting moving directions. This process 
can be seen as a spatial version of the general modeling 
pattern of projecting future system states in dynamic 
environments (Lebiere, Gonzalez and Warwick 2009). 

Figure 2: The features learned by the model overlaid on the pedestrian tracks. Each feature is denoted by a rectangular box. The circles 
denote the point of divergence of tracks that led to the construction of features. 
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While there are other general-purpose tracking algorithms, 
this localized greedy approach is good enough for our goal 
of studying expectation-driven cognition. More 
importantly, doing tracking within the architecture gives us 
a way to use contextual information to influence the 
process in the future, which is one of the goals of this 
research program.  

Features 
The model classifies pedestrian behaviors by abstracting 
their tracks into a set of features where a feature is simply a 
rectangular region in the scene. If a pedestrian’s track 
intersects that region, then that track is said to have that 
particular feature. The directionality of the track is 
captured by the sequence of features that the model builds 
for each track. 
 The model learns the set of features as follows – it 
builds up a set of expectations for pedestrians as they move 
across the scene. When an expected track diverges from 
the observed track by more than a prescribed angle, the 
model notes the point of divergence and selects a point 
along each of these tracks (expected and observed) as 
feature points. When the model is done with the learning 
set, it clusters these points into features. Fig 2 shows an 
example of the kinds of features found by the model. The 
rectangles are the features while the circles indicate the 
points of divergence (that are used to cluster the features).  

Classifying Behaviors 
The model works in two stages. In the first stage, the 
model learns the set of features as described above. In the 
second stage, for each track the model learns a chunk that 
captures the association between the features and the 
pedestrian’s behavior. This two-stage breakdown is due to 
the limited data available since feature-behavior 
associations cannot be learned before the features 
themselves have been discovered. With sufficient data, 
these stages can be combined into a single stage where the 
initial behaviors are used to discover the features and the 
later ones to learn the associations. 
 During testing, the model uses the feature sequence it 
derives for each pedestrian track to retrieve the appropriate 
behavior chunk from memory. This model can be seen as a 
spatial specialization of a more abstract model that 
recognizes and anticipates behavior by matching action 
patterns, illustrating the versatility of the cognitive 
architecture across both symbolic and metric domains 
(Oltramari & Lebiere, 2011). 

Results
The data consisted of four examples of each behavior for a 
total of 24 behaviors. In addition, we also collected a data 
set with multiple behaviors. The multiple behavior data 
had two examples of each behavior (for a total of ten 
behaviors) in a continuous sequence with up to 3 
pedestrians in the scene at any one time.  

 We ran monte-carlo simulations (1000 iterations) of 
classification on both single and multiple behavior sets 
with ACT-R parameters for retrieval threshold, noise and 
match penalty set to -8.0, 0.1 and 1.0 respectively. For both 
single and multiple behavior sets, we randomly selected 3 
examples of each behavior (18 examples in total) for the 
learning set. For single behavior classification, we used the 
remaining example of each behavior for the testing set (6 
examples in total). For multiple behavior classification, the 
learning set remained the same while the testing set was 
the multiple behavior set. Table 1(a) shows the results of 
classification on both sets. The results are good for the 
single behavior case, with the model making a 
classification in 86% of the cases. In the remaining 14% of 
the cases, there were no chunks in declarative memory that 
had an activation value that was greater than the retrieval 
threshold leading to the model not producing a 
classification. The model correctly classified 68% of the 
total behaviors and incorrectly classified 18%. The results 
of classification in the multiple behavior case are poorer, 
with the model incorrectly classifying about as many 
behaviors as it correctly classifies (~40%). However, this is 
still above chance, which is at 16.7%.  

(a) 

Learning Model 
(Single Behavior Set) 

Learning Model 
(Multiple Behavior Set) 

 

Made 86.1% Made 82.4% 
Correct 68% Correct 43.8% 

Incorrect 18.1% Incorrect 38.6% 

(b) 

Table 1. The percent of classifications made, percent correct 
and percent incorrect for (a) model that learns features from 
the data and (b) a k NN classifier. 

K-NN Model 
(Single Behavior Set) 

K-NN Model 
(Multiple Behavior Set) 

 

Made 100% Made 100% 
Correct 83.3% Correct 50% 

Incorrect 16.7% Incorrect 50% 
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For comparison, in Table 1(b) we show the results of a 
k-NN classifier. This model correctly classifies more 
behaviors in both the single and multiple behavior cases. 
Both models incorrectly classify about 17% of the results 
in the single behavior case, but in the multiple behavior 
case, the feature-learning model makes fewer mistakes, 
incorrectly classifying only 38.6% of the behaviors as 
opposed to 50% for the k-NN classifier.  
 W e also ran a number of simulations to understand the 
nature of the various parameters involved in the feature-
learning model. We tested the effect of three parameters – 
the cluster radius (the radius of the circles in Fig 2) that 
determines which cluster a divergence point (the point of 
deviation from expectation) belongs to, the cluster angle 
that decides whether a deviation from expectation is large 
enough to consider it a feature and the retrieval threshold 
of the model that determines if the activation value of a 
chunk in ACT-R’s declarative memory is high enough for 
retrieval. Figure 4 shows the results of these tests. We 
found that the radius of the cluster and the retrieval 
threshold do not matter at least for a normal range of 
values. The cluster angle on the other hand has a noticeable 
effect on all three percentages. The system makes more 
classifications as the angle increases but that increase 
comes at the expense of the number of correct 
classifications. The reason for this is straightforward – as 
the angle increases, features get aggregated into fewer 
groups. Once the number of features becomes too low, the 
model has trouble distinguishing between the different 
behaviors since they have the same set of features. 

Conclusion and Future Work 
We investigated the idea of cognition as an active process, 
driven by the generation and matching of expectations.  
We built a model that used ACT-R’s declarative memory 
and its partial matching and blending mechanisms to 
generate expectations, and ACT-R’s procedural module to 
direct cognition based on the match or mismatch between 
these expectations and observed values.  

 Our future work is concentrated on understanding how 
expectations can be used to make perception better by 
providing context and directing attention. Additionally, we 
are interested in understanding how expectation-driven 
cognition can work with deliberative approaches such as 
Learning Goal Driven Autonomy (Jaidee, Muñoz-Avila 
and Aha 2011). Finally, the generation of an expectation is 
still influenced by the model but the theory of expectation-
driven cognition, given the rapidity  of the generation and 
matching processes, calls for an architectural solution. 
Understanding how to achieve this goal with minimal 
changes to the existing architecture is part of ongoing 
research. 
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