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Abstract
The transition to renewables requires storage to help
smooth short-term variations in energy from wind and
solar sources, as well as to respond to spikes in electric-
ity spot prices, which can easily exceed 20 times their
average. Efficient operation of an energy storage device
is a fundamental problem, yet classical algorithms such
asQ-learning can diverge for millions of iterations, lim-
iting practical applications. We have traced this behav-
ior to the max-operator bias, which is exacerbated by
high volatility in the reward function, and high discount
factors due to the small time steps. We propose an el-
egant bias correction procedure and demonstrate its ef-
fectiveness.

Introduction
As part of its plan to reduce CO2 production, the Department
of Energy has decided that energy from renewable sources
such as the wind and the sun should represent a growing
source of electricity generation. In the U.S., most states have
put in place renewable portfolio standards to enforce the
transition toward these sources. At the same time, the transi-
tion to deregulated power prices have exposed consumers to
the high volatility of electricity spot prices, which will only
be exacerbated as the variability from renewables grows.

It is now widely recognized that energy storage can play
a major role in smoothing the volatility in generation and
prices (Barton and Infield 2004; Huggins 2010). Given the
high expense of different types of storage, an efficient con-
troller would be an important part of this solution. The prob-
lem of optimizing the storage and withdrawal of energy
from a battery storage device can be easily formulated as
a Markov decision process, yet classical algorithms such as
Q-learning, which appear to be well suited to this problem
class, exhibit astonishingly slow convergence, and actually
demonstrate divergent behavior for millions of iterations.
This behavior appears to be due to the bias induced by the
max-operator in the Q-learning updating procedure, given
by

Q̂t = ptat + γmax
a′

Q̄t−1(snext, a
′), (1)

Q̄t(st, at) = (1− αt−1)Q̄t−1(st, at) + αt−1Q̂t. (2)

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where at captures the storage (at < 0) or withdrawal (at >
0) of electricity at a price pt that evolves over time.

Our problem exhibits two empirical features: high volatil-
ity in the rewards R(St, at) = ptat due to the nature of
electricity spot prices, and a discount factor γ that is very
close to one because of small time steps (which might on
the order of a few minutes due to the nature of the dynamic
control and the volatility of the driving processes). Primar-
ily due to the stochastic prices (there can be other forms of
uncertainty), the observations Q̂t exhibit very high variance,
which translates into relatively high variance in the estimates
Q̄t.

It is well known that the expected value of a maximum
of a set of random variables is biased, a property that would
exist in any Q-learning application. However, it appears that
the characteristics of this particular application, which is a
fundamental control problem in energy systems, exacerbate
the issue to a degree that has not been observed before. This
paper offers a solution that is both practical and elegant.

We formulate our problem as a Markov decision process
with state St = (rt, pt) where rt is the energy level in
the battery (the resource level), and pt is the price. For our
model, we use discretized storage and price processes, so
that the state space S is discrete. In practice, we would not
have a true model of the stochastic price process, which is
highly volatile; prices may spike from averages of $50 per
megawatt-hour to over $1000 per MWhr, for periods span-
ning several minutes to an hour. The discretized action space
A is relatively small, making this a good candidate for Q-
learning to find a near-optimal policy.

Our work reports on development of an intelligent bat-
tery control problem reflecting the stochastic nature of real
time electricity prices and the physical properties of batter-
ies, where the transient divergence in Q-learning estimates
can be quantified. We propose a bias-correction term based
on an analytical model of a simplified decision process. We
then show empirically that the bias correction dramatically
improves the rate of convergence for our application.

The model
We formalize the intelligent battery control problem as a
MDP as follows. Given the state St ∈ S with St = (rt, pt),
we assume we have a stochastic prices process pt+1 =
pt+p̂t+1. Let ω = (p̂1, p̂2, . . .) be a sample realization of the
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Figure 1: Electricity spot prices for ERCOT Texas.

price process with ω ∈ Ω, and where F is a sigma-algebra
on Ω with filtrations Ft. We let (Ω,F,P) be our proba-
bility space, where P is a probability measure on (Ω,F).
The problem is to find a policy π(St) that returns an action
at ∈ A that solves

max
π∈Π

E
∞∑
t=0

γtR(St, π(St)),

where γ is a discount factor and Π is a set of admissible
policies adapted to the filtration Ft. It is well known that an
optimal policy is characterized by Bellman’s equation

V (St) = max
a∈A

(
R(St, a) + γE [V (St+1)|St]

)
, (3)

where St+1 = T (St, at, p̂t+1) is derived from the transition
function T . We do not have access to the model T , and nor
can we compute the expectation. For this reason,Q-learning,
given by equations (1) - (2), is an attractive algorithmic strat-
egy, and is supported by powerful convergence theory (Tsit-
siklis 1994; Jaakkola, Jordan, and Singh 1994).

Perhaps the biggest challenge in our research is the price
process, which is well known to be heavy-tailed. An aver-
age wholesale price is approximately $50 per MWhr, with
spikes that regularly exceed $1,000 per MWhr, as shown in
figure 1. This has been recognized and studied by a number
of authors (see, for example, (Eydeland and Wolyniec 2003;
R. Huisman 2003). (Kim and Powell 2011) makes an em-
pirical case that the distribution has infinite variance, and is
well-modeled by a scaled Cauchy distribution. This heavy-
tailed property adds to the overall level of variability in the
observations of rewards, and hence the variance of Q̂.

We use a mean-reverting jump diffusion model proposed
in (Cartea and Figueroa 2005) for our experimental work,
which models the log of the price process Yt = log (Pc + c)
where c is an appropriately chosen shift constant to avoid
zero or negative prices. The log-price model is given by

dYt = α(µ− Yt)dt+ σdWt + dNt,

where µ is the long term equilibrium price, α is the mean
reversion rate, Wt is a Brownian motion and Nt is a Poisson

jump process with parameter (mean rate) λ. α, µ, σ and λ
are estimated from data on a rolling basis.

Transient bias in Q-learning
As shown in equations (1)-(2), Q̄t(st, at) is a statistical esti-
mate, which means that maxa Q̄t(st, at) will be biased up-
ward. As a result, the observations Q̂t are biased upward,
introducing a bias into the estimates Q̄t. When the discount
factor γ is close to 1 (as it is in our application), the effect is
significant.

The effect of this particular bias in applications has been
observed earlier in estimating asset values in finance (Brown
1974), and by authors in reinforcement learning (Thurn and
Schwartz 1993; Ormoneit and Sen 2002), management sci-
ence (Smith and Winkler 2006) and in operations research
(Powell 2007). (Kaelbling, Littman, and Moore 1996) dis-
cusses the dangers of combining the max operator with func-
tion approximations. As of this writing, the bias does not
seem to have caused serious practical problems, and rel-
atively few have proposed corrections (exceptions include
(Powell 2007) and (van Hasselt 2010)).

Reinforcement learning algorithms that recognize the
max-operator bias either explicitly handle the bias as special
cases (for example, (da Motta Salles Barreto and Anderson
2008)), or avoid it altogether by decoupling the max-biased
sampling step and the stochastic approximation step as in
(Reynolds 2001; van Hasselt 2010). For example, doubleQ-
learning keeps track of two sets of estimates of Q̄t−1 to use
one randomly selected set of estimate to make decisions to
generate sample realizations of Q̂t and use the other esti-
mate to perform stochastic approximation to update Q̄t (van
Hasselt 2010).

In this work, we 1) illustrate the minimal condition to
cause the transient max-induced bias in Q-learning, 2) pro-
pose bias-corrected Q-learning algorithm that corrects the
illustrated bias problem, and 3) report the improved per-
formance of our algorithm in the intelligent battery control
problem where the transient bias degrades the performance
of Q-learning.

Some initial results
First, we define a convenient term to analyze transient bias:

Definition 1 (Actual max-induced bias). The actual max-
bias induced by Q-learning at iteration t for state-action
pair (s, a) is defined as:

bt (s, a) := Q̄t (s, a)− Q̄∗t (s, a) ,

where Q̄t is the Q value after iteration t, and Q̄∗t is the “ora-
cle” Q estimate calculated with the exactly same algorithm
(taking the same action as that used to calculate Q̄t) but
with full knowledge of the underlying MDP, including the
true reward function.

We first develop bounds on the bias for a simplified sys-
tem with a single state.

Proposition 2 (Bounds on the bias for a single-state sys-
tem). For an MDP with a single state, multiple actions,
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R̂(a) := ER(a) + ε̂,Eε̂ = 0,Varε̂ 6= 0,

bt ≤
(
R̂ (at)−R (a∗t )

)
.

We also have

Ebt ≥ 0.

Proof. For Q-learning with an ε-greedy learning policy in
iteration t <∞, st, the estimates Q̄t are given as determin-
istic values. With probability ε > 0, a greedy action at will
be made such that the sample Q̂t for update in iteration t
will be:

Q̂t ← max
a∈A(st)

(
R̂(st, a) + γ max

a′∈A(st+1)
Q̄t−1 (st+1, a

′)

)
.

Here, the single state condition (|S| = 1) is used to re-
move complicated dependency of maxa′∈A Q̄t−1 (st+1, a

′)

and isolate max R̂ as the source of max-bias. The immediate
consequence is as follows:

max
a′∈A(st+1)

Q̄t−1 (st+1, a
′)

single−−−−→
state

max
a′∈A

Q̄t−1 (a′) =: Q̄Mt−1,

where Q̄Mt−1 is a deterministic value at iteration t, which is
independent from maxa∈A(st) operator, without loss of gen-
erality. Now, the sample Q̂t becomes

Q̂t ← max
a∈A

(
R̂(a)

)
+ γQ̄Mt−1

= R̂(at) + γQ̄Mt−1,

where at := arg maxa∈A

(
R̂(a)

)
+ γQ̄Mt−1.

Denote the corresponding true reward function R (·) :=

ER̂ (·), the true best action a∗t = arg maxa∈A (R(a)), and
the oracle Q sample Q̂∗. Then the actual max-bias at itera-
tion t shown in Definition 1 becomes:

bt = Q̄t − Q̄∗t
= αt−1

(
Q̂t − Q̂∗t

)
= αt−1

(
R̂ (at)−R (a∗t )

)
≤
(
R̂ (at)−R (a∗t )

)
.

To account for unobservable randomness in iteration t,
take the expectation (over Wt), with the usual case of using
nonnegative stepsizes αt, we obtain

Ebt = E
[
αt−1

(
R̃ (at)−RO (at)

)]
= αt−1E

[(
R̃ (at)−RO (at)

)]
= αt−1

(
E
[
R̃ (at)

]
−RO (at)

)
= αt−1

(
E
[
max
a∈A

(
R̂(a)

)]
−RO (at)

)
(4)

≥ αt−1

(
E
[
max
a∈A

(
R̂(a)

)]
−max

a∈A

(
E
[
R̂ (a)

]))
≥ 0, (5)

where to get equation 5, apply Jensen’s inequality,
E
[
maxa∈A

(
R̂(a)

)]
≥ maxa∈A

(
E
[
R̂ (a)

])
. Ebt ≥ 0

implies the existence of max-induced bias in iteration t ≤
∞ as in proposition 2.

An immediate corollary of proposition 2 is that the max-
induced bias is transient, and does not affect the asymptotic
convergence of Q-learning.
Corollary 3 (Max-bias is transient). Proposition 2 im-
plies:

Ebt
t→∞−−−→ 0

Proof. The result follows immediately from Proposition 2
and the requirement that αt

t→∞−−−→ 0.

This analysis hints at the importance of the stepsize rule
as shown in equation 4. Generally, a larger stepsize normally
produces faster initial convergence (if no noise is present),
but it also increases the bias. A smaller stepsize reduces the
effect of the noise which reduces the bias, but it slows con-
vergence in a process without noise.

Bias-corrected Q-learning
Our bias-corrected form ofQ-learning introduces a bias cor-
rection term Bt−1 which produces the following algorithm:

Q̄t (st, at)← (1− αt−1 (st, at)) Q̄t−1 (st, at) ,

+ αt−1 (st, at)
(
Q̂t −Bt−1 (st, at)

)
Q̂t ←

(
R̄t−1(st, at) + γ max

a′∈A
Q̄t−1 (st+1, a

′)

)
.

such that the additive correction term Bt−1 cancels out the
max-induced bias in Q̄t in conditional expectation given all
information up to iteration t− 1 as

E [bt|Ft−1] := E
[
Q̄t − Q̄∗t |Ft−1

]
= 0

which is equivalent to the following condition

E
[
Q̂t −Bt−1|Ft−1

]
= E

[
Q̂∗t |Ft−1

]
Our bias correction term is designed to satisfy the above con-
dition, with a model which assumes that we have an infinite
number of actions, all with the same distribution of rewards.
Our bias correction term is computed as

Bt−1(st, at)←
(
ξ

b
+ b

)
σ̄

(st,a
∗
t )

t−1 ,

where the terms used above are defined as

R̄t−1 (s, a) :=
1

Nt−1(s, a)

t−1∑
i=1

(
R̂iI ((s, a) = (si, ai))

)
,

Nt−1 (s, a) :=
t−1∑
i=1

(I ((s, a) = (si, ai))) ,

b := (2 log |A| − log log |A| − log 4π)
1
2 ,

ξ :≈ 0.5774 (Euler-Mascheroni constant),

σ̄
(st,a

∗
t )

t−1 :=
√

VarR̄t−1(st, a∗t ),

a∗t := arg max
a∈A

Q̄t−1 (st, a)
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We next show the asymptotic behavior of bias-corrected
Q-learning using the following theorem:
Theorem 4 (Bias-correction). Assuming that the distribu-
tion of R̂(a) is the same for all a, we have

lim
|A|→∞

E
[
Q̂t −Bt−1|Ft−1

]
= E

[
Q̂∗t |Ft−1

]
. (6)

Proof. We use the setting of a problem with a single state, an
infinite number of actions and where the action a is chosen
greedily. We further assume that the reward for each action
is distributionally the same.

Both sides of equation (6) can be simplified further (we
also let Et−1[·] = E[·|Ft−1] for notational simplicity), giv-
ing us

Et−1(Q̂t −Bt−1) = Et−1

[
max
a∈A

R̄t−1(a) + γQ̄M
t−1 −Bt−1

]
,

Et−1Q̂
∗
t = Et−1

[
max
a∈A

R(a) + γQ̄M
t−1

]
.

Using the notation a∗t for the true best action in a single state
MDP, denote maxa∈AR(a) =: µa∗ which is a deterministic
value since R(a) := ER̂(a). Then simplifying the above
equations results in the following equation which we will
prove:

Et−1

[
max
a∈A

R̄t−1(a)−Bt−1

]
= µa∗ . (7)

Using definition ofBt−1 in the left-hand side of equation (7)
and simplifying (for notational simplicity, R̄ (·) = R̄t−1 (·),
and σ̄a∗ = σ̄

a∗t
t−1 )

Et−1

[
max
a∈A

(
R̄(a)

)
−Bt−1

]
= Et−1

[
σ̄a∗

b

(
b

(
max
a∈A

(
R̄(a)− µa∗

σ̄a∗

)
− b

)
− ξ

)
+ µa∗

]
=
σ̄a∗

b

(
Et−1

[
b

(
max
a∈A

(
R̄(a)− µa∗

σ̄a∗

)
− b

)]
− ξ

)
+ µa∗

−−−−−→
|A|→∞

µa∗ . (8)

To get equation (8), apply lemma 5 to the expectation and
use the fact that standard Gumbel distribution has mean ξ
(Euler-Mascheroni constant).

Lemma 5. Given i.i.d. normally distributed random vari-
ables X1, X2, . . . XN , the following convergence in distri-
bution holds:

bN

(
max

i∈{1,2,...,N}

{
Xi − EXi√

VarXi

}
− bN

)
d−−−−→

N→∞
G (0, 1) ,

where

bN := (2 logN − log logN − log 4π)
1
2

and G (0, 1) is the standard Gumbel distribution.

Proof. The proof uses standard concepts from probability
and is omitted.

On average the bias correction term cancels out the bias
in the worst case (infinite number of actions with identical
reward distributions). This gives the underlying Q-learning
algorithm robustness against abnormally positively biased
samples driving Q̄ values up, resulting in temporary diver-
gence which takes many iterations to be removed.

In most cases, the bias correction term overestimates
the actual max-induced bias and puts negative bias on the
stochastic sample. However, this is a much milder form of
bias. In a maximization problem, positive bias takes many
more iterations to be removed than negative bias becauseQ-
learning propagates positive bias due to the max operator
over Q̄ values.

Application: Intelligent Battery Control
The following model of MDP for an intelligent battery con-
trol problem is solved with a bias-corrected Q-learning al-
gorithm.
• Battery size: 10 MWh (10 parallel batteries of 1 MWh).
• Battery charge/discharge rate: can charge or discharge

20% of maximum capacity in 15 minutes. Charge level
is discretized in 10% increments.

• Electricity price fluctuation: Poisson process based jump
diffusion process modeling. Transition function is calcu-
lated by Monte Carlo simulating the price process model.

• Reward function is the expense or the revenue made by
charging or discharging.

• Time discretization and discount factor: each timestep is
15 minutes long, and γ = 0.99 is used to sustain reason-
able discount level after 96 timesteps.

Rationale behind the battery model
Different storage devices have different characteristics,
among which power and capacity are the most relevant in
the application in smart grid application modeling. Electri-
cal storage devices, such as supercapacitors, have very high
throughput but small capacity. Storage using potential en-
ergy, such as hydro-pump storage or compressed air elec-
tricity storage, can have high capacity but its construction
requires time and large initial cost. Storage using chemical
energy, such as lithium-ion batteries, is considered suitable
for different applications in the smart grid, because there
are different types of batteries with distinct power-capacity,
discharge rates, cycle life, efficiency, and cost (Yang et al.
2011). Attractive candidates among chemical-based devices
are lead-acid, lithium-ion and sodium-based batteries for
their desirable electric properties and viability of real de-
ployment (USDoE-OE 2011). These types of batteries typ-
ically have capacity ranging from 100 kWh to 10 MWh,
with typical time to fully discharge in the 4 to 8 hour range
(Yang et al. 2011). From these numbers, a unit battery in
the simulation is modeled to have 1 MWh capacity and
charge/discharge rate of 20% of capacity per time unit.

Electricity price process model
The electricity price process model used in the simulation is
a jump diffusion process fitted to a real world data of desea-
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sonalized log price of electricity.
The real world data Pt from the PJM western hub is first

transformed into log prices as Yt = log (Pt + c) with a con-
stant chosen to ensure the argument of log to be positive.
Then Yt is deseasonalized by subtracting a parametric sea-
sonal element term, Y st , and the remaining deseasonalized
portion Y dst is fitted to a jump diffusion process. Then, the
time interval is discretized to get the following discrete time
price process equation:

Y dst − Y dst−∆t = α
(
µ− Y dst−∆t

)
∆t+ σ

√
∆tεt +Nt (9)

where the term with ε is the Brownian motion term and the
term Nt is the jump term whose arrival is modeled with a
compound Poisson process. Details of the model and the fit-
ting process can be found in (Cartea and Figueroa 2005).

Experimental procedure
For bias-correctedQ-learning andQ-learning, the following
simulation procedure is used. First, a price process of length
3 million samples is created from the price process model
in equation (9). We then use the price process to execute
theQ-learning and bias-correctedQ-learning algorithms. To
compare the outcome of the two algorithms, all other param-
eters and settings are set the same. Wherever necessary, we
performed a number of independent repetitions of the sim-
ulation procedures and report mean and standard deviation
of the resulting values. Experiment-specific details are pro-
vided in each section.

To generate the true values V̄ of states that satisfies Bell-
man equation, we performed exact value iteration using the
MDP setting described in the previous section. The discrete
probability transition matrix used for exact value iteration is
generated from Monte Carlo simulation of the price process
model in equation (9). All values of any given state reported
as “true value” are obtained in this manner, and used to ex-
plicitly show the bias in the estimated values from Q̄.

Comparison of estimated values between
Q-learning and bias-corrected Q-learning
To illustrate the size and the duration of the bias in the
value estimate V̄ , in figure 2 we plot how V̄ for a single
state changes over the number of samples used to learn Q̄.
The value estimate V̄ of a state s is calculated as V̄Q(s) =
arg maxa∈A(s) Q̄(s, a), using the Q̄’s from bias-corrected
Q-learning and Q-learning. The snapshots of Q̄t are used
to calculate V̄ for different value of the iteration counter t,
which corresponds to the number of samples used.

Comparison of mean squared bias for states in
empirical convergence
In practical cases where computing the true value is not
feasible, the convergence of Q̄ values or value estimates
V̄ are often decided by testing the change in the estimates
remains smaller than a pre-defined threshold value. Emu-
lating the situation, we impose an arbitrary empirical con-
dition for testing convergence, and report the size of bias
remaining in the value estimates that satisfied the empir-
ical convergence criterion. The estimate V̄ (s) for a given

Figure 2: A plot of value estimates of a state (with the bat-
tery charged at 50% of capacity and the electricity price
of $20 per MWhr), from Q-learning and bias-corrected Q-
learning as well as the true value from exact value iteration.
Bias in the estimated value is the difference between the es-
timate and the true value. The estimate from bias-corrected
Q-learning shows significantly less bias than that from Q-
learning. 50 independent repetitions are performed to com-
pute the mean and the standard deviation values shown.

state s is considered empirically converged at iteration t, if
|V̄t(s) − V̄t−1(s)| < 10. At a given iteration t, we denote
Sconv,t as a set containing all states that satisfies the crite-
rion and report the evolution of mean-squared bias (MSB)
of all empirically convergent states. MSB at iteration t is
calculated as

MSB(t) =
1

|Sconv,t|
∑

s∈Sconv,t

(
V̄t(s)− V ∗(s)

)2
where V̄t(s) is the value estimate of state s calculated from
the estimate of Q̄t, and V ∗(s) is the true value of state s.

In figure 3, we report the evolution of MSB over the num-
ber of samples (or iteration counter t) used to learn Q̄t for
both bias-corrected Q-learning and Q-learning using a har-
monic stepsize rule. We also report the result with a constant
stepsize rule to account for applications where users prefer
a constant stepsize rule to deal with non-stationarity.

Sum of rewards using policy learned
To illustrate how successfully bias-corrected Q-learning
learns in the presence of max-induced bias, we report the
sum of rewards of using the learned policy to control bat-
tery, where the policy is learned from solving the intelligent
battery control problem modeled as a MDP.

To calculate the sum of rewards from using the learned
policy given Q̄ estimates, the following procedure is
used. From the estimates of Q̄t taken at any given it-
eration t of Q-learning and bias-corrected Q-learning,
we construct a deterministic policy as follows: πt(s) =
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Figure 3: The evolution of mean squared bias for states with
empirical convergence, for different learning algorithms and
stepsize rules. At any given iteration counter t, the effect of
max-induced bias is much more significant for Q-learning
than bias-correctedQ-learning, with both harmonic and con-
stant stepsize rules, as illustrated by significantly greater
positive deviation from the value estimates from the true
value. 50 independent repetitions are performed to compute
the mean and the standard deviation values shown.

arg maxa∈A(s) Q̄(s, a). Then, we simulate a Markov deci-
sion process using an independently generated price process
{p1, p2, . . . pN} where N = 30× 96 = 2880 corresponding
to the number of 15-minute-long timesteps over 30 days. At
any given simulation iteration n, given a policy πt, the deci-
sion an is made using the policy to obtain the corresponding
reward as Rπt

n = pnan = pnπt(rn, pn).
In figure 4, we report the undiscounted sum of rewards∑N
n=1R

πt
n over a range of t up to 3 million samples. The fig-

ure shows clearly that the bias-corrected Q-learning policy
outperforms the conventional Q-learning policy, with much
faster convergence.

Conclusion
Bias corrected Q-learning asymptotically cancels the worst
case bias due to the max-operator in Q-learning. In the sim-
ulated intelligent battery control problem, bias-corrected Q-
learning shows significantly less transient bias in its esti-
mated Q̄ than Q-learning. The estimate of Q̄ of bias-correct
Q-learning shows significant bias correction compared to
the estimate ofQ-learning even when empirical convergence
criteria is used to select subsets of states whose value es-
timate is deemed stable enough. In addition to reductions
in the bias in value estimation, bias-corrected Q-learning
learns better thanQ-learning, as shown by the learned policy
that results in significantly better performance measured in
undiscounted finite-horizon sum of reward than that fromQ-
learning, especially in the earlier iterations where the noise
in the estimates of the Q-factors produces the greatest bias.

Figure 4: The undiscounted sum of rewards using poli-
cies from bias-corrected Q-learning and Q-learning, plotted
against the number of samples taken to learn the policies.
The learned policy from Q-learning suffers from the tran-
sient bias initially (up to 1 million samples), and requires
2 million additional samples to recover to the level where
bias-corrected Q-learning reaches before 1 million samples.
In the contrary, the learned policy from bias-corrected Q-
learning does not show the degraded performance in the ini-
tial samples, reflecting its robustness against the transient
bias in Q-learning estimates. The reported mean and stan-
dard deviation are calculated from 50 independent repeti-
tions.
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