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Abstract

Widespread accounts of the harmful effects of invasive
species have stimulated both practical and theoretical stud-
ies on how the spread of these destructive agents can be con-
tained. In practice, a widely used method is the deployment
of biological control agents, that is, the release of an addi-
tional species (which may also spread) that creates a hostile
environment for the invader. Seeding colonies of these pro-
tective biological control agents can be used to build a kind
of living barrier against the spread of the harmful invader, but
the ecological literature documents that attempts to establish
colonies of biological control agents often fail (opening gaps
in the barrier). Further, the supply of the protective species
is limited, and the full supply may not be available immedi-
ately. This problem has a natural temporal component: bio-
logical control is deployed as the extent of the harmful inva-
sion grows. How can a limited supply of unreliable biological
control agents best be deployed over time to protect the land-
scape against the spread of a harmful invasive species?

To explore this question we introduce a new family of
stochastic graph vaccination problems that generalizes ideas
from social networks and multistage graph vaccination. We
point out a deterministic (1− 1/e)-approximation algorithm
for a deterministic base case studied in the social networks
literature (matching the previous best randomized (1− 1/e)
guarantee for that problem). Next, we show that the random-
ized (1− 1/e) guarantee (and a deterministic 1/2 guarantee)
can be extended to our much more general family of stochas-
tic graph vaccination problems in which vaccinations (a.k.a.
biological control colonies) spread but may be unreliable. For
the non-spreading vaccination case with unreliable vaccines,
we give matching results in trees. Qualitatively, our extension
is from computing “cuts over time” to computing “robust cuts
over time.”

Our new family of problems captures the key tensions we
identify for containing invasive species spread with unreli-
able biological control agents: a robust barrier is built over
time with unreliable resources to contain an expanding inva-
sion.
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Introduction
The devastating impacts of invasive (a.k.a. non-native)
species are being increasingly documented around the globe.
Both plant and animal invaders can spread across land-
scapes, quickly overwhelming local ecosystems through di-
rect competition for resources and predation. In addition
to ecological concerns, economic forecasts predict massive
ramifications on renewable natural resource industries (e.g.
timber) and residential land values (Kovacs et al. 2010).
These accounts have stimulated both practical and theo-
retical studies on how the spatial spread of these destruc-
tive agents can be contained (Kovacs, Haight, and Mercader
2012) (Shmoys and Spencer 2011).

A commonly-practiced technique for invasive species
containment is the introduction of a biological control agent,
that is, another species (which may also spread) whose pres-
ence renders the habitat inhospitable to the harmful invasive
species. A problem explored in the ecological literature is
that introductions of these control species often fail to estab-
lish viable colonies (Shea and Possingham 2000). The prob-
ability of establishment is often related to the size of the seed
colony (Shea and Possingham 2000), but since supplies of
the biological control agent are usually limited, and breeding
additional agents takes time, land managers must proceed
with unreliable deployments. In addition to the many unre-
solved scientific and ecological questions about biological
control strategies (particulary as regards unintended nega-
tive consequences of control species introductions), there are
basic mathematical issues here that are not well understood.
Where should a limited supply of unreliable biological con-
trol agents be deployed over time to contain the spread of a
harmful invader?

To explore this question we introduce a new family of
stochastic graph vaccination problems that generalizes ideas
from social networks and multistage graph vaccination.

Literature Review. Hartnell’s Firefighter Problem (Hartnell
1995) concerns the containment of an infection outbreak in
a graph when the amount of action per time step is limited.
In each time step all neighbors of an infected node become
infected. The planner has the option to vaccinate k nodes per
time step (so that they will never become infected). Where
should these vaccinations be placed at each time-step to min-
imize the total number of nodes infected? Qualitatively, the
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goal is to compute the best “cut over time.”
In addition to literal diseases that can be spread between

contacts in social networks, recent work on disease spread
and vaccination in networks has proposed the notion of
harmful ideas or ideology spreading through social net-
works. The antidote to harmful ideology is positive ideology
or ideas which also spread through the network vaccinating
people who are exposed to them against the harmful ideol-
ogy (Anshelevich et al. 2009). Once an individual is con-
vinced by either harmful or positive ideology we suppose
that they can no longer be converted to the opposing view-
point. Considering this setting with an additional temporal
component has motivated interest in a spreading-vaccination
version of the Firefighter problem.

For the spreading-vaccination version of the Firefighter
problem (in which vaccination also spreads to neighbors at
the same rate as infection) Anshelevich, Chakrabarty, Hate,
and Swamy show that the problem reduces to maximizing
a submodular function subject to a partition-matroid con-
straint (Anshelevich et al. 2009). They use this reduction in
conjunction with the recent result of Calinescu, Chekuri, Pál
and Vondrák (Calinescu et al. 2007) for maximizing a sub-
modular function subject to a matroid-constraint to give a
randomized (1−1/e)-approximation (or to get a determinis-
tic 1/2 approximation by applying a greedy result of Fisher,
Nemhauser and Wolsey (Fisher, Nemhauser, and Wolsey
1978)).

In fact, we note that since (Anshelevich et al. 2009) show
that the spreading-vaccination Firefighter objective is a cov-
erage function, a deterministic (1−1/e)-approximation can
be obtained immediately by reducing the problem to maxi-
mum coverage subject to group-constraints and applying a
decade-old result of Ageev and Sviridenko for that problem
(Ageev and Sviridenko 2004). This deterministic (1− 1/e)
guarantee is tight (unless NP ⊆ DT IME(npolylog(n)) due
to another result from (Anshelevich et al. 2009)), and it
matches the current best guarantee in trees for the non-
spreading Firefighter Problem due to Cai, Verbin, and Yang
(Cai, Verbin, and Yang 2008).

In the ecology literature, Shea and Possingham give
curves that describe probability of control colony survival as
a function of initial population (Shea and Possingham 2000),
and point out that biological control resources may not all
be available at the start of a suppression effort. Through
field experiments, Norris, Memmott and Lovell tune param-
eters impacting colony survival of an insect control, thrips
(Sericothrips staphylinus), for the models in (Shea and Poss-
ingham 2000); their study shows dependence on stochas-
tic weather events (rainfall) (Norris, Memmot, and Lovell
2002).

As mentioned in (Shmoys and Spencer 2011), tree land-
scapes are used to study invasive-species spread through
stream and river systems (for example, (Cumming 2002)
explores how different stream branching affects invasions).
Invasions of tree-landscape topologies also occur in the
riparian-vegetation zones bordering river systems. For
example, Tamarisk is an exotic noxious weed that invades
such zones, driving out local wetland plants; the Colorado
Department of Agriculture has suppressed Tamarisk inva-

sion using the tamarisk leaf beetle, Diorhabda elongata
along the Dolores, Colorado, Yampa and Green Rivers
(Colorado.Dept.Agriculture 2009).

Our Results. The conditions required to apply the result
of Calinescu, Chekuri, Pal and Vondrák (CCPV) are more
general than are required for the spreading-vaccination
Firefighter Problem: in exploring how much can we gener-
alize the spreading-vaccination Firefighter Problem and still
benefit from reducing to maximizing a submodular function
subject to a partition-matroid constraint, we introduce a
natural new family of general stochastic cut problems that
capture the key tensions in containing invasive species
with unreliable biological control agents. Applying CCPV
and (Fisher, Nemhauser, and Wolsey 1978)), we imme-
diately obtain randomized (1 − 1/e) and deterministic
1/2-approximations for the spreading cases in graphs and
for the non-spreading cases in trees).

Our Generalization: Unreliability. At the conclusion of
their paper, Anshelevich, Chakrabarty, Hate, and Swamy
(Anshelevich et al. 2009) raise the very natural question of
what happens when vaccination is less virulent than infec-
tion. In particular, they mention why a positive spread rate
for vaccination of less than 1 voids a reduction similar to the
rate 1 case. We introduce an alternative way of blunting the
strength of vaccination: spread of vaccination remains de-
terministic at rate 1 but we allow the possibility that a vac-
cine will be faulty with some probability (which is given in
the input). First we give a direct generalization of the Fire-
fighter Problem (in which k interchangeable vaccines are
distributed per time step), then we generalize further.

One interesting model among our new class considers
vaccines that become better with time (their failure probabil-
ity decreases) but which may be deployed at most once over
the time horizon; what is the correct balance between acting
early with unreliable resources when the extent of the infec-
tion is small and acting later with more reliable resources
once the infection is more extensive? This corresponds to
the tradeoff between immediately deploying small biologi-
cal control colonies (which have high failure probability) vs.
postponing deployment while the invasive species spreads
in order to breed larger and more reliable biological control
colonies under protected conditions.

We describe our models as offline problems: all deci-
sions are made without knowing which vaccines will be
realized as effective. In the online setting where reliabil-
ity/unreliability is realized and observed at each time step,
simply extracting nodes which will be covered by a vacci-
nation that has already been realized as effective (which is
polynomial-time computable) will give a new problem of
an identical type (so that our approximation guarantees hold
from that time step forward).

Qualitatively, our new notion could be described as com-
puting “robust cuts over time” in which unreliable vaccine
resources are deployed over a series of time steps in order
to cut (or cover, in the spreading case) a graph against the
spread of an infection. In terms of idea-spread through so-
cial networks we could describe this as a problem of wag-
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ing an ideological war when we are unsure which positive
ideologies we plant with “go viral.” An interesting feature
of this expanded model is that the optimal solution may
repeatedly target nodes which are in some sense “highly
connective.” In these features our results add to the explo-
ration begun in the seminal paper of Kempe, Kleinberg, and
Tardos on maximizing influence spread in social networks
(Kempe, Kleinberg, and Tardos 2003) which was motivated
by emerging applications in viral marketing. Our results for
the non-spreading cases in trees are closely related to the
recent work of Shmoys and Spencer (Shmoys and Spencer
2011) on containing stochastic outbreaks of invasive species
in tree landscapes via imperfect (a.k.a. probabilistic) edge
removal; that work addresses only connectivity vs. discon-
nectivity and lacks the natural temporal nature of an expand-
ing invasion that we address here.

We show that for the cases of spreading-vaccination and
non-spreading vaccination in trees the general stochastic
models we describe reduce to maximizing a submodular
objective subject to a partition-matroid constraint. Thus,
the result of Calinescu, Chekuri, Pal and Vondrák (CCPV)
(Calinescu et al. 2007) gives a randomized (1 − 1/e)-
approximation (or we can get a deterministic 1/2 approx-
imation by applying an older result of Fisher, Nemhauser
and Wolsey (Fisher, Nemhauser, and Wolsey 1978)). We
will need that the failure of vaccines are independent events
so that we can compute the values required by the CCPV
method in polynomial time.

From Classical Firefighter Models to
Stochastic Graph Vaccination

We are given a directed graph G = (V,E) and a source node
s. Denote |V | by n, and |E| by m. All nodes in the graph can
have one of three states: infected, vaccinated, or vulnerable.
At time τ = 0, node s is infected and all other nodes are vul-
nerable. Once a node has become infected or vaccinated its
state will never change. The goal of the planner is to max-
imize the expected number of members of the network that
are protected from infection. (Hartnell 1995)

• Classical (non-spreading): At time τ = i > 0 at most k≤
n vaccines can be deployed at vulnerable nodes, where
each vaccine has probability 1 of effectiveness (and prob-
ability 0 of not being effective). When a vaccine is re-
alized as effective, then the node it was deployed at be-
comes vaccinated. In time step i+1 all vulnerable nodes
reachable by a single edge from any infected node become
infected.

• Classical (spreading-vaccination): At time τ = i > 0 at
most k≤ n vaccines can be deployed at vulnerable nodes,
where each vaccine has probability 1 of effectiveness (and
probability 0 of not being effective). When a vaccine is
realized as effective, then the node it was planted at be-
comes vaccinated. In time step i+1 all vulnerable nodes
reachable by a single edge from any vaccinated node be-
come vaccinated. Then, in the same time step, all remain-
ing vulnerable nodes reachable by a single edge from any
infected node become infected.

First we give the direct stochastic generalizations of these
models (retaining the properties that actions within each
time step are identical, and that there is no dependence on
location of deployment):

• Stochastic (non-spreading): At time τ = i > 0 at most
k ≤ n vaccines can be deployed at vulnerable nodes,
where each vaccine has independent probability pi of ef-
fectiveness (and probability 1− pi of not being effective).
When a vaccine is realized as effective, then the node it
was deployed at becomes vaccinated. In time step i+ 1
all vulnerable nodes reachable by a single edge from any
infected node become infected.

• Stochastic (spreading-vaccination): At time τ = i > 0 at
most k≤ n vaccines can be deployed at vulnerable nodes,
where each vaccine has independent probability pi of ef-
fectiveness (and probability 1− pi of not being effective).
When a vaccine is realized as effective, then the node
it was planted at becomes vaccinated. In time step i+ 1
all vulnerable nodes reachable by a single edge from any
vaccinated node become vaccinated. Then, in the same
time step, all remaining vulnerable nodes reachable by a
single edge from any infected node become infected.

While we’ve specified that k ≤ n above, in fact any k that is
bounded above by a polynomial in n will work. Our choice
that vaccination prevails when exposure to vaccination and
infection is simultaneous is not required for any of the de-
scribed guarantees.

Figure 1 below motivates our next generalization: we re-
lax the idea that there is only a single timestep in which a
particular vaccine is effective.

t

11

t

Figure 1: Examples of f j(x, t): On the left a vaccine fails
with probability 1 except during timestep 3 in which it is ef-
fective with probability 1. On the right, a vaccine has a fail-
ure probability that decreases with time. Not shown here: the
dependence of f j(x, t) on the node x at which j is deployed
can be used to capture that some sites are more suitable for
the establishment of biological control colonies.

• General Stochastic Graph Vaccination (non-
spreading): The input gives a set of vaccines
J. For each j ∈ J the input gives a function
f j(x, t) : {1,2, ...,n} × {1,2, ...,n} → [0,1] that de-
scribes the effectiveness probability of j if it is deployed
at node x at time t. Each vaccine is deployed at some
node at some time step, and effectiveness of each vaccine
is realized independently. When a vaccine is realized as
effective, then the node it was deployed at becomes vac-
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cinated. In time step i+1 all vulnerable nodes reachable
by a single edge from any infected node become infected.

• General Stochastic Graph Vaccination (spreading-
vaccination): The input gives a set of vaccines J. For each
j ∈ J the input gives a function f j(x, t) : {1,2, ...,n} ×
{1,2, ...,n}→ [0,1] that describes the effectiveness proba-
bility of j if it is deployed at node x at time t. Each vaccine
is deployed at some node at some time step, and effec-
tiveness of each vaccine is realized independently. When
a vaccine is realized as effective, then the node it was
planted at becomes vaccinated. In time step i+ 1 all vul-
nerable nodes reachable by a single edge from any vac-
cinated node become vaccinated. Then, in the same time
step, all remaining vulnerable nodes reachable by a single
edge from any infected node become infected.

It is immediately obvious that the classical problems are spe-
cial cases of the stochastic problems (setting pi = 1 for all
i), but seeing that the stochastic problems are special cases
of the general stochastic problems requires a slightly subtle
observation.

Since the diameter of the graph is at most n, at time τ = n
every node of the graph will either be infected or we will
know that it will never be infected (Anshelevich et al. 2009).
Thus, in the stochastic problem there is no need to consider
any vaccine deployments at time steps beyond n. This is
true for both the spreading-vaccination and non-spreading
problems. Consider an instance of the stochastic problem:
for each time-step i, create k copies of vaccine j which has
f j(x, i) = pi for all x ∈V , and f j(x, i′) = 0 for all i′ 6= i. This
gives an input for the most general problem with kn vac-
cines.

Notice that the stochastic elements we introduce can
cause the form of the solutions to be very different than in
the deterministic vaccination case: in the typical spreading-
vaccination Firefighter model once a node is vaccinated its
status is known conclusively, and as each time step elapses
expanding neighborhoods around it are removed from the
set that could possibly be vaccinated in an optimal solution,
while in our stochastic model the optimal solution may re-
peatedly target some “important nodes” in a single time step
or repeatedly over a series of time steps. See Figure 2 for an
example.

Further, if a larger node cut could protect a large portion
of the network but cannot be reliably imposed with the vac-
cines available, a moderate portion of the network may be
sacrificed to more reliably impose a smaller cut further from
the source. The most general model softens the hard limits
on how much vaccination can be performed per time step:
the freedom to design f j(x, t) allows exploration of a num-
ber of interesting tensions: vaccines that each become more
powerful with time but can be deployed only once, vaccines
that will be most effective within a particular time step (as
in the stochastic case), but can also be shifted to neighboring
time steps in exchange for a penalty on their reliability, etc.

Hardness
The classical case of non-spreading Firefighter is NP-
complete in trees. The current best guarantee in general

Figure 2: Repeated-Targeting Example: The initially-
infected node is circled. The optimal solution to the robust-
cuts-over-time problem will repeatedly target the long path
leading to the star.

trees is a deterministic (1−1/e)-approximation due to Cai,
Verbin, and Yang (Cai, Verbin, and Yang 2008). Some
polynomial-time algorithms exist for restricted classes of
trees. We give a randomized (1− 1/e)-approximation for
the General Stochastic Graph Vaccination Problem (non-
spreading) described above in trees.

The classical case of the spreading-vaccination Firefighter
Problem is hard to approximate within c > (1− 1/e) un-
less NP⊆DT IME(npolylog(n)) (Anshelevich et al. 2009).
We’ll give a randomized (1− 1/e)-approximation for the
General Stochastic Graph Vaccination Problem with spread-
ing vaccination.

Reductions to Maximum Coverage Subject to
Probabilistic Element Failure

Theorem 1. The non-spreading case of the General
Stochastic Graph Vaccination Problem in trees reduces
in polynomial time to the problem of maximizing a
(polynomial-time computable) submodular function subject
to a partition-matroid constraint. Thus, applying CCPV
(Calinescu et al. 2007) gives a randomized (1 − 1/e)-
approximation algorithm, and applying (Fisher, Nemhauser,
and Wolsey 1978) gives a deterministic 1/2-approximation
algorithm.

Theorem 2. The spreading-vaccination case of the General
Stochastic Graph Vaccination Problem reduces in polyno-
mial time to the problem of maximizing a (polynomial-time
computable) submodular function subject to a partition-
matroid constraint. Thus, applying CCPV (Calinescu et al.
2007) gives a randomized (1− 1/e)-approximation algo-
rithm, and applying (Fisher, Nemhauser, and Wolsey 1978)
gives a deterministic 1/2-approximation algorithm.

In fact we will show that both problems reduce in
polynomial-time to Maximum Coverage subject to prob-
abilistic set failure (which we’ll show is a submodular
function, similar to the argument in (Shmoys and Spencer
2011)) subject to a partition-matroid constraint.

Maximum Coverage subject to probabilistic set failure:
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Let S be a collection of sets S1,S2, ...,Sn over a ground set
of elements Y . Each set Si has an associated independent
failure probability pi. The objective is to choose a set
O ⊆ S such that the expected cardinality of the union of
sets realized from O according to the pi is maximized.
With a partition-matroid constraint: For some partition of
S into P1, ...,Pq, at most k j sets from Pj can be included in O.

Reduction 1: Non-spreading General Stochastic Graph
Vaccination in trees (nSGVt) to Maximum Coverage
subject to probabilistic set failure with partition-matroid
constraint (pMCPM).

Let r denote the node where the infection starts. For each
node x in T : let d denote the distance from x to r. The ground
set of elements in the instance we construct is the set of
nodes of tree T which we’ll call Y . For every pair of j ∈ J
and t ∈ {1,2, ...d}, create a set S jxt which contains all nodes
y whose shortest path to r contains x. Let p jxt = 1− f j(x, t).
This gives at most |J| · |V | · |V | sets which can each be com-
puted in polynomial time. Define a partition of the collection
of sets by letting all sets which have a common j be in a sin-
gle partition piece, and specify that at most one set can be
selected from each partition piece.

Let O denote the optimal solution of the resulting pM-
CPM instance, and use it to construct a solution for nSGVt
as follows. If S jxt ∈O then deploy vaccine j at node x at time
t. Since O obeys the partition-matroid constraint this con-
structed solution deploys vaccine j at most once (at some
particular node, at some particular time). What is the ex-
pected number of nodes saved from infection by the con-
structed strategy? Using linearity of expectation, it is the
sum over all y ∈ V of the expectation of an indicator vari-
able that is 1 when y is saved, and 0 otherwise.

A node y is saved from infection exactly when some node
on the path from r to y is vaccinated effectively before the
infection arrives at that node; that is, when not every vacci-
nation attempt on nodes on the r to y path between time 0 and
d(r,y) fails. By our construction, this event (and its proba-
bility) corresponds exactly to the event that y is in some non-
failing set that contains it from O. Thus, the expected num-
ber of nodes saved from infection is exactly the expected
cardinality of union of realized sets from O.

In the reverse direction, every valid solution for nSGVt
defines a valid solution for the pMCPM instance: if vaccine
j is to be deployed at node x at time t, include S jxt in the
solution. Since each vaccine is deployed at most once, the
partition-matroid constraint is obeyed. Because the objec-
tive value exactly coincides, if the solution we constructed
from O were not optimal for the nSGVt instance, it would
imply that O was not optimal for the pMCPM instance.�

In the following reduction we add a probabilistic
component to an observation about coverage of nodes
by expanding vaccinated sets from (Anshelevich et al.
2009), then exploit the fact that only |V | time steps must
be considered so that the partition can force a single
deployment of a vaccine (since the requirement that only
k vaccines are deployed per time step need no longer be
explicitly articulated via a partition-matroid constraint as in

(Anshelevich et al. 2009)).

Reduction 2: Spreading-vaccination General Stochastic
Graph Vaccination (sSGV) to Maximum Coverage sub-
ject to probabilistic set failure with partition-matroid
constraint (pMCPM).

Let r denote the node where the infection starts. For any
two nodes x and y, let d(x,y) denote the distance from x to
y. The ground set of elements in the instance we construct is
the set of nodes of G which we’ll call Y .

For every triple ( j,x, t) of j∈ J, x∈V , and t ∈{1,2, ...,n},
create a set S jxt which contains all nodes y for which
d(x,y)≤ d(y,r)−t. Let p jxt = 1− f j(x, t). This gives at most
|J| · |V | · |V | sets which can each be computed in polynomial
time. Define a partition of the collection of sets by letting all
sets which have a common j be in a single partition piece,
and specify that at most one set can be selected from each
partition piece.

Let O denote the optimal solution of the resulting pM-
CPM instance, and use it to construct a solution for sSGV as
follows. If S jxt ∈ O then deploy vaccine j at node x at time
t. Since O obeys the partition-matroid constraint this con-
structed solution deploys vaccine j at most once (at some
particular node, at some particular time). What is the ex-
pected number of nodes saved from infection by the con-
structed strategy? Using linearity of expectation, it is the
sum over all y ∈ V of the expectation of an indicator vari-
able that is 1 when y is saved, and 0 otherwise.

A node y is saved from infection exactly when there ex-
ists some vaccine deployment that is realized as effective
at node x and time t such that vaccination spreading from
x starting at t reaches y before infection reaches y. That is,
when d(x,y)≤ d(r,y)− t and a vaccine deployed at x at time
t is realized as effective. By our construction, this event (and
its probability) corresponds exactly to the event that y is in
some non-failing set that contains it from O. Thus, the ex-
pected number of nodes saved from infection is exactly the
expected cardinality of union of realized sets from O.

In the reverse direction, every valid solution for sSGV
defines a valid solution for the pMCPM instance: if vaccine
j is to be deployed at node x at time t, include S jxt in the
solution. Since each vaccine is deployed at most once, the
partition-matroid constraint is obeyed. Because the objec-
tive value exactly coincides, if the solution we constructed
from O were not optimal for the sSGV instance, it would
imply that O was not optimal for the pMCPM instance.�

The following result is similar to that in described by anal-
ogy in (Shmoys and Spencer 2011) for a knapsack version;
for completeness, we include it here.

Theorem 3. Maximum Coverage subject to independent
Probabilistic Set Failure is a submodular function.

Proof. Each Si is an element our solution can purchase. Let
E(·) denote the objective. To prove submodularity we will
establish that the law of diminishing returns holds: for an
arbitrary Si, if A⊆ B⊆ S, then

E(A∪Si)−E(A)≥ E(B∪Si)−E(B).

381



For a set R⊆ S which does not contain Si we can say that
the probability that Si fails is 1. After Si is added to either A
or B the probability that Si fails is pi. Before Si is “added”
either: neither A or B contain Si, or Si ∈ A (and Si ∈ B), or
Si /∈ A and Si ∈ B, or Si /∈ A and Si /∈ B.

In every case, the probability that Si fails when A is the
solution is at least the probability that Si fails when B is the
solution. Letting ℘Si(R) denote the probability of failure of
Si as a function of the set R:

℘Si(A)≥℘Si(B)⇒
℘Si(A)−℘Si(A∪Si)≥℘Si(B)−℘Si(B∪Si)

Next, focus on a particular element y from the ground set.
Either Si does not contain y (in which case the addition of
Si leaves the expected coverage of y unchanged) or it does.
For the later case, the probability of every one of the other
sets containing y failing (excepting Si) is at least for A what
it is for B. Let P(R) denote the probability that every one
of the sets containing y fails when the solution is R. Then
P(A)≥ P(B) gives that

P(A)(℘Si(A)−℘Si(A∪Si))≥
P(B)(℘Si(B)−℘Si(B∪Si))

⇒ P(A)℘Si(A)−P(A)℘Si(A∪Si)≥
P(B)℘Si(B)−P(B)℘Si(B∪Si).

⇒ (1−P(A)℘Si(A∪Si))− (1−P(A)℘Si(A))≥
(1−P(B)℘Si(B∪Si))− (1−P(B)℘Si(B)).

⇒ E(A∪Si)−E(A)≥ E(B∪Si)−E(B).

The second to last line compares the changes in the proba-
bility that y is covered which results when Si is added to A
and when Si is added to B. The final inequality follows from
simply summing the change in expected coverage over all y
in the ground set (including those for which the addition of
Si caused no changes in the probability of coverage). This
establishes submodularity.

Running CCPV
The method described in Calinescu, Chekuri, Pal and
Vondrák (Calinescu et al. 2007) requires the ability to sam-
ple the value of the submodular function being maximized
in polynomial time. Though for a given solution A⊆ S there
are exponentially-many possible realizations of set failures,
the objective can be computed in polynomial time by tak-
ing advantage of the independence of the set failures and the
form of the coverage function. In particular, the expected
size of the union of the sets realized as effective is just the
sum of the expectations of indicators over all items of the
ground set. For each such item, y, the probability of cover-
age is simply 1 minus the probability of non-coverage (the
product of the failure probabilities of all sets in A containing
y).

Immediate Extensions
• All arguments work for node-weighted versions of the

problems (where the value associated with protecting
nodes in the graph, or covering the elements in the

ground set, can vary and is specified in the input).

This follows from the proof of Theorem 3: E(·) can be
any linear function of the probabilities that nodes are
protected.

• The multi-infection-source case of spreading-vaccination
Stochastic Graph Vaccination is also maximum coverage
subject to probabilistic set failure (however, the multi-
infection-source case of non-spreading Stochastic Graph
Vaccination in trees is not submodular). Thus, a result
analogous to Theorem 2 also holds in this case.

This result can be obtained by redefining S jxt in the re-
duction for the single source case. Now, if R is the set of
sources, let S jxt contain all nodes y for which d(x,y) ≤
minr∈R d(y,r)− t. Pushing slightly further, the sources
may even arise at different times: if, for each r ∈ R, r
first becomes infectious at time tr, then define S jxt to
be the set of all nodes y for which d(x,y) ≤ minr∈R
{d(y,r)− (t− tr)}. Either described extension can also be
quickly obtained by reduction to the single-source case of
spreading-vaccination Stochastic Graph Vaccination: add
a super source that acts as a single infection point which
is connected by paths (of new degree-two nodes) of tr +1
edges to source r (for each r ∈ R). Let the failure proba-
bility of every vaccine at the all new nodes be 1 in every
time step (and the value of all new nodes is 0) and shift all
f j(x, t) to the right one time step (letting f j(x,0) = 1 for
all (x, j)).
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Maximizing a submodular set function subject to a matroid
constraint (extended abstract). In IPCO, 182–196.
Colorado.Dept.Agriculture. 2009. Colorado biocontrol.
Published online at www.colorado.gov Spring Issue.
Cumming, G. 2002. Habitat shape, species invasions, and
reserve design: Insights from simple models. Conservation
Ecology 6 (1).
Fisher, M. L.; Nemhauser, G. L.; and Wolsey, L. A. 1978.
An analysis of approximations for maximizing submodular
set functions. Mathematical Programming Study 8:73–87.
Hartnell, B. 1995. Firefighter! an application of domination.
Presentation, 25th Manitoba Conference of Combinatorial
Mathematics and Computing.

382



Kempe, D.; Kleinberg, J. M.; and Tardos, É. 2003. Maxi-
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