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Abstract

Pre-symptomatic drought stress prediction is of great
relevance in precision plant protection, ultimately help-
ing to meet the challenge of “How to feed a hungry
world?”. Unfortunately, it also presents unique compu-
tational problems in scale and interpretability: it is a
temporal, large-scale prediction task, e.g., when moni-
toring plants over time using hyperspectral imaging, and
features are ‘things’ with a ‘biological’ meaning and in-
terpretation and not just mathematical abstractions com-
putable for any data. In this paper we propose Dirichlet-
aggregation regression (DAR) to meet the challenge.
DAR represents all data by means of convex combi-
nations of only few extreme ones computable in linear
time and easy to interpret. Then, it puts a Gaussian pro-
cess prior on the Dirichlet distributions induced on the
simplex spanned by the extremes. The prior can be a
function of any observed meta feature such as time, lo-
cation, type of fertilization, and plant species. We eval-
uated DAR on two hyperspectral image series of plants
over time with about 2 (resp. 5.8) Billion matrix entries.
The results demonstrate that DAR can be learned effi-
ciently and predicts stress well before it becomes visible
to the human eye.

Introduction
Water scarcity is a principle global problem that causes arid-
ity and serious crop losses in agriculture. It has been esti-
mated that drought can cause a depreciation of crop yield
up to 70% in conjunction with other abiotic stresses (Boyer
1982; Pinnisi 2008). Climate changes and a growing human
population in parallel thus call for a sincere attention to ad-
vance research on understanding of plant adaptation under
drought. A deep knowledge of the adaptation process is es-
sential in improving management practices, breeding strate-
gies as well as engineering viable crops for a sustainable
agriculture in the coming decades. Accordingly, there is a
dire need for crop cultivars with high yield and strong resis-
tance against biotic and abiotic stresses.

Unfortunately, understanding stress is not an easy task.
Stress resistance is the result of a complex web of inter-
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Figure 1: Which of the plants (one per row) suffers from
drought? Can we predict it from the first few hyperspec-
tral images only? Shown are the hyper-spectral images (
640x640x69) projected to RGB (640x640x3). Time pro-
gresses from left to right. The blue box denotes when the
symptoms typically become visible to the human eye. As
indicated by the red box, DAR can predict drought stress
earlier; about 1.5 weeks earlier. (Best viewed in color)

actions between the genotype and the environment lead-
ing to phenotypic expressions. It is contributed by a num-
ber of related traits that are controlled mostly by poly-
genic inheritance. In the past, a slow progress in the de-
velopment of improving cultivars was mainly due to poor
understanding of genetic factors that impact tolerance to
drought (Passioura 2002). Recently, progress has been made
in understanding the genetic basis of drought related quan-
titative trait loci (QTL), see e.g. (Lebreton et al. 1995;
McKay et al. 2008). More recently, OMICS approaches have
offered a direct molecular insight into drought tolerance
mechanism, see e.g. (Rabbani et al. 2010; Guo et al. 2010;
Abdeen, Schnell, and Miki 2010). However, genetic and bio-
chemical approaches are time consuming and still fail to
fully predict the performance of new lines in the field. In
recent years it is discussed that phenomic approaches, that
measure the structural and functional status of plants may
overcome the limited predictability and some authors have
attributed this lack of high throughput phenomic data as the
“phenomic bottleneck” (Richards et al. 2010).

Hyper-spectral imaging provides a particularly promis-
ing approach to sensor-based phenotyping. Its measure-
ments were observed to contain early indicators of plant
stress, see e.g. (Rascher et al. 2007; Rascher and Pier-
uschka 2008). In contrast to conventional cameras, which
record only 3 wavelengths per pixel, hyper-spectral cameras
record a spectrum of several hundred wavelengths ranging
from approximately 300nm to 2500nm resulting in big data
cubes. These spectra contain information as to changes of
the pigment composition of leaves which are the result of
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metabolic processes involved in plant responses to biotic
or abiotic stresses. This information can be used e.g. us-
ing SVMs for classification of hyper-spectral signatures and
in turn for prediction of biotic stress before symptoms be-
come visible to the human eye, see e.g. (Rumpf et al. 2010;
Römer et al. 2010). These and similar studies, however,
are considerably different from the goal of the present pa-
per: multi-step ahead prediction of drought in time based
on sequences of hyper-spectral images as also illustrated
in Fig. 1. Here, recorded image spectra, i.e., pixels in the
hyper-spectral images are not annotated, as even stressed
plants show only local signs of stress. We evaluate all mea-
sured wavelength of many hyper-spectral images and not
only a few for one or two images. This poses a challenge
in scale since the amount of phenotyping data produced,
easily grows into TeraBytes if several plants are monitored
over time. For instance, our datasets have in total about 2
(resp. 5.8) Billion matrix entries. Finally, since phenotyping
is necessarily interdisciplinary, requiring that scientists with
complementary skills work together, it is desirable to obtain
results and models, which can intuitively be interpreted by
researchers who are not machine learning and data mining
experts.

This makes it difficult to use off-the-shelf statistical tech-
niques such as PCA, HMMs, SVMs and GPs directly on se-
quences of hyper-spectral images: many of them assumed
labeled input data; they typically do not scale well with the
amount of data if no form of approximation is used that is of-
ten accompanied by information loss; they often do not pro-
vide easy-to-interpret features/models; they make assump-
tions on the true generating distribution, which we do not
know; and they assume data points as input. Our input ob-
jects, however, are best described by multiple samples gath-
ered in data matrix, i.e., by “data clouds”, see e.g. (Davis
and Dhillon 2006).

Consequently, we propose a novel prediction approach,
called Dirichlet-aggregation regression (DAR). It does not
make any assumption on the generating distribution of each
data matrix. Instead, DAR employs a recent linear time,
data-driven matrix factorization approach to represent the
data clouds by means of convex combinations of only few
extreme data samples across all clouds and time steps. This
new representation imposes a natural distribution on the
data, namely the distribution on the simplex spanned by the
extreme data samples. This was recently proven to be suc-
cessful (Kersting et al. 2012) for detecting drought stress
patterns and contrasts to standard approaches e.g. using local
features evaluated at certain keypoints of hyperspectral im-
ages, see e.g. (Mukherjee, Velez-Reyes, and Roysam 2009),
where the true generating distribution is not known, or just
assuming Gaussians, see e.g. (Davis and Dhillon 2006),
which is likely to be not true in our application at hand.
Moreover, in contrast to histogram-based “data clouds” ap-
proaches, see e.g. (Sakurai et al. 2008), one can perform
naturally Bayesian inference to quantify the “impact” of ex-
tremes on a dispersion model over time. This is exactly the
main technical contribution of the present paper1.

1A similar approach is known for learning topic mod-

Specifically, DAR puts a Gaussian process prior on the
Dirichlet distributions induced on the simplex spanned by
the extremes. The prior can be a function of any arbitrary
types of observed continuous, discrete and categorical fea-
tures such as time, location, fertilization, and plant species
with no additional coding, yet inference remains relatively
simple. As our experimental results show, by just using time
as meta feature, DAR can already predict the drought stress
of plants well and before it become visible to the human
eye. Prediction models of this kind have great potential as
they provide better insights into early stress reactions and to
identify the most relevant moment when biologists have to
gather samples for invasive, molecular examinations.

We proceed as follows. We start off by briefly reviewing
how to use matrix factorization to estimate distributions over
phenotypes and to detect drought patterns. Then, we intro-
duce DAR and show how to use it for predicting drought
multiple steps ahead in time. Before concluding, we present
our experimental results.

Dirichlet Aggregation of Phenotypes
We briefly recall some fundamentals of interpretable ma-
trix factorization and how they lead to parametric probabil-
ity distributions over phenotypes and to a formal notion of
drought level. For more details, please refer to (Goreinov
and Tyrtyshnikov 2001; Frieze, Kannan, and Vempala 2004;
Mahoney and Drineas 2009) and the recent application to
drought detection (Kersting et al. 2012).

Scientists working on plant phenotyping regularly con-
front the problem of finding meaningful patterns hidden in
massive, high-dimensional, and temporal observations. Con-
sider e.g. our experiments. Hyper-spectral images of resolu-
tion 640x640x69 were taken of 10 (resp. 12) plants l at 7
(resp. 20) different days t. Each image can be viewed as a
data matrix Xt,l ∈ Rm×n with m =640x640 and n = 69,
i.e., with about 28 Million entries2. Horizontally stacking all
data matrices per experiment results in a single matrix with
about 2 (resp. 5.8) Billion matrix entries. So, how can we
find easy-to-interpret patterns for drought level prediction in
these sequences of data matrices?

One natural candidate are matrix factorization techniques
that factorize X into two matrices X ≈ WH where the
matrix of basis elements W ∈ Rm×k and the coefficient
matrix H ∈ Rk×n are typically determined from minimiz-
ing the squared Frobenius norm

∥∥X −WH
∥∥2. They allow

one to embed high dimensional dataX in lower dimensional
spaces H and can therefore mitigate effects due to noise,
uncover latent relations, or facilitate further processing and
ultimately help finding patterns in the data set distribution.
One prominent approach e.g. consists in truncating the Sin-
gular Value Decomposition (SVD), which expresses the data
in terms of linear combinations of the top singular vectors.
While these basis vectors are optimal in a statistical sense,
the SVD has been criticized for it is less faithful to the nature

els (Mimno and McCallum 2008; Wahabzada, Xu, and Kersting
2010). In the present paper, we do not employ topic models and
additionally consider the multi-step prediction problem.

2For sake of readability, we will often omit the indices t, l.
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Figure 2: Fast plant phenotyping using SiVM. From left to right. (1) 2D example illustrating how SiVM determines four extreme
points. (2) Any sample point can be expressed as a convex combination of these extremes. While points inside of the simplex
can be reconstructed exactly, points on the outside are approximated by their projection onto its closest facet. (3) Images of
all plants in year 2010 at the fourth measurement day. (4) Examples of extreme spectra found by SiVM. They can be grouped
into “dry” (red) and “healthy” (green), see main text for details. A single spectrum essentially shows how much light at each
wavelength is reflected from the plant spot/pixel it corresponds to. (Best viewed in color)

of the data at hand. For instance, the data mining practitioner
— as in our application — often tends to assign a “physical”
meaning to the resulting factors. Such reification must be
based on an intimate knowledge of the application domain
and can often not be justified from mathematics. This also
holds for other techniques such as NMF and kMeans. More
importantly, classical approaches confront us with the dif-
ficulty of characterizing sophisticated patterns of data point
distributions in a unified parametric and interpretable form.
This is generally intractable (Wang, Zha, and Qin 2007).

An alternative are interpretable factorization approaches.
Here, the basis vectors W are c columns selected from X
that maximize their volume V ol(Wm×c) = |detW|, and
H is restricted to convexity, i.e., hij ≥ 0 and

∑
i hij = 1.

Consequently, the basis vectors have naturally a biological
meaning since they have been observed and can easily be
interpreted by a domain expert. However, the maximum-
volume criterion is provably NP-hard (Civril and Magdon-
Ismail 2009). An approximation, called Simplex Volume
Maximization (SiVM), was recently introduced by Thurau
et al. (2012) and empirically proven to be quite success-
ful. For a subset W of c columns from X, let ∆(W) de-
note the c − 1-dimensional simplex formed by the columns
in W. Now, the volume of the c-simplex Vol(∆(W)) is
Vol(∆(W))2c = θ detAwhere θ = −1c+1

2c(c!)2 and detA is the
so-called Cayley-Menger determinant (Blumenthal 1953). It
is computed from a matrix of distances between points us-
ing an O(c · n) efficient greedy algorithm. Fig. 2 illustrates
SiVM and shows extreme signatures found when running it
on hyperspectral images of plants.

However, how does SiVM help us devising probability
distributions over the phenotypes? From a geometric point
of view, the columns h1, . . . ,hn ofH can be considered as
data points residing in a simplex spanned by the selected
extreme signatures W so that there are natural paramet-
ric distributions for hi on the simplex. Probably the best
known one is the Dirichlet: D(hi|α) = B(α)

∏c
j=1 h

αj−1
ij

where α = (α1, α2, . . . , αc). The normalization constant
has value B(α) = Γ(S(α))/

∏c
j=1 Γ(αj), where Γ denotes

the gamma function and S(α) =
∑c
j=1 αj . Dirichlets, nat-

urally enforce our convexity constraint on the reconstruc-

tions, 0 ≤ hij ≤ 1 and
∑c
j=1 hij = 1, so that changing one

hij impacts all other hik. To estimate the parametersα from
the reconstructions one can follow a maximum-likelihood
approach. The exact details are not important for the present
paper and we refer to (Minka 2000). More important is that
the distributional view on the hyper-spectral data provides
us with an intuitive measure for drought stress: the expected
probability of observing a healthy spot, which we call the
“drought stress level” of a plant.

More formally, given the α estimated from the hyper-
spectral images, we note that the marginal distribution of
the j-th reconstruction dimension follows a Beta distribu-
tionD(αj , S(α)−αj) so that the expected value of the j-th
reconstruction dimension is µj = E[αj ] = αj/S(α) . In-
tuitively, this means that each αj controls “aggregation” of
mass of reconstructions near the corresponding selected col-
umn cj , which also explain the term “Dirichlet aggregation”
regression. Now assume that we have labeled each dimen-
sion as either “background”, “healthy” or “dry”. Averaging
the expected values for each “healthy” resp. “dry” dimen-
sion and treating them as parameters of a Beta distribution
yields the drought stress level of a plant.

But how do we classify signatures into “background”,
“healthy” or “dry”? This follows from the results in (Ker-
sting et al. 2012). A signature is “background” if the corre-
sponding pixel is not a leaf spot. This is easy to verify using
the original images since all extremes are observed hyper-
spectral pixels. If it is not background, it is “healthy” if it
has a low reflectance (< 0.1) in the wavelengths 470nm -
540nm (chlorophyll a+b): it is a green spot. If this is not the
case and the ratio of maximal reflectances observed at the
wavelengths 470nm - 540nm (i.e., they are or turn brown)
and at the wavelengths 700nm and above is> 0.5 (they start
to overheat): it is “dry”. See also Fig. 2(4).

However, recall that we are actually interested in the lev-
els over time. Again following (Kersting et al. 2012), we
first select extreme columns on the horizontal stack of all
data matrices. This captures global dependencies as we rep-
resent the complete data by means of convex combinations
extreme data points selected across all time steps. Then, on
the simplex spanned by the extreme points, one estimates
Dirichlet distributions specified by αt,l over all reconstruc-
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tions per day t and plant l. This captures local dependencies.
Finally, we compute the drought levels using the αt,l.

In the following, we show how to extend this detection
approach to the significantly more important prediction task.

Bayesian Dirichlet-Aggregation Regression
Reconsider a particular reconstruction hhht,l computed by
SiVM for single pixel in hyperspectral image of a plant l at
time t. We take a Bayesian perspective and assume that hht,l
was generated from a hidden Dirichlet distribution (denoted
as D) parameterized by the variable αt,l = [αt,l1 , . . . , α

t,l
c ]T .

Assuming a Gaussian process prior on the ααs for a single
plant, the joint probability of the reconstructions and the hid-
den Dirichlet aggregation3 ηηt = logααt at time t = 1, . . . , τ
can be written as P ({ht, ηt}τt=1|K) =∏C

c=1
N (η1:τc |K)

∏τ

t=1

∏M

j=1
D(hhtj |αt1:C) . (1)

That is, the likelihood of the reconstructions is a Dirich-
let distribution with ααt1:C = [exp(ηt1), . . . , exp(ηtC)]T , and
η1:τc = [η1c , . . . , η

τ
c ]T is drawn from a Gaussian distribution

(denoted as N ) with covariance matrix K. The covariance
function generating K can be any Mercer kernel function. In
our experiments, we used the well known squared exponen-
tial (SE) k(xi, xj) = κ2 exp(−ρ

2

2

∑S
s (xi,s − xj,s)2) with

two hyperparameters ϑ = (κ, ρ).
The major inference problem we are facing now is

to estimate the hidden Dirichlet aggregation ηηt for each
plant given the prior parameters K and the observa-
tions hhht. The basic idea to achieve this is to find
the η̂ηη1:τ that maximizes the logarithm of the com-
plete data likelihood P ({hhht, ηηt}τt=1|K) in Eq. (1), i.e.,
η̂1:τ = arg max{ηη1,...,ηητ} logP ({ht, ηηt}τt=1|K) . The log-
likelihood can be written as L = logP ({hhht, ηηηt}τt=1|K) =∑C

c=1
−τ

2
log 2π − 1

2
log |K| − 1

2
(η1:τc )TK−1(ηη1:τc )

+

τ∑
t=1

M∑
j=1

[
log Γ(

∑C

c=1
exp(ηtc))−

∑C

c=1
log Γ(exp(ηtc))

+
∑C

c=1
(exp(ηtc)− 1) log htj,c

]
(2)

where Γ(·) denotes the Gamma function. Note that Eq. (2)
is the log-likelihood of a single plant. The plant-specific
Dirichlet aggregation η1:τ sequenses are independent of
each other given the common Gaussian process prior.

We train the model using a coordinate descent on the η
and the hyper-parameters of the Gaussian process prior. The
partial derivative of L w.r.t. ηη can be written as ∂L

∂ηtc
=

−
τ∑

t′=1

ηt
′

c K
−1
t,t′ + αtc

M∑
j=1

[
log htj,c + ψ(

C∑
c′=1

αtc′)− ψ(αtc)

]

with αtc = exp(ηtc), j indexing the SiVM reconstructions of
a hyper-spectral image, and ψ(·) denotes the digamma func-
tion. To compute the partial derivative L w.r.t. ϑ we note

3Taking the logarithm ensures that the estimatedαs are positive.

Figure 3: Dirichlet-aggregation regression of drought levels
over time in year 2010 (left) and in year 2011 (right) us-
ing all hyperspectral images available. Colors indicate con-
trolled/stressed plants. (Best viewed in color)

that the Gaussian process prior is shared by all the plants,
thus optimizing the hyper-parameters ϑ accounts for the log-
likelihood of all plants. So actually, we can consider to find
ϑ̂ = arg maxϑ

∑L
l=1 logP ({ht,l, ηηt,l}t,l|ϑ) . The partial

derivative now simplifies to ∂L
∂ϑi

=

1

2

L∑
l=1

C∑
c=1

(ηηl,1:τc )TK−1
∂K

∂ϑi
K−1(ηl,1:τc )− LC

2
Tr(K−1

∂K

∂ϑi
),

where Tr(·) is the trace of a matrix and the matrix deriva-
tive ∂K/∂ϑi can be computed as ∂Kt,t′

∂ϑi
= ∂

∂ϑi
k(t, t′;ϑ) .

For example, with the SE kernel used in our experi-
ments, ∂Kt,t′/∂ϑi is 2κ exp(−ρ

2

2 D
2
t,t′) for ϑi ≡ κ; and

−ρκ2D2
t,t′ exp(−ρ

2

2 D
2
t,t′) for ϑi ≡ ρ. Here, Dt,t′ denotes

the distance in time between t and t′.
To summarize, Dirichlet-aggregation regression (DAR)

performs the following two steps until convergence:
1. Optimize the logarithm of the complete likelihood w.r.t.

the hidden Dirichlet aggregations ηtc for each plant.
2. Optimize the log-likelihood of all plants w.r.t. the hyper-

parameters ϑ of the common Gaussian process prior.
Fig. 3 shows the drought levels estimated by DAR averaged
over each group of plants on the two datasets used in our
experiments. As one can see, DAR nicely smoothes SiVMs
“hard” drought level (shown as dots).

Our main objective, however, is to predict drought stress
ahead in time and not to detect it only.

Bayesian Prediction of Drought Stress Levels
Having a Bayesian regression model at hand, one can em-
ploy an iterative method for prediction consisting in making
repeated one-step ahead predictions, up to the desired hori-
zon. For the one-step ahead prediction at time t∗, we simply
fall back on the standard equations for Gaussian process re-
gression, see e.g. (Rasmussen and Williams 2006). That is,
the expectation of the hidden Dirichlet aggregation ηt∗c of a
plant is computed as η̂t∗c = K∗K

−1η̂1:τc ,where K∗ denotes
the covariances between the new time t∗ and the known ones
t = 1, . . . , τ computed with the kernel function using the
estimated hyper-parameters ϑ̂. Given η̂t∗c , we compute the
drought stress level as described in the previous section.
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For the multiple-step ahead prediction task we follow the
method proposed by Girard et al. (2002). That is, we pre-
dict the next time step ahead, using the estimate of the out-
put of the current prediction, as well as previous outputs (up
to some lag U ), as the input to the prediction of the next
time step, until the prediction k steps ahead is made. Thus,
the prediction k steps ahead is a random vector with mean
formed by the predicted means of the lagged outputs.

More formally, we assume a state-space model on the
drought levels ξtk , i.e., ξtk = g(xtk) + ε with xtk =
[ξtk−1, . . . , ξtk−U ], where xtk is the state at time tk com-
posed of previous criteria (up to the Lag U ), and ε is a
Gaussian noise. Thus, the prediction at time tk is a function
g(·) of the current state, i.e. previous prediction corrupted
by Gaussian noise. Now, we employ a Gaussian process to
solve the system. As Girard et al. argue, the benefit of doing
so are twofold: (1) There is no assumption on the mathemat-
ical form of the function g(·). It is modeled as an arbitrary
function drawn from a Gaussian process. (2) The uncertainty
induced by successive predictions is taken into account. This
leads to more realistic predictive uncertainties by modeling
the lagged prediction outputs of previous steps as noisy in-
puts to a Gaussian process.

More formally, the mean of ξtk can we write as
ξ̂tk = qTΣΣ−1y , where yT = [ξ1, ξ2, . . . , ξτ ] is com-
posed of previous predictions. The covariance matrix ΣΣ with
Σij = c(xti ,xtj ) correlates the prediction outputs ξti and
ξtj . We again use the SE kernel. qi is the covariance between
ξtk and ξti with the input uncertainty ΣΣtk

qi =|W−1ΣΣtk + I|−1/2

× exp(−0.5(x̂tk − xti)T (W + Σtk)−1(x̂tk − xti)),

where W is a U × U diagonal matrix with Wi,i = 1/ρ2,
which is the length scale parameter in the SE kernel. The
term x̂tk denotes the expected state at the time tk, which
consists of previous mean predictions. Finally, the variance
of the prediction at the time tk can be written as:

vtk = c(x̂tk , x̂tk) + Tr(ΣΣ−1(yyTΣ−1 − I)Q)− Tr(ξ̂tk)2

with logQij =

− 1

2
log |2W−1Σtk + I| − 1

4
(xti − xtj )TW−1(xti − xtj )

− 1

2
(x̂tij − x̂tk)T (

1

2
W + Σtk)−1(x̂tij − x̂tk),

where x̂tij = (xti + xtj )/2.
Now, we have everything together to predict drought

stress levels of plants from hyper-spectral images: (A) Us-
ing SiVM, we compute few extreme signatures, say 50, in
the temporal fashion explained above and classify them ac-
cordingly (B) On the simplex spanned by the extremes, we
estimate the latent Dirichlet aggregation values per plant
and time step using DAR. (C) Using the Gaussian process
over the latent Dirichlet aggregation values, we compute the
drought levels of each plant and time step using the clas-
sification of extreme spectra “background”, “healthy” and
“dry”. (D) Finally, we predict drought levels multiple steps
ahead in time using the just described Gaussian process ap-
proach.

Figure 4: Bayesian drought level prediction. (Left) Predic-
tions (levels over time) for year 2010 and (Right) year 2011.
In both experiments, the drought levels of the second half of
measurement days were predicted based on a DAR model
trained (including the extraction of extreme spectra) on the
data gathered in the first half of measurement days. Colors
indicate controlled/stressed plants. (Best viewed in color)

Rainout Shelter Experiments
Our intention here is to investigate the following questions:
(Q1) Can DAR predict drought stress pre-symptomatically
from hyperspectral images? (Q2) Can DAR smoothing lead
to improved detection of drought stress patterns compared
to the ones using SiVM only?

To this aim, we implemented DAR in Python. Follow-
ing (Kersting et al. 2012), we ran SiVM using a variant of
the Kolmogorov-Smirnov distance, i.e., we treated the re-
flectance signatures as empirical distributions.

Datasets: We considered two sets of hyperspectral imag-
ing data. Both datasets were recorded under semi-natural
conditions in a rainout shelter. For the controlled water stress
in the rainout shelter three barley summer cultivars Scarlett
and Wiebke and Barke were chosen for the water stress in
this study. The experiments were performed in rain-out shel-
ters at the experimental station of our University. The seeds
were sown in 11.5 liter pots filled with 17.5 kg of substrate
Terrasoil (Cordel&Sohn, Salm, Germany). In year 2010, the
first dataset, the genotype Scarlett was used in two treat-
ments (well-watered and with reduced water) with 6 pots per
treatment. In year 2011, the second dataset, the genotypes
Wiebke and Barke were used in pot experiments arranged in
a randomized complete block design with three treatments
(well-watered and two drought stressed) with 4 pots per
genotype and treatment. The drought stress was induced ei-
ther by reducing the total amount of water or by the complete
withholding of water. In both cases the stress was started at
developmental stage BBCH31 (Biologische Bundesanstalt,
Bundessortenamt and Chemical industry). By reducing the
irrigation the water potential of substrate remained at the
same level as in the well-watered plots for the first seven
days but decreased rapidly in the following 10 days reach-
ing 40% compared to the control. For the measurements the
plants were transferred in the laboratory and illumination
was provided by 6 halogen lamps (400 W ECO, OSRAM,
Munich, Germany) fixed at distance of 1, 6 meter from the
support where the pots where placed to take the pictures.
). The camera was mounted at the same level as the lamps
in NADIR position. In year 2010 images were taken at 10
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Figure 5: Improved drought stress detection using DAR.
From left to right: (1) Dirichlet traces for year 2010 without
and (2) with DAR smoothing. (3) Dirichlet traces for year
2011 without and (4) with DAR smoothing. Colors indicate
controlled/stressed plants; numbers denote the measurement
days. (Best viewed in color)

time-points, twice per week starting from day four of water-
stress. This gave us 70 data cubes of resolution 640x640x69.
We transform each cube into a dense ’pixel x spectra’ matrix.
This resulted in 70 data matrices of resolution 640x640x69.
Stacking them horizontally together resulted in a dense data
matrix with about 2 Billion entries. In year 2011 images
were taken every consecutive day starting at the second day
of watering reduction. Images were taken at 11 time-points
for the non-irrigated plants and at 20 time-points for plants
with reduced water amount. Following the same procedure
as for year 2010, this resulted in about 5.8 Billion entries.

Learning Setup: To investigate (Q1), we split the data of
year 2011 (resp. 2010) into the first half, denoted as 2011.A
(resp. 2010.A), and the second half, denoted as 2011.B (resp.
2010.B). Then, we extracted 50 extreme signatures from
2011.A (resp. 2010.A) and learned a DAR regression model
on 2011.A (resp. 2010.A). The resulting hyper-parameters
are ϑ = (1.73, 0.19) (resp. (2.02, 0.01)). Then, we classi-
fied the extreme signatures into “healthy”, “dry”, and “back-
ground” as described earlier, computed drought levels for
2011.A (resp. 2010.A) based on the estimated DAR model
and used them to predict the drought levels for 2011.B (resp.
2010.B). To investigate (Q2), we used the complete year
2010 (resp. 2011) data to learn a DAR model and computed
Euclidean embeddings as described in (Kersting et al. 2012)
using the smoothed αs.

Experimental Results: Fig. 4 summarizes the prediction
results. In both cases, the notches of the boxes of the drought
levels predicted for the different groups of plants at the last
measurement day do not overlap. This offers evidence of
a statistically significant difference between the predicted
medians. Moreover, the predictions match the “SiVM-only”
values well. We conclude that DAR can fully distinguish all
groups of plants. Thus, as in the fully observed case, we can
group the extreme spectra based on their probability in the
different groups at the last measurement days. The extreme

signatures found were essentially identical to the ones found
in (Kersting et al. 2012) as already shown in Fig. 2. We con-
clude that the classified signatures indeed conform to plant
physiologically knowledge. Moreover, since the symptoms
do not become visible to the human eye at this time, ques-
tion (Q1) can be answered affirmatively.

Fig. 5 summarizes the detection results. As one can see,
the Euclidean embeddings based on the DAR smoothing are
more reasonable. The healthy plants stay close together in
a small region. The stressed plants stay close totgether only
in the early days; in later days they diverge due to the dis-
persion of senescence. And, the differences in senescence
development between the different groups of plants is pro-
nounced. Thus, (Q2) can also be answered affirmatively.

Finally, we note that running SiVM can be parallelized
so that the plant phenotyping runs in just about 30 min-
utes (Kersting et al. 2012). Estimating the DAR model and
making the predictions is a matter of minutes.

Conclusions
Early stress prediction is of great relevance in precision
plant protection. Pre-symptomatic water stress detection is
of particular interest, ultimately helping to meet the chal-
lenge of “How to feed a hungry world?” (Editorial 2010).
In this context, hyper-spectral image sensors are an estab-
lished, sophisticated method for early stress detection. How-
ever, they gather massive, high dimensional data clouds over
time, which together with the demand of physical meaning
of the prediction model present unique computational prob-
lems in scale and interpretability. Motivated by this, we in-
troduced Dirichlet-aggregation and presented the — to the
best of our knowledge — first application of AI techniques
to early drought stress prediction based on hyperspectral im-
age sequences. Our experimental results on two large-scale
plant phenotyping datasets demonstrate that the estimated
temporal models are meaningful, conform to existing plant
physiological knowledge, and are fast to compute. This is an
encouraging sign that the vision of high throughput preci-
sion phenotyping is not insurmountable. Detailed measure-
ments of plant characteristics can be analyzed at massive
scale to collectively provide estimates of trait phenotypes
for many of the underlying genotypes that comprise a typi-
cal plant breeding population.

Our work provides several interesting avenues for future
work. Next to experiments under field conditions e.g. in an
experimental agricultural site, one should aim at improv-
ing prediction quality even further by developing hierarchi-
cal, (semi-)supervised and relational versions of DAR. Ac-
tive Bayesian regression approaches could provide better in-
sights into early stress reactions and identify the most rel-
evant moment when biologists have to gather samples for
invasive, molecular examinations.
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