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Abstract

We address the problem of spatial conservation planning
in which the goal is to maximize the expected spread of
cascades of an endangered species by strategically purchas-
ing land parcels within a given budget. This problem can
be solved by standard integer programming methods using
the sample average approximation (SAA) scheme. Our main
contribution lies in exploiting the separable structure present
in this problem and using Lagrangian relaxation techniques to
gain scalability over the flat representation. We also general-
ize the approach to allow the application of the SAA scheme
to a range of stochastic optimization problems. Our iterative
approach is highly efficient in terms of space requirements
and it provides an upper bound over the optimal solution at
each iteration. We apply our approach to the Red-cockaded
Woodpecker conservation problem. The results show that it
can find the optimal solution significantly faster—sometimes
by an order-of-magnitude—than using the flat representation
for a range of budget sizes.

1 Introduction
We study the problem of allocating resources to maximize
the population spread of an endangered species over the
course of time. This important computational sustainabil-
ity problem has recently received much attention in the AI
literature (Sheldon et al. 2010; Ahmadizadeh et al. 2010;
Golovin et al. 2011). In this problem, the spread of a species
is modeled as a diffusion-based process or a cascade over
a geographical network of land patches. That is, under cer-
tain conditions, the species spreads from an active region in
which it is present to a neighboring region. Such diffusion-
based stochastic processes have been widely studied in dif-
ferent contexts such as identifying influential members of
a community for viral marketing (Kempe, Kleinberg, and
Tardos 2003), early outbreak detection of water supply con-
tamination (Krause et al. 2008), and selection of blogs to
read when following a story (Leskovec et al. 2007). While
the underlying process governing the spread of cascades
in conservation planning is similar to propagation mod-
els in other contexts (Kempe, Kleinberg, and Tardos 2003;
Leskovec et al. 2007), the key difference that makes con-
servation planning more challenging is the absence of sub-
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modularity (Sheldon et al. 2010)—an intuitive diminishing
returns property and a discrete analogue of convexity that of-
ten facilitates the development of effective greedy solutions.

In the absence of submodularity, the computationally
efficient greedy approach of Nemhauser, Wolsey, and
Fisher (1978) cannot be used. As an alternative, Sheldon
et al. formulated the conservation planning problem as a
stochastic optimization problem and used the sample aver-
age approximation (SAA) scheme (Kleywegt, Shapiro, and
Homem-de-Mello 2002) to transform the problem into a de-
terministic one. The resulting problem can then be formu-
lated as a mixed-integer program (MIP) and solved using
CPLEX. The drawback of this approach, however, is that
to increase the accuracy of the SAA scheme, one must in-
crease the number of samples, which in turn increases the
size of the MIP leading to a significantly longer runtime.
This adversely affects the applicability of the approach to
large-scale conservation planning problems.

We address this scalability challenge by identifying and
exploiting the separable structure present in the MIP for the
conservation planning problem. We first modify the MIP by
creating duplicate variables and constraints. Then we obtain
the dual of this problem by relaxing certain consistency con-
straints using the well established technique of Lagrangian
relaxation from the OR literature (Bertsekas 1999). The re-
sulting dual has a particularly simple structure and is com-
posed of several independent subproblems—precisely one
per SAA sample. These subproblems can be solved effi-
ciently independently and in parallel. This alleviates a major
bottleneck of the global MIP that considers all the samples
in one single program. Furthermore, the solution of these
subproblems provides a subgradient of the dual problem,
which is then optimized iteratively by using the projected
subgradient method (Boyd, Xiao, and Mutapcic 2003). This
approach, also called dual decomposition, provides a bound
on the optimal solution at each iteration. To underscore the
generality of this approach, we show how to apply it to the
SAA scheme for generic stochastic optimization problems,
which are useful in other sustainability applications such as
energy system management (Lubin et al. 2011). We also dis-
cuss ways to vary the relaxation technique so as to make it
more efficient in different contexts.

We note that recently, Lagrangian relaxations techniques
have been employed successfully in several other domains
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such as inference in graphical models (Sontag, Globerson,
and Jaakkola 2010), natural language processing (Rush et
al. 2010) and computer vision (Komodakis, Paragios, and
Tziritas 2011). They provide a robust approach for increas-
ing scalability, while also providing good quality bounded
solutions in such diverse domains. Our experimental results
underscore these advantages. Empirically, we test the dual
decomposition approach on a publicly available conserva-
tion planning benchmark for the Red-cockaded Woodpecker
(RCW) (Ahmadizadeh et al. 2010)—a federally listed en-
dangered species. Our approach quickly provides the opti-
mal primal solution for a range of problems, significantly
faster than CPLEX. The dual solution quality provides a cer-
tificate of optimality, confirming that the solution is within
90% of the optimal for most problem instances.

2 The Conservation Planning Problem
We briefly describe the conservation planning problem that
is more fully detailed in (Sheldon et al. 2010). In this prob-
lem, the goal is to maximize the spread of the target species
through a network of habitat patches over some period of
time. The species can survive only within land patches that
are conserved. The management actions consist of a land
acquisition strategy within some fixed budget. The spread
of the species over time or the cascade is modeled as a
stochastic process over a graph G = (V,E) with an ini-
tial set of active nodes, representing the locations where the
species is initially present. Each node represents a habitat
patch and edges represent geographical connectivity among
habitat patches. In each step, new nodes are activated based
on local activation rules among neighbors that take into ac-
count the suitability score of the given habitat patch.

The habitat patches are partitioned into a set of non-
overlapping parcels P1, . . . ,PL. Let A = {1, . . . , L} be a
set of management actions, where action l consists of buying
the corresponding land parcel Pl at some given cost cl. An
action strategy is indicated by the vector y = 〈y1, . . . , yL〉.
The binary variable yl indicates whether action l is taken
(yl =1) or not (yl =0).

Given a fixed budget and a set of target nodes, we need to
select management actions such that the expected number of
active target nodes is maximized over some fixed horizon.

Let the variables {Xv(y)} capture the outcome of a cas-
cade under a given strategy y. Each variableXv(y) is binary
withXv(y)=1 indicating that node v is activated. Let B de-
note the given budget and T denote the set of target nodes.
The optimization problem is:

max
y

∑
v∈T

E
[
Xv(y)

]
s.t.

L∑
l=1

clyl ≤ B (1)

This is an instance of the stochastic optimization prob-
lem studied by Kleywegt, Shapiro, and Homem-de-Mello
(2002), of the following form:

max
x∈S

{
g(x) := EP

[
G(x,W )

]}
(2)

where W is a random vector with distribution P , S is a fi-
nite set, G(x,w) is a function of two variables x and w and

EP

[
G(x,W )

]
denotes the expected value under distribution

P . Such stochastic optimization problems are particularly
hard because even the objective function cannot be written in
a closed form. Therefore, such problems are approximated
by using a sample average approximation scheme in which
multiple random samples of W are generated and the ex-
pected value function is approximated by the deterministic
sample average function. The sample average approximation
can then be solved using standard solvers such as CPLEX.
This SAA scheme in the context of conservation planning
amounts to generating a number of training cascades of the
target species in the graph G and then solving the resulting
deterministic optimization problem. For details about sam-
pling cascades, we refer to (Sheldon et al. 2010). The result-
ing SAA optimization problem can be written as a mixed
integer program (MIP).

Let k ∈ [1..N ] denote a training cascade. Let the activa-
tion of a node v under a cascade k be denoted by the binary
variable xkv . The binary vector y denotes the action strategy.
Let A(v) be the subset of actions that purchase the node v.
Each training cascade k defines a subgraph Gk = (V,Ek)
of G which includes only active edges and nodes. The set
V0 denotes initially conserved nodes and S denotes initial
locations of species. The following MIP denotes the opti-
mization problem:

max
x,y

1

N

N∑
k=1

∑
v∈T

xkv

s.t.
L∑

l=1

clyl ≤ B

xkv ≤
∑

l∈A(v)

yl, ∀v /∈ V0, ∀k

xkv ≤
∑

(u,v)∈Ek

xku, ∀v /∈ S, ∀k

xkv ∈ [0, 1], yl ∈ {0, 1}

(3)

For a detailed explanation of the above constraints we refer
to Sheldon et al. (2010). Intuitively, they represent a contin-
uous path description for a cascade.

3 Our Approach

First we rewrite the above optimization problem compactly
as follows. We also change the maximization to minimiza-
tion by negating the objective.

min
{xk},y

− 1

N

N∑
k=1

fk(xk,y)

s.t.
L∑

l=1

clyl ≤ B

xk ∈Xk, ∀k
yl ∈ {0, 1}, ∀l

(4)
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where each function fk and the corresponding feasible set
Xk are defined as follows:

fk(xk,y) =
∑
v∈T

xkv (5)

xkv ≤
∑

l∈A(v)

yl, ∀v /∈ V0 (6)

xkv ≤
∑

(u,v)∈Ek

xku, ∀v /∈ S (7)

xkv ∈ [0, 1] (8)

So far we have only reformulated the global MIP (3). How-
ever, this reformulation highlights the separable structure
present in this MIP and lends itself to the application of the
Lagrangian relaxation method.

3.1 Lagrangian Relaxation of the Global MIP

The main challenge in solving the global MIP (3) is that as
the number of samples, N , increases, the number of vari-
ables and constraints increase as does the complexity of
solving the MIP. Our main goal is to provide a general ap-
proach to address this computational bottleneck while also
providing quality bounded solutions. Next, we show how
Lagrangian relaxation technique can achieve this objective
by exploiting the separable structure present in the MIP (4).
To expose this structure, we present an equivalent form of
MIP (4) by creating one copy of variables y for each cas-
cade k and a vector of global variables d as follows:

min
{xk,yk},{dl}

− 1

N

N∑
k=1

fk(xk,yk)

s.t.
L∑

l=1

cly
k
l ≤ B, ∀k

xk ∈Xk, ∀k
ykl = dl, ∀l, ∀k
ykl ∈ {0, 1}, ∀l, ∀k

(9)

Notice the constraint ykl = dl that enforces different copies
of the variable yl to be globally consistent and equal to dl.
Next, we write the Lagrangian of the above MIP by relaxing
this constraint:

L({xk, yk},d,λ)=− 1

N

N∑
k=1

fk(xk,yk)+
∑
l,k

λkl (ykl −dl)

xk ∈Xk ∀k , yk ∈ Y k ∀k (10)

where each Y k is defined as follows:

Y k=
{
〈. . . , ykl , . . .〉|ykl ∈ {0, 1} ∀l ∧

L∑
l=1

cly
k
l ≤ B

}
(11)

Therefore, the dual, min
{xk,yk},d

L({xk, yk},d,λ), is:

q(λ)= min
{xk,yk},d

{
− 1

N

N∑
k=1

fk(xk,yk) +
∑
l,k

λk
l (ykl − dl)

}

= min
{xk,yk},d

N∑
k=1

{
− fk(xk,yk)

N
+
∑
l

λk
l y

k
l

}
−
∑
l,k

λk
l dl

We note that the variable dl is unconstrained. Therefore, to prevent
the dual from being unbounded from below, the Lagrange multipli-
ers must satisfy the following constraints:

{λk
l } ∈ Λl ∀l (12)

Λl =
{
{λk

l }|
N∑

k=1

λk
l = 0

}
(13)

The above condition further simplifies the dual q(λ) as the
last term in the dual vanishes. We finally have the dual:

q(λ) =

N∑
k=1

min
{xk,yk}

{
− fk(xk,yk)

N
+
∑
l

λkl y
k
l

}
(14)

Scalability: Interestingly, the above expression of the dual
highlights the key reason for scalability. The dual can be
evaluated by solving the inner minimizations in the above
problem independently of each other. Crucially, each inner
minimization problem corresponds to a MIP for a single
SAA sample augmented by dual variables. Hence, the size
of the inner minimization problem is defined by the size of
the MIP for a single sample regardless of the total number
of SAA samples. This significantly improves the scalability
of solving the dual problem instead of a single global MIP.

3.2 Maximizing the Dual
It is well known that the dual solution provides a lower
bound over the primal solution. Therefore, the dual opti-
mization problem we will solve is the following:

max
λ

q(λ) =
N∑

k=1

gk(λk)

s.t. {λkl } ∈ Λl, ∀l
(15)

where gk(λk) denotes the inner minimization problem of
Eq. (14) for the SAA sample k. A fundamental result in the
optimization literature is that the dual problem is always
concave regardless of the primal problem (Boyd and Van-
denberghe 2004). Therefore, there are no local optima in the
dual problem (15). We can maximize it by using iteratively
the projected subgradient technique (Bertsekas 1999). Ac-
cording to this technique, the dual variables λk are updated
as follows:

λk,i+1 ←
[
λk,i + αi+1∇gk(λk,i)

]
Λ

(16)

where i denotes the iteration number, [·]Λ denotes the pro-
jection onto the constraint set Λ, and α is the step size. It is
well known that for a function of the type

h(λ) = min
x

{
a(x) + λ · b(x)

}
,
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the gradient ∇h(λ) = b(x̄), where x̄ is the optimal solution
to the problem minx

{
a(x)+λ·b(x)

}
. Each function gk(λk)

in our case is of this type. Therefore the gradient of each dual
variable λk,il is given by

∇gk(λk,il ) = ȳk,il (17)

where ȳk,il denotes the solution of the inner minimization
problem of Eq. (14) for sample k for iteration i. Intuitively,
it denotes the optimal decision as to buy the parcel l or
not for iteration i. This subgradient is available essentially
for free without requiring any extra computation other than
solving the individual minimization problem for each sam-
ple. The projection onto the constraint set of Eq. (13) es-
sentially amounts to the averaging operation and the final
update equation for the dual variables is as follows:

λk,i+1
l ← λk,il + αi+1

[
ȳk,il −

∑N
k′=1 ȳ

k′,i
l

N

]
(18)

Theorem 1 (Weak duality). If p? is the optimal solution of
the global MIP (4) and q? is the optimal solution of Eq. (15),
then q? ≤ p? (Bertsekas 1999).

Therefore, the dual solution always provides a quality
guarantee over the primal solution at each iteration. This can
be used effectively to provide a certificate of optimality or
near-optimality when the gap between the primal and dual
is diminished.

3.3 Extracting the Primal Solution
So far, we have only discussed the update of the dual vari-
ables λ. While solving the dual, the dual variables act as
penalty parameters for violating the consistency constraint
among different copies of the action variables y. If all the
copies of an action variable are consistent, extracting the pri-
mal solution is trivial. However, inconsistencies may arise
among different copies of variables y, resulting in ykl 6= yk

′

l
for two samples k and k′. In that case, extracting a consistent
primal solution is non-trivial.

Our strategy to extract the primal is based upon the insight
that thanks to the dual variables, most of the copies of action
variables will be consistent, with a few exceptions. Thus, we
create L binary random variables, one for each action l, and
initialize them as follows:

P (rl = 1) =
N∑

k=1

1[X=1](ȳ
k
l )

N
, ∀l (19)

All the variables for which P (rl = 1) = 1 or P (rl = 0) = 1
are consistent and their corresponding primal variable yl is
set accordingly. For the rest of the variables, it might happen
that most of its copies agree on a single assignment, except
a few. For example, consider N=30 samples. After solving
the dual, 28 copies of a variable yl may agree on the value
0 with only 2 suggesting it to be 1. In this case, we set the
primal variable yl = 0 based on the majority vote. While set-
ting variables in this manner, we also take into account the
budget constraint—a variable is never set to 1 if it violates

the available budget. More precisely, we use a threshold pa-
rameter P (which can be 0.8 or 0.9) with the following rules
to extract the primal:

yl = 1 iff P (rl) ≥ P (20)
yl = 0 iff P (rl) ≤ 1− P (21)

It turns out that most of the action variables can be set ac-
cording to this rule depending on the threshold P . How-
ever, there can still be a few action variables which have
too much uncertainty associated with them. Instead of set-
ting them randomly, we formulate a reduced version of the
global MIP (3). In this MIP, the only integer variables are
those action variables yl which cannot be extracted using
the threshold rules. In our experimental setting, we found
that only a small fraction of the total action variables fall
into this category (about 20%). Thus, this reduced MIP is
much easier to solve. Furthermore, the threshold parameter
P can be adjusted to further reduce the size of this reduced
MIP.

We now discuss how to set the step size α for an iteration
i, which is based on the quality of the extracted primal solu-
tion. Let APXi denote the primal solution quality and DUALi

be the dual solution quality. We set α as follows:

αi =
APXi − DUALi∑

l,k

(
ȳk,il

)2 (22)

The motivation for this rule is that when the gap between the
primal and dual is large, we take large steps in the gradient
direction. As the gap narrows, the step size also decreases.
Bertsekas (1999) provides a theoretical justification of this
approach. Moreover, based on the properties of the step size,
it can be shown that the subgradient approach converges to
the optimal solution of problem (15) (Bertsekas 1999).

3.4 Extension to Stochastic Optimization
The idea of Lagrangian relaxation is quite general and not
limited to the conservation planning problem. We can eas-
ily apply this approach of creating multiple copies of vari-
ables to the sample average approximation scheme to any
generic stochastic optimization problem of the form shown
in Eq. (2). The SAA optimization problem is:

max
x∈S

ĝN (x) =
1

N

N∑
k=1

G(x,W k) (23)

Even though the above problem is deterministic, its com-
plexity increases, often exponentially, with the number
of samples N (Kleywegt, Shapiro, and Homem-de-Mello
2002). We can decompose the above optimization problem
by creating multiple copies of the variablex and relaxing the
consistency constraints in the same manner we have treated
the conservation planning problem. Thus, the proposed ap-
proach using Lagrangian relaxation appears promising for a
range of stochastic optimization problems.

3.5 Variants of Lagrangian Relaxation
The Lagrangian relaxation approach we developed in this
work offers a general paradigm that can be easily adapted
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CPLEX DD-Plan
# Samples Quality First

Achieved
Total
Time

Quality U.B. First
Achieved

Total
Time

Time per
Iteration

10 55.30 980 1029 55.30 59.75 63 3583 32.28
15 55.33 1126 2851 55.33 60.28 148 5131 46.23
20 52.65 13636 29847 52.65 59.34 1217 6688 60.25
25 51.12 22006 84188 51.12 58.10 8428 9272 83.53

30? 48.46 4496 36000 48.46 57.38 196 11510 103.69
35? 48.40 27598 36000 48.71 57.73 145 11837 106.64

20% Budget
10 99.90 78 139 99.90 102.95 13 1286 10.63
15 99.27 577 590 99.27 103.21 14 1936 16.00
20 98.20 254 647 98.20 101.77 51 2638 21.80
25 97.36 5960 7927 97.36 101.57 95 4054 33.50
30 95.50 9221 16178 95.50 100.48 749 7688 63.54
35 95.54 16217 22259 95.54 100.44 852 7839 64.79
40 95.23 17654 29855 95.23 100.12 770 12693 104.90

Table 1: Solution quality and time (in seconds) comparison between CPLEX and the Lagrangian relaxation method

to the characteristics of different optimization contexts. We
discuss several useful variants below.

In the above relaxation, each dual subproblem corre-
sponds to a single SAA sample. We can strengthen this re-
laxation in a flexible way by clustering multiple SAA sam-
ples together into a single dual subproblem. This will de-
crease the duality gap at the expense of increasing the com-
putational complexity of solving the dual. One way to cluster
different samples is based on the notion of similarity. If two
samples (or cascades in the conservation planning problem)
are not similar as measured by some distance function such
as the Hamming distance, then we can include them in the
same cluster as otherwise they are most likely to increase the
inconsistency among different copies of variables.

Another variant, which mainly applies to situations where
each dual subproblem is a MIP, is based on the number of
integer variables. In the current formulation, each dual sub-
problem has the same number of integer variables as the
global MIP. This approach worked well in our case as there
are relatively few integer variables (144 to be precise). The
complexity is dominated by the number of continuous vari-
ables and constraints, which can range up to 820K variables
and 1.6M constraints for 40 samples and horizon 50. This
makes the branch-and-bound approach of CPLEX space and
time consuming for the global MIP. We can easily adapt the
Lagrangian relaxation approach to handle cases where the
complexity is dominated by the number of integer variables.
Consider a scenario with N samples and M integer vari-
ables in the global MIP. We construct N dual subproblems
as before by creating multiple copies of integer variables.
However, instead of each dual subproblem havingM integer
variables, we use the following approach. We first partition
the set of integer variables into N non-overlapping sets Si

(assumingM>N ). For the dual subproblem i, only the vari-
ables in the set Si are made of integer type, and the rest are
continuous. This formulation effectively decreases the num-
ber of integer variables while also providing the bounds on
solution quality. If there is no duality gap, then the optimal

dual solution will be equal to the optimal primal solution as
consistency constraints among all the copies of the variables
will ensure that all the variables are integer.
These variations illustrate that the Lagrangian relaxation
technique provides a general and flexible framework to han-
dle stochastic optimization problems and can prove useful in
other sustainability tasks.

4 Experimental Evaluation
We used a publicly available conservation planning bench-
mark which represents a geographical region on the coast
of North Carolina (Ahmadizadeh et al. 2010). The conser-
vation target is the Red-cockaded Woodpecker. The graph
consists of 411 territories or habitat patches grouped into
146 parcels. Each parcel can be purchased at a certain cost,
establishing 146 action variables. The spread of species or
the cascade is modeled using a habitat suitability score. We
used a plan horizon of 50 years to make the problem realistic
and challenging. We evaluated the performance of the La-
grangian relaxation technique on several different metrics:
a) solution quality, b) runtime, and c) the quality of bounds
provided by the dual solution with the increasing number of
SAA samples. In the experiments, we treat the problem as a
maximization problem, with the dual solution providing an
upper bound on the optimal primal solution. All the exper-
iments were done on a 12-core Mac Pro with 18GB RAM.
The global MIP was solved using CPLEX 12.2, which was
allowed to utilize all the cores. Our algorithm was imple-
mented in C++ and used CPLEX as a subroutine to solve
each dual subproblem. It also utilized the 12 cores to solve
the dual subproblems in parallel.

Solution quality: Table 1 shows the solution quality
and runtime comparisons between CPLEX and the La-
grangian relaxation approach, which we refer to as the dual-
decomposition planning (DD-Plan) method, with an increas-
ing number of SAA samples. The top half of the table shows
results when the available budget is 10% of the total amount
required to purchase all the parcels and the bottom half
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Figure 1: Solution quality vs. iterations for different sample sizes (N ). Top row corresponds to 10% budget, bottom row to 20% budget.

shows the results for 20% budget. The 10% budget set-
ting was particularly challenging for CPLEX, as also noted
in (Ahmadizadeh et al. 2010). CPLEX was run until opti-
mality was proved except for starred (?) entries, for which
we used a time cutoff of 36K seconds as the optimality gap
provided by CPLEX was relatively high. The ‘Quality’ col-
umn under ‘CPLEX’ denotes the optimal quality achieved
by CPLEX (except for starred entries). An encouraging ob-
servation is that the DD-Plan approach achieves optimal
quality for every sample size and budget setting. As the 10%
budget setting was particularly challenging, we performed
additional experiments for each sample size from 10 to 25
(not shown in the table for brevity). The results showed that
the DD-Plan algorithm achieves optimal solutions for each
of them. This confirms that DD-Plan can consistently extract
good primal solutions using the technique of Sec. 3.3.

Run time: Table 1 also shows runtime comparison be-
tween CPLEX and DD-Plan. One striking observation is
that DD-Plan finds the optimal primal solution significantly
faster than CPLEX. The column ‘First Achieved’ shows
when the best primal solution quality was first achieved
for both CPLEX and DD-Plan. For both budget settings,
DD-Plan is significantly faster than CPLEX, by more than
an order of magnitude. For example, for sample size 35,
CPLEX achieves its best solution quality at 27598 seconds,
whereas the DD-Plan approach achieves the same in just 145
seconds. For the 20% budget setting, our primal extraction
scheme often provided the optimal solution within the first
10 iterations. These results are reflected by the timing results
under the ‘First Achieved’ column for DD-Plan.

Another observation is that as the number of samples in-
creases, the runtime of CPLEX needed to prove optimality
increases significantly. For example, for sample size 10 and
10% budget, CPLEX takes only 1029 seconds, whereas for
sample size 20, it takes about 29847 seconds. This happens

because the resulting global MIP can become very large as
the sample size increases, with the number of continuous
variables around 820K and the number of constraints around
1.6M for sample size 40. This adversely affects the space
and time requirement of the branch-and-bound procedure of
CPLEX, where each node corresponds to this MIP.

Unlike CPLEX, the runtime of DD-Plan increases grace-
fully with a larger number of samples. This is theoretically
justified as the runtime of each iteration of DD-Plan is linear
in the number of samples. This is because each dual sub-
problem always solves a MIP of a fixed size regardless of
the total number of samples.

The last column of Table 1, ‘Time per Iteration’, shows
the average time required by the DD-Plan approach per it-
eration, which includes solving the dual and extracting the
primal solution using the reduced MIP. The results show
roughly a linear increase in the runtime per iteration with
the increasing number of samples. Moreover, because each
dual subproblem can be solved in parallel, the runtime can
be further decreased by using more CPU cores. These re-
sults also confirm that solving the reduced MIP is compu-
tationally fast, because most of the primal variables could
be set using the threshold rule. We used a particularly strict
threshold value of 0.9. This shows that the dual variables
were effective in forcing most of the copies of action vari-
ables to agree on a single value. These observations substan-
tiate our claim that DD-Plan provides a scalable technique to
solve large-scale conservation planning problems and pro-
duce good solution quality.

Quality bounds: The DD-Plan approach, though not
guaranteed to find the optimal solution, provides an upper
bound on the optimal primal solution at each iteration. Us-
ing this dual solution, we can bound the gap between the op-
timal solution and the current primal solution. The column
‘U.B.’ in Table 1 shows the best bounds DD-Plan provided
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upon termination. For the 10% budget setting, we get a guar-
antee of the primal solution within 85 to 90% of the optimal
(calculated as Primal ∗ 100/Dual) for most sample sizes.
Since the problem with this budget setting is particularly
difficult, the DD-Plan approach could not prove optimality
(although it did produce the optimal primal solution), but
it provided good upper bound. For the 20% budget setting,
which is relatively easier, we can see that DD-Plan provides
excellent bounds with the solution guaranteed to be within
95 to 97% of the optimal value. Fig. 1 shows how the primal
solution and dual solution evolve with the number of itera-
tions. We show the normalized quality on the y-axis with 1
denoting the optimal solution. A key observation, also high-
lighted earlier, is that DD-Plan is able to provide a good so-
lution, often near-optimal, very early. The upper bound also
decrease nearly monotonically with the increasing number
of iterations. For the 20% budget setting, the gap between
the upper bound and the primal solution becomes quite nar-
row. Furthermore, these bounds can be tightened using the
clustering techniques discussed in Sec. 3.5.

5 Conclusion
We address an important problem of spatial conservation
planning, in which the goal is to maximize the expected
spread of an endangered species using limited resources.
This stochastic optimization problem has been previously
addressed using the technique of sample average approxima-
tion and solved using off-the-shelf mixed integer program-
ming (MIP) solvers. We identify a key bottleneck of this
approach—the rapid increase in runtime with an increasing
number of samples—and tackle it by exploiting the separa-
ble structure present in the global MIP. Using the Lagrangian
relaxation approach, we create a dual problem composed of
computationally independent subproblems, thereby achiev-
ing a very significant reduction in complexity. The dual
problem itself is optimized using the projected subgradient
method. We also discuss several variants of the Lagrangian
relaxation approach that are beneficial in different optimiza-
tion contexts. Empirically, the resulting algorithm DD-Plan
performs well. It produces optimal solutions for a range
of problems significantly faster than CPLEX. These results
demonstrate that the Lagrangian relaxation technique offers
a general method to handle stochastic optimization problems
that arise in computational sustainability, and they pave the
way to tackling much larger benchmark problems.
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