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Abstract

Many signals of interest are corrupted by faults of an
unknown type. We propose an approach that uses Gaus-
sian processes and a general “fault bucket” to capture
a priori uncharacterised faults, along with an approxi-
mate method for marginalising the potential faultiness of
all observations. This gives rise to an efficient, flexible
algorithm for the detection and automatic correction of
faults. Our method is deployed in the domain of water
monitoring and management, where it is able to solve
several fault detection, correction, and prediction prob-
lems. The method works well despite the fact that the
data is plagued with numerous difficulties, including
missing observations, multiple discontinuities, nonlin-
earity and many unanticipated types of fault.

Introduction
Water sustainability is one of the most significant issues that
humanity faces. The quality and availability of water directly
affects the health and well-being of both human and natural
environments. Water also has a massive economic impact, af-
fecting industries such as agriculture, mining, power, forestry,
and more. Population and industrial growth, along with cli-
mate change, are beginning to stress water supplies. Between
1994 and 1999, 26% of Canadian municipalities reported wa-
ter shortages despite the fact that Canada contains 7% of the
world’s renewable freshwater supply (Environment Canada
2008).

One of the keys to effective water sustainability involves
proper monitoring and analysis. Water is not distributed
evenly in space and time, and being able to measure, pre-
dict, and respond to changes in the water supply will allow
organizations to allocate supplies to where they are needed
most. To this end, organizations such as Water Survey Canada
(WSC) and the United States Geological Survey (USGS) have
set up around 11,000 monitoring stations across North Amer-
ica (Wagner and US Geological Survey 2006), many of them
reporting telemetry data in real-time. Analyzing this ever-
increasing amount of data by hand is difficult, costly, and
time-consuming; there are many opportunities for Machine
Learning to automate this process in order to significantly
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improve the efficiency and effectiveness of current water-
management systems.

In this paper, we attack the problem of fault detection,
correction, and prediction in water monitoring signals. Here
measurements are often corrupted in non-trivial ways by
various intermittent faulty sensing and communication mech-
anisms, giving rise to outliers, telemetry spikes, missing data,
drift, and multiple unanticipated exogenous disturbances (see
Figure 1). Further, signals are not well-modelled by simple
parametric approaches, such as linear or Markovian models.
Despite the enormous importance of such monitoring, appro-
priate machine-learning techniques are yet to be deployed
for this purpose. In particular, there is a clear need for flexi-
ble algorithms, able to cope with signals and faults of many
different types without placing a significant model-building
burden upon users. Such algorithms must also be able to run
reliably in real-time on incoming data. These techniques will
enable us to provide operators with high-level summaries for
better decision support and, in the future, to increase the level
of automation and efficiency in water-management systems.

The collection of literature on fault- (also known as
novelty-, anomaly- and one-class-) detection is vast (Eci-
olaza et al. 2007; de Freitas, MacLeod, and Maltz 1996;
Isermann 2005; Ding 2008; Markou and Singh 2003; Chan-
dola, Banerjee, and Kumar 2009; Khan and Madden 2010;
Dereszynski and Dietterich 2011). Unfortunately, the prob-
lems solved by most of these techniques are of very different
character to our own, rendering such techniques inapplicable.
Further, after much experimentation with those methods that
are applicable (some of the results appear in our experiments
section) it became clear that off-the-shelf techniques could
not satisfy our requirements for reliable water monitoring.
This was predominately due to excessively restrictive assump-
tions (e.g., that signals were linear, Markov or Gaussian),
and/or a failure to produce reasonable uncertainty estimates.
Green-tech areas, including environmental monitoring and
energy-demand prediction, are still far from full automation;
the provision of uncertainty estimates is necessary to allow
human operators to make appropriate decisions. For this rea-
son, we focus on developing probabilistic nonlinear models
of the signal. In addition to providing posterior probabilities
of observation faultiness, we are able to perform effective
prediction for the latent process even in the presence of faults.

Our proposed method will rely on Gaussian processes
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Figure 1: 16 months worth of data from six representative signals in water quality monitoring, which corresponds to approximately
11 000 measurements per series. These signals are highly nonlinear, demonstrating periodicity at different scales, intermittent
pulses, and changes in dynamics. Not only do these signals exhibit a wide range of dynamics, but different signals of the same
measurement type can also differ drastically if they are taken in different regions.

(GPs) due to their flexibility and widely demonstrated effec-
tiveness. GPs have been used previously for fault detection
in Eciolaza et al. (2007), but in a very different context, un-
suitable for our problem. Previous work along similar lines
has approached this problem by creating models that spec-
ify the anticipated potential fault types a priori (Garnett et
al. 2010), but this is usually an unreasonable assumption in
highly variable or poorly understood environments. In our
proposed “fault bucket” approach, each point is assumed gen-
erated from either a nominal or generic faulty process; we do
not require the specification of precise fault models. In this
way, our model can simultaneously identify anomalies and
robustly make predictions in the presence of sensor faults.
The result is an efficient method for data-stream prediction
that can manage a wide range of faults without requiring
significant domain-specific knowledge.

Gaussian Processes
Gaussian processes provide a simple, flexible framework for
performing Bayesian inference about functions (Rasmussen
and Williams 2006). A Gaussian process is a distribution on
the functions f : X → R (on an arbitrary domain X ) with
the property that the distribution of the function values at
a finite subset of points F ⊆ X are multivariate Gaussian
distributed. A Gaussian process is completely defined by
its first two moments: a mean function µ : X → R and a
symmetric positive semidefinite covariance functionK : X ×
X → R. The mean function describes the overall trend of
the function and is typically set to a constant for convenience.
The covariance function describes how function values are
correlated as a function of their locations in the domain,
thereby encapsulating information about the overall shape
and behavior of the signal. Many covariance functions are
available to model a wide variety of anticipated signals.

Suppose we have chosen a Gaussian process prior distribu-
tion on the function f : X → R, and a set of input points x,
the prior distribution on f = f(x) is

p(f |x, θ) = N
(
f ;µ(x; θ),K(x,x; θ)

)
,

where K(x,x; θ) is the Gram matrix of the points x, and θ
is a vector containing any parameters required of µ and K,
which form hyperparameters of the model.

Exact measurements of the latent function are typically not
available. Let y(x) represent the value of an observation of
the signal at x and f(x) represent the value of the unknown
true latent signal at that point. When the observation mech-
anism is not expected to experience faults, the usual noise
model used is

p(y |f, x, (σn)2) = N (y; f, (σn)2), (1)

which represents additive i.i.d. Gaussian observation noise
with variance (σn)2. Note that this model is inappropriate
when sensors can experience faults, which corrupt the rela-
tionship between y and f .

With the observation model above, given a set of observa-
tions D =

{(
x, y(x)

)}
= (x,y), the posterior distribution

(itself given by a Gaussian Process) of f? = f(x?) given
these data is

p(f? |y, θ) = N
(
f?;m(f? |y, θ), C(f? |y, θ)

)
, (2)

where the posterior mean and covariance are

m(f? |y, θ) = µ(x?; θ) +K(x?,x; θ)V
−1(y − µ(x; θ))

C(f? |y, θ) = K(x?, x?; θ)−K(x?,x; θ)V
−1K(x, x?; θ),

for V = K(x,x; θ) + (σn)2I.
We now make some definitions for the sake of readability.

Henceforth, we assume that our observations y have already
been scaled by the subtraction of the prior mean µ(x; θ).
We will also make use of the covariance matrix shorthand
Km,n = K(xm,xn). Finally, for now, we’ll drop the explicit
dependence of our probabilities on the hyperparameters θ (it
will be implicitly assumed that all quantities are conditioned
on knowledge of them) and will return to them later. Similarly,
we drop the dependence of our probabilities on the values of
inputs x, which we assume are always known.
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Fault Bucket
We propose an algorithm that is designed to deal with faults
of many different, unspecified types. We use a sequential
scheme, applicable for ordered data such as time series, parti-
tioning the data available at any point into old and new halves.
We then approximately marginalise the faultiness of old ob-
servations, storing and then updating our results for future
use. This gives rise to an efficient and fast algorithm. In order
to effect our scheme, we make four key approximations:

1. Fault bucket: Faulty observations are assumed to be gen-
erated from a Gaussian noise distribution with a very wide
variance.

2. Single-Gaussian marginal: A mixture of Gaussians,
weighted by the posterior probabilities of faultiness of
old data, is approximated as a single moment-matched
Gaussian.

3. Old/new noise independence: We assume that noise con-
tributions are independent, and that the contributions for
new data are independent of old observations.

4. Affine precision: The precision matrix over both old and
new halves is assumed to be affine in the precision matrix
over the old half.

Approximations 1 and 2 represent the state-of-the-art
(Dereszynski and Dietterich 2011). However, using them
alone will not give an algorithm that can scale to the real-time
problems we consider. Our novel approximations 3-4 permit
very fast, fault-tolerant inference. We will detail and justify
these approximations further below, although the somewhat
laborious mathematical details of the derivation of our algo-
rithm are consigned to an appendix (Osborne et al. 2012) for
brevity.

Our single, catch-all, “fault bucket” is expressed by ap-
proximation 1. It is built upon the expectation that points
that are more likely to have been generated by noise with
wide variance than under the normal predictive model of the
GP can reasonably be assumed to be corrupted in some way,
assuming we have a good understanding of the latent process.
It is hoped that a very broad class of faults can be captured
in this way. To formalise this idea, we choose an observa-
tion noise distribution to replace (1) that models the noise
as independent but not identically distributed with separate
variances for the non-fault and fault cases:

p(y |f, x,¬ fault, (σn)2) = N (y; f, (σn)2)

p(y |f, x, fault, (σf )2) = N (y; f, (σf )2),
(3)

where fault ∈ {0, 1} is a binary indicator of whether the
observation y(x) was faulty and σf > σn is the standard de-
viation around the mean of faulty measurements. The values
of both σn and σf form hyperparameters of our model and
are hence included in θ.

Of course, a priori, we do not know whether an observa-
tion will be faulty. Unfortunately, managing our uncertainty
about the faultiness of all observations is a challenging task.
With N observations, there are 2N possible assignments of
faultiness; it is infeasible to consider them all. Our solu-
tion is founded upon approximation 2. We approximately

marginalise the faultiness of old observations, representing
the mixture of different Gaussian predictions (each given by
a different combination of faultiness) as a single Gaussian.
This natural approach is similar to that taken in the related
field of switching Kalman filters (Murphy 1998). We prefer
this approximate marginalisation over faultiness to heuristics
that would designate observations as either faulty or not—we
acknowledge our uncertainty about faultiness.

More formally, define σ to be the (unknown) vector of all
noise variances at observations y. Because we have to sum
over all possible values for these vectors, we will index the
possible values of σ by i, each given by a different combi-
nation of faultiness over D (e.g. σ0

t = σn for ¬ fault and
σ1
t = σf for fault). Given all data D, we need to marginalise

over predictions indexed by i, as per

p(f? |y)

=
∑
i

p(σi |y)p(f? |y, σi)

=
∑
i

p(σi |y)N
(
f?;m(f? |y, σi), C(f? |y, σi)

)
, (4)

the weighted sum of Gaussian predictions made using the
different possible values for σ. By moment-matching, we
collapse the weighted sum of all these predictions to a single
Gaussian prediction.

In order to build a sequential algorithm, imagine that we
have partitioned our observations Da,b into a set of old ob-
servations Da = (xa,ya) and a set of new observations
Db = (xb,yb). We will index the possible values of σa by
i and the values of σb similarly by j. We now define the co-
variance matrices over our data V i

a = Ka,a +diag σi
a, V j

b =

Kb,b + diag σj
b and V i,j

a,b = K{a,b},{a,b} + diag{σi
a, σ

j
b},

where diag σ is the diagonal matrix with diagonal σ. From
(2), we know that our predictions have relatively simple
dependence upon the inverse of V , the precision. To ap-
proximate (4) as a single Gaussian, a simple calculation
reveals that we require1 the expected values of V −1 and
V −1yyTV −1, expectations with respect to p(σi | y). We’ll
refer to the set of those two expected values (which are ma-
trices) as the marginal set, which, given Da, we denote as
Ma. Our approach relies upon storing Ma, and then perform-
ing simple updates in order to arrive at Ma,b, the marginal
set given Da,b. Hence our approximate marginalisation from
previous time steps can be efficiently used to determine an
approximate marginalisation for the current time step.

This approach firstly relies upon approximation 3; we as-
sume that faults will not persist longer than |Db|. To be pre-
cise, we assume

p(σi,j
a,b,ya,b) ' p(σi

a) p(ya |σi
a) p(σ

j
b) p(yb |σi,j

a,b,ya) (5)

This simplifies the expectations required to evaluate Ma,b.
A further simplification is afforded by approximation 4,
in which we assume that (V i,j

a,b )
−1 is effectively affine in

1Actually, with some rearrangement, we can avoid explic-
itly computing (unstable) matrix inverses and instead work with
Cholesky factors to solve the required linear equations.
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(V i
a )
−1. This is true if givenDb, it is impossible to accurately

predict Da. This might be the case if Da represents a lot of
information relative to Db (if, for example, Da is our entire
history of observations where Db is simply the most recent
observation), or if Db and Da are simply not very well corre-
lated. Together, approximations 3 and 4 allow us the efficient
updates to the marginal set M required to build an online
algorithm.

If we now receive further data Dc, our existing data is
simply treated as old data (a ← {a, b}, b ← c), and an-
other iteration of our algorithm performed. This requires the
efficient updating of the marginal set stored from previous
iterations. At each iteration, our algorithm is able to return
the predictions for the latent variable p(f? |ya,b) and the pos-
terior probability of an observation’s faultiness p(σb |ya,b).
We can also return the marginal likelihood of our model’s
hyperparameters, p(ya,b), useful if we want to learn such
hyperparameters from data.

Discussion
We return to the management of our hyperparameters θ. Un-
fortunately, analytically marginalising θ is impossible. Most
of the hyperparameters of our model can be set by optimising
their likelihood on a large training set, giving a likelihood
close to a delta function. This is not true of the hyperparam-
eters σn and σf , due to exactly the same problematic sums
discussed earlier. Instead, we marginalise these hyperparam-
eters online using Bayesian Monte Carlo (Rasmussen and
Ghahramani 2003; Osborne et al. 2008), taking a fixed set
of samples in their values and using the hyperparameter like-
lihoods p(ya,b) to construct weights over them. Essentially,
we proceed as described above independently in parallel for
each sample, and combine the predictions from each in a
final weighted mixture for prediction. Note that we can use a
similar procedure (Garnett et al. 2010) to determine the full
posterior distributions of σn and σf , if desired. It would be
desirable to use non-fixed samples, but, unfortunately, this
would require reconstructing our full covariance matrix from
scratch each time a sample is moved.

Our proposal can be extended in several ways. First, we
may wish to sum over more than one fault variance, useful if
observations are prone to faultiness in more than one mode. If,
instead of summing over a small number of known variances,
we wished to marginalise with respect to a density over noise
variance, we can simply replace the sums over i and j with
appropriate integrals. Obviously this will only be analytically
possible if the posteriors for σi

a take appropriate, simple
forms. In such a way our algorithm might tackle the general
problem of heteroscedasticity.

Our proposed algorithm steps through our data one at a
time, so that Db always contains only a single observation.
With approximation 3, this means that our algorithm is not
expecting faults to last more than a single observation. The
results that follow, however, will show that we can nonethe-
less manage sustained faults. It would also be possible to step
in larger chunks, evaluating larger sums. Although more com-
putationally demanding, this might be expected to improve
results. It would also allow us to consider non-diagonal noise
contributions.

We have so far not specified our prior for faultiness (as ex-
pressed by p(σa) and p(σb)). Within this paper, we consider
exclusively a time-independent probability π of faultiness,
but our framework does not necessarily require this to be so.

In some contexts it might be useful to perform inference
about the fault contribution, rather than the signal of interest.
To do so, we merely switch the roles of the fault and non-
fault contributions. Note that, using our full posteriors for
faultiness, we can also trivially use Bayesian decision theory
to make hard decisions as required.

Results
We test the effectiveness of the fault bucket algorithm on
several time-series that are indicative of problems found in
environmental monitoring. In particular, we test on water-
level readings; such data are often characterised by complex
dynamics and will therefore provide a good indicator of our
algorithm’s performance on real-world tasks. We aim to im-
prove upon the simple, human-supervised approaches to fault
detection used in this field (Wagner and US Geological Sur-
vey 2006). For a quantitative assessment, we used two semi-
synthetic datasets where a typical fault has been injected into
clean sensor data. We then analyzed qualitative performance
on two real data sets with actual faults. All measurements
(other than for pH) are given in meters, with samples spaced
in increments of approximately 30 minutes.

Our first synthetic example, a bias fault, concerns a simple
sensor error where measurements are temporarily adjusted by
a constant offset, but otherwise remain accurate. This could
happen if the sensor undergoes physical trauma which results
in a loss of calibration. The next dataset contains a synthetic
anomaly where the water level rises quickly, but smoothly,
before returning back to normal. This would be indicative
of a genuine environmental event such as a flash flood. Both
synthetic datasets represented sustained faults, of length 335
and 161 observations respectively. Our first real dataset deals
with pH measurements from the United States Geological
Survey, a common indicator of water quality. In this series,
a clear sensor fault can be seen in which the observations
undergo a sudden, sustained decrease in value. The next
(real) dataset contains a fault type called “painting,” an error
that occurs when ice builds on a sensor, obscuring some of
the readings. It is characterised by frequent sensor spikes
interlaced with the original, and still accurate, signal.

We implemented the algorithm described in Section in
MATLAB to address the task of 1-step-lookahead time-series
prediction. A sliding window of size 100 was used to predict
the value of the next observation. Each dataset was recentered
so that a zero prior mean function was appropriate, and the
functions were all modeled using a Matérn covariance with
parameter ν = 5/2 (Rasmussen and Williams 2006). The
hyperparameters for this covariance, including the normal
observation noise σn, were learned using training data similar
to but disjoint from the test datasets. The unknown fault noise
σf was marginalised using Bayesian Monte Carlo, with a
parsimonious 7 samples used. The prior probability of an
observation being faulty, π, was set to a constant value of 1%
throughout.
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XGP – pH XGP – painting

FB – pH FB – painting

FB – p(fault(t) |D) FB – p(fault(t) |D)

Figure 2: Mean and ±3σ standard-deviation bounds for the predictions of the exhaustive (XGP) and fault-bucket (FB) algorithms
on the pH and painting datasets. For the fault-bucket algorithm, the posterior faultiness of each observation is also shown
underneath the predictions. Note that each column shares the same x-axis.

We tested against a number of different methods in order to
establish the efficacy of the fault bucket algorithm. We focus
particularly on other GP-based approaches, in order that our
novel modifications of a GP model can be best evaluated.
All GP-based approaches used the same hyperparameters
employed by our algorithm. The training set used to learn
those hyperparameters was also supplied to other methods
for their respective model learning phases. Several methods
identify a new observation y as a fault if∣∣y −m(y |y)

∣∣ > 3σT , (6)

where m(y |y) is the method’s a priori prediction for y, and
σT is the noise standard deviation on the faultless training set.
Of course, methods using (6) or similar can not provide the
posterior probability of a point’s faultiness, as our algorithm
can. Methods tested include:

XGP: A GP in which we exhaustively search over the
faultiness of the last 10 points, and approximate the noise
variance of all previous points in the window as having the
value (σf )2p(fault | y) + (σn)2p(¬ fault | y), fixed at the

time the point was observed (when data D was available).
Clearly, this method is very much more computationally
expensive than the fault bucket algorithm (roughly 29 times
more), but offers a useful way to quantify the influence of
approximations 2–4.

EPGP: A GP with our observation likelihood (3) and the
posterior determined by expectation propagation (Minka
2001). Note that expectation propagation will not readily
give us a posterior probability of faultiness; for the purposes
of explicitly identifying faults, we use (6).

TGP: A GP in which a point was flagged as a fault using
(6); if faulty, a point was treated as having noise variance
(σf )2.

STGP: A GP with student-t likelihood with four degrees of
freedom (found to optimise performance); the posterior was
determined using a Laplace approximation as per Vanhatalo,
Jylänki, and Vehtari (2009). To identify faults, (6) was used.

MLH: The most likely heteroscedastic GP (Kersting et al.
2007).

EKF: An autoregressive neural net trained with the ex-

353



Table 1: Quantitative comparison of different algorithms on the synthetic datasets. For each dataset, we show the mean squared
error (MSE), the log likelihood of the true data (log p(y |x)), and the true-positive and false-positive rates of detection for faulty
points (TPR and FPR), respectively, with all methods permitted a ‘burn-in’ period of 50 points. The best value for each set of
results is highlighted in bold.

Bias dataset “Flash-flood” dataset

Method MSE log p(y |x) TPR FPR MSE log p(y |x) TPR FPR

FB 0.024 334 0.997 0.031 0.069 −5.77× 103 0.829 0.016
XGP 0.037 439 0.982 0.022 0.042 −1.52× 103 0.805 0.012

EPGP 0.879 −5.06× 103 0.009 0.025 2.179 −2.14× 104 0.000 0.000
TGP 0.033 278 0.997 0.031 0.075 −8.29× 103 0.829 0.083

STGP 0.189 −604 0.994 0.255 0.249 −1.01× 105 0.787 0.140
MLH 0.940 −5.43× 107 0.065 0.031 2.369 −2.27× 107 0.045 0.262
EKF 0.060 −1.26× 104 0.551 0.258 0.613 −1.81× 104 0.169 0.768
SKF 0.101 −1.04× 104 0.997 0.000 0.162 −3.83× 104 0.805 0.004

tended Kalman filter to capture nonstationarity. Again, (6)
was used to identify and discard faulty data.

SKF: A switching Kalman filter (Murphy 1998), which
switched between the non-faulty and faulty observation mod-
els in (3). The model was trained by solving the Yule-Walker
equations; the best model order found was three.

Note that for EPGP, STGP and MLH, we perform retro-
spective prediction (so that all data is available to make pre-
dictions about even the first predictant), as these methods
are usually used. Clearly this allows these approaches an
unfair predictive advantage relative to sequential methods.
Note also that the multiple passes over the data effected
by approximation schemes such as expectation propagation
cannot be readily applied to the sequential problem without
requiring a great deal of expensive computation. For N ob-
servations, the computational cost of expectation propagation
is O(N3), with a large constant of proportionality, rendering
it impractical for real-time problems. With efficient Cholesky
factor updates, our scaling is O(N2). For this reason, we
did not consider even more demanding, non-sequential, ex-
pectation propagation approaches such as the twinned GP
(Naish-Guzman and Holden 2008). Note also that these ap-
proaches do not provide posterior probabilities of faultiness,
as our method is able to.

Figures 2 show the performance of the fault-bucket algo-
rithm and the exhaustive alternative on the two real datasets.
The fault-bucket algorithm did an excellent job of identifying
faults when they occur, and made excellent predictions, even
for the sustained fault in the pH dataset.

Table 1 displays quantitative measures of performance for
the various algorithms on the synthetic datasets. In addition
to superior predictive performance, our detection rates for the
faulty points are generally excellent. Note that approaches
that provided comparable fault-detection rates, like the TGP
and SKF, perform significantly poorer prediction. The results
reveal that approximations 2–4 do not result in significant
loss of performance on real data relative to exhaustive search.
Our naïve approach to faults may, of course, suffer relative
to better-informed models, but its probabilistic estimates of
faultiness provide a human operator with an indication as to

whether more sophisticated analysis is necessary. We believe
our method will augment the toolbox of approaches to fault
detection.

Conclusion
We have proposed a novel algorithm, the “fault bucket,” for
managing time-series data corrupted by faults of type un-
known ahead of time. Our chief contribution is a sequential
algorithm for marginalising the faultiness of observations in
a GP framework, allowing for fast, effective prediction in the
presence of unknown faults. Unlike most robust regression
approaches (such as those using student-t likelihoods), we
can also compute the posterior probability of faultiness. This
capacity is crucial to its utility for the domain, serving as a
means of alarming a human operator to the possible need for
corrective action.

As to future work, addressing multivariate signals is of
great interest. Unfortunately, this extension is not trivial and
would itself require additional approximations.
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