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Abstract

We introduce the problem of scheduling land purchases to
conserve an endangered species in a way that achieves maxi-
mum population spread but delays purchases as long as pos-
sible, so that conservation planners retain maximum flexibil-
ity and use available budgets in the most efficient way. We
develop the problem formally as a stochastic optimization
problem over a network cascade model describing the pop-
ulation spread, and present a solution approach that reduces
the stochastic problem to a novel variant of a Steiner tree
problem. We give a primal-dual algorithm for the problem
that computes both a feasible solution and a bound on the
quality of an optimal solution. Our experiments, using actual
conservation data and a standard diffusion model, show that
the approach produces near optimal results and is much more
scalable than more generic off-the-shelf optimizers.

1 Introduction
Reserve site selection is a key problem in conservation plan-
ning in which planners select land to be designated as nature
reserves, either to achieve general conservation goals such as
preserving biodiversity, or to achieve specific goals such as
supporting the recovery of an endangered species. Many dif-
ferent algorithms have been proposed to select reserve sites
by formulating a numerical measure of reserve quality (to-
gether with the possible addition of constraints the reserve
must satisfy) and then solving for the optimal set of sites
under the proposed model (e.g., see the review article by
Williams, Revelle, and Levin (2005)).

One crucial aspect of reserves is spatial configuration:
characteristic such as size, shape, and connectivity all have
important effects on the health of future populations. Al-
though the earliest reserve site selection algorithms largely
ignored spatial considerations, many newer models incor-
porate spatial objectives or constraints directly into the op-
timization problems. Williams, Revelle, and Levin (2005)
argue that a primary reason for the importance of spatial at-
tributes is the fact that they capture properties of the land-
scape that are favorable for the underlying population dy-
namics, and that an important, but computationally difficult,
research direction is to directly optimize with respect to a
model for the population dynamics instead of using spatial
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attributes as a proxy. This paper defines an important and
useful subproblem of conservation planning with respect to
a specific widely adopted model of population dynamics, and
develops an efficient algorithm for that problem that can be
used by practitioners.

Recently, Sheldon et al. (2010) studied a restricted, but
still challenging, version of this problem, which we will re-
fer to as upfront conservation design. In this problem, the
planner is given a budget and a stochastic metapopulation
model (Hanski and Ovaskainen 2000) that describes how the
species will spread throughout a landscape of available habi-
tat. The objective is to select a set of parcels to immediately
purchase and conserve, subject to the budget constraint, that
will maximize the spread of the population within a speci-
fied time horizon. A key simplification of this approach is
that purchases are made upfront, which limits its utility in
several ways. First, conservation budgets generally arrive in
increments over time, so it is unrealistic to purchase a large
set of parcels in advance. Moreover, it is often unnecessary
to purchase parcels that are spatially remote from the current
population until the species has spread enough to make them
relevant. Second, this assumption requires planners to com-
mit in advance to conservation strategies that may take many
years to play out, which ignores the potential advantage of
observing and responding to the stochastic outcomes of the
population spreading process as it unfolds (e.g. by diverting
money from failed subpopulations to purchase more parcels
surrounding thriving ones).

An ideal approach would be fully adaptive: at regular de-
cision epochs the planner would make purchase decisions
based on the most recent population and budgetary informa-
tion. Unfortunately, no currently-available adaptive planning
tools can scale to realistic conservation scenarios. For exam-
ple, while the problem can be encoded as a Markov Decision
Process (MDP), the resulting state and action spaces would
be far too big for state-of-the-art solvers. For example, recent
advances in solving large spatio-temporal MDPs (Crowley
and Poole 2011) require significant restrictions to the solu-
tion space, which are not acceptable in our application. An-
other approach would be to formulate the adaptive planning
problem as a multi-stage stochastic integer program. How-
ever, the size of such a problem formulation scales expo-
nentially with the number of stages, and the running time is
already very costly for a single stage (Sheldon et al. 2010),
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or for a two-stage problem in a simpler setting that is not
fully adaptive (Ahmadizadeh et al. 2010).

Recently, Golovin et al. (2011) proved that a simple
greedy planning strategy provides near-optimal solutions in
an adaptive conservation setting similar to ours. However, in
order to provide approximation guarantees, the authors re-
strict the population dynamics so that no spread occurs be-
tween distinct land parcels. While this may be a reasonable
assumption for slow-moving species, it ignores critical as-
pects of the population dynamics of highly-mobile animals
such as birds, including the Red-cockaded Woodpecker on
which our experiements are based.

In this paper, we consider the problem of conservation
design scheduling, which is an important middle-ground be-
tween the upfront and fully adaptive approaches. Given a
conservation design (i.e. a set of parcels to purchase) the
problem is to schedule the purchase time of each parcel in
a way that (1) achieves nearly the best possible population
spread over the time horizon of any schedule (including the
schedule that purchases everything upfront), and (2) maxi-
mizes flexibility by delaying purchases as long as possible.
A solution to this problem yields a useful tool to conser-
vation planners, who can first develop conservation designs
that capture their own complex decision-making objectives,
and then schedule the purchases to obtain the most efficient
and cost-effective implementation of that design.

Importantly, our scheduling algorithm can also be used
as a component of an adaptive planner. A common and suc-
cessful approach for many adaptive planning problems is re-
planning, where at each decision epoch a non-adaptive plan
is computed from the current state and its first actions are
executed. Our work enables a replanning approach that com-
putes an upfront design using existing work (e.g. (Sheldon et
al. 2010)), and then schedules the purchases so that one can
execute only the first actions while guaranteeing no loss in
population spread. Note that Ahmadizadeh et al. (2010) also
explore re-planning using a two-stage non-adaptive problem
formulation, and find that it can indeed offer advantages over
upfront planning. Unlike that work, we separate the decision
of which parcels to buy from the decision of when to buy
them, so that we may develop efficient special-purpose al-
gorithms for the latter problem that scale much more easily
to bigger problems and more stages.

In addition to introducing and formalizing the problem of
conservation design scheduling (Section 2), the main contri-
bution of our paper is to develop a principled algorithm for
solving it (Section 4). We formulate the problem in terms of
network cascade optimization and show how it is equivalent
to solving a novel variant of the Steiner tree problem with
weights on sets of edges. We develop a primal-dual algo-
rithm for the problem, which computes a feasible solution
along with a bound on the quality of the optimal solution.
Our experiments (Section 5), which use real data from the
Red-cockaded Woodpecker problem, show that the approach
produces near optimal solutions and is much more scalable
than standard optimization tools.

2 Problem Statement
Basic Setup. The study area is divided into land parcels that

are the smallest units available for purchase. They contain
distinct habitat patches which are the atomic units in the
population dynamics model and can either be occupied or
unoccupied by the species of interest. Each parcel p has a
cost c(p), which denotes the cost of purchasing the land and
restoring or conserving all of its habitat patches so they are
suitable for the species to occupy. A conservation design is
a set of parcels that are intended to be purchased and con-
served. Given a conservation design D, a purchase schedule
π for D is a mapping from parcels in D to purchase times in
{0, 1, . . . ,H}, where H is the time horizon of interest. Al-
though the species dynamics have a yearly time step, the al-
lowed purchase times (i.e. decision epochs) may be less fre-
quent depending on the specific problem. An upfront sched-
ule is one that assigns all parcels to purchase time t = 0.

Population Model. We use the same stochastic dynam-
ics model as (Sheldon et al. 2010), which is an instance of
a metapopulation model from the ecology literature (Han-
ski and Ovaskainen 2000). A patch i has two possible states
in each time step, either unoccupied or occupied, and only
conserved patches may be occupied. The population dynam-
ics consists of two types of stochastic events. Colonization
events occur when a population from patch i colonizes an
unoccupied patch j, which happens with probability pij . Ex-
tinction events occur when a patch that is occupied at time t
becomes unoccupied at time t+1, which happens with prob-
ability 1 − pii. All events are independent. The single-step
colonization probability pij typically decays with distance
and encodes spatio-temporal dynamics in which populations
slowly spread from a source population when new habitat is
made available. Thus, in long-term planning for population
spread, it is often unnecessary to purchase parcels that are
distant from a source population at time t = 0. By delaying
such purchases until they become relevant to the design, a
conservation organization can use limited funds much more
flexibly.

Stochastic Problem. Our problem statement will rely on
two important concepts: the reward of a schedule and the
flexibility of a schedule. The reward R(π) is a random vari-
able that encodes the amount of population spread as the
number of occupied patches at time H . It is easy to show in
our model that the upfront schedule always achieves at least
as much reward as any other schedule and thus maximizes
expected reward, so let R∗ = E[R(πupfront)]. Our goal is to
find the most flexible schedule (in a sense to be defined later)
among the set of schedules Π(ε) = {π : E[R(π)] ≥ R∗−ε}
with near-optimal expected reward.

Scenario Graphs. As in prior work (Sheldon et al. 2010),
our algorithm does not work directly with the stochastic
problem definition; instead, it uses the Sample Average Ap-
proximation (SAA) technique to optimize over a finite set of
samples. The main idea is to simulate a set of cascade sce-
narios from the probabilistic spread model, each of which
describes one outcome of the population spread process, and
to approximate expected reward as the average over the sce-
narios. The scenarios are combined into a single scenario
graph, which is illustrated in Figure 1 and explained in de-
tail in the remainder of this section.

More concretely, a cascade scenario is a layered graph
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with a vertex vi,t for each patch i and each time step t.
For each pair of patches (i, j) and time step t, a coin is
flipped with probability pij to determine if the directed edge
(vi,t, vj,t+1) is present. If this edge is present and patch i is
occupied at time t (through previous colonizations or non-
extinctions), then patch j will be colonized and become oc-
cupied at time t+1, as long as it is conserved. No other edges
are present. A cascade scenario graph encodes occupancy as
reachability: assuming (for now) that all patches are con-
served, then patch j is occupied at time t exactly when vj,t
is reachable from a vertex vi,0 corresponding to an initially
occupied patch i.

To approximate the probabilistic spread model, we sam-
ple a set of N i.i.d. cascade scenarios {C1, . . . , CN}, where
we will denote the vertices in Ck by {vki,t}. These scenar-
ios are combined into a single scenario graph, which has an
additional root vertex r with directed edges (r, vki,0) to each
vertex representing an initially occupied patch i.

A schedule π is said to purchase node vki,t and all of its in-
coming edges if patch i is purchased no later than time t (i.e.
π(p) ≤ t where i belongs to parcel p). Vertex vki,t becomes
occupied under π if there is a path through purchased edges
from r to vki,t. We let the variable Xk

π(i, t) equal 1 if vki,t is
occupied under π and 0 otherwise.

Figure 1: Example scenario graph (N = 3) for problem with
parcels p1 = {i, j}, p2 = {k}. The schedule (π(p1) =
0, π(p2) = 3) is also illustrated, using shaded boxes to in-
dicate purchased nodes, and heavy line weights to indicate
purchased edges. Vertices representing occupied patches un-
der this schedule are colored red.

The average reward of a schedule π relative to the scenar-
ios {C1, . . . , CN} is denoted by

R̂(π) =
1

N

N∑
k=1

∑
i

Xk
π(i,H)

which is just the average across scenarios of the number of
occupied patches at time H . Importantly, as N → ∞ we
have that R̂(π) converges to E[R(π)] for any fixed π, and
the set {π : R̂(π) ≥ R̂(πupfront) − ε} converges to Π(ε).
In our experiments, we show that optimizing over the set of
schedules π such that R̂(π) is exactly equal to the upfront
reward R̂∗ = R̂(πupfront) on {C1, . . . , CN} achieves very
good results, and henceforth we restrict to that case.

Optimization Problem. Our goal is now to find a sched-
ule that achieves reward R̂∗ and has maximum “flexibility”.
We know that the upfront schedule achieves R̂∗, however, it
requires commitment to all expenditures at the first time step
and is thus the least flexible. Indeed, we formalize flexibility
in terms of expenditures over time.

Given any schedule π we can define its corresponding
cost curve Cπ to be a function from purchase times to ac-
cumulated cost, so that Cπ(t) is equal to the total cost of
parcels purchased under π from time 0 up to and including
time t. This curve is non-decreasing and provides a view of
a schedule’s spending profile over the time horizon. We de-
fine a strict partial order relation <c on schedules such that
π1 <c π2 if and only if (1) Cπ1

(t) ≤ Cπ2
(t) for all t and (2)

there is some t for which Cπ1
(t) < Cπ2

(t). That is, the total
expenditures of π1 never exceed those of π2 and there is at
least one time where they are strictly less. In this case we can
say that π1 offers more flexibility in terms of budget man-
agement compared to π2 and should be preferred if all else
is equal. Note that some cost curves may cross and hence
they are incomparable under <c. If all parcels have positive
costs, then the upfront schedule is the unique maximum el-
ement under <c, and the schedule that defers all purchases
until time H is the unique minimum. However, when we re-
strict to schedules with reward R̂∗, the latter schedule will
be excluded and there may no longer be a unique minimum.

We can now specify the problem of conservation design
scheduling, which is to find a schedule π∗ from the set of all
possible schedules Π such that:

π∗ = arg minc{π ∈ Π | R̂(π) = R̂∗} (1)

where minc returns a minimal element under the ordering
<c. That is, out of all schedules that achieve reward R̂∗ we
want to return one that is minimal in terms of its cost curve
(i.e. it has maximal flexibility). Note that the solution may
not be unique, since <c is not a total order.

3 Set Weighted Steiner Graph Formulation
One challenge in finding a solution to Equation 1 is that
we must minimize over a rather non-standard ordering. To
deal with this issue, below we show that minimizing a more
traditional surrogate cost function yields solutions that are
minimal in the cost curve partial order. We then show how
to formulate the resulting problem as a novel variant of the
Steiner tree problem.

Surrogate Cost Function. Let f be a function from times
in {0, . . . ,H} to real numbers. The surrogate cost function
is

costf (π) =
∑
p

c(p) · f(π(p))
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where the sum is over all parcels p in the conservation de-
sign. This cost function is simply a weighted sum of the par-
cel costs, where the weight is determined by f based on the
parcel’s purchase time. Intuitively, if f were a strictly de-
creasing function of purchase times, then minimizing with
respect to costf would favor schedules that delay purchas-
ing. It turns out that for any decreasing f there is a strong
relationship to the <c ordering based on cost curves.
Proposition 1. For any schedules π1 and π2, and any
strictly decreasing function f , if π1 <c π2, then costf (π1) <
costf (π2).
The proof is in the extended version of the paper. This result
implies that for any decreasing f if we minimize costf over
a set of schedules, then the resulting schedule will also be
minimal under <c as called for by Equation 1. Note that by
varying the choice of f it may be possible to generate differ-
ent solutions to Equation 1 corresponding to different min-
ima in <c. In our experiments, we use a simple discounted
f given by f(t) = βt for a discount factor β ∈ (0, 1).

Set Weighted Directed Steiner Graph. Combining the
above ideas for a set of N cascade scenarios and a decreas-
ing function f we arrive at our final optimization problem:

π∗ = arg min
π∈Π

costf (π) s.t. R̂(π) = R̂∗. (2)

We can view this problem as a type of Steiner graph problem
on the scenario graph. In particular, we say that any vertex
at time t = H is a terminal vertex if it is reachable from the
root r, which is the set of nodes for whichXk

πupfront
(i,H) = 1

and hence contribute to the upfront reward R̂∗. The only way
for π to satisfy the constraint R̂(π) = R̂∗ is to purchase a set
of edges in the scenario graph that connect all of those target
nodes to r. Thus, the constraint in Equation 2 corresponds to
purchasing edges such that r has a path to each terminal, as
in the Steiner tree problem.

However, in the standard Steiner tree problem, each edge
is associated with a distinct weight and can be purchased in-
dividually, with the goal of connecting all terminals using a
set of edges of minimum total weight (which always com-
prise a tree). Our situation is more complicated because we
purchase parcels, which correspond to subsets of edges in
the scenario graph. In particular, purchasing a parcel p at
time t, which incurs cost c(p)f(t), corresponds to purchas-
ing an edge set Ep,t which contains all the edges arriving at
any vertex vki,t′ with i ∈ p and t′ ≥ t.

From the above we see that our problem is an instance of
a problem that we will call the Set Weighted Directed Steiner
Graph (SW-DSG) problem, a novel variant of the Steiner tree
problem. For the remainder of the paper we will discuss this
problem in its general form to simplify notation. The input
for SW-DSG is a directed graph G = (V,E) with a sin-
gle root vertex r, a set of terminal vertices T ⊆ V, a set
of M edge sets E = {E1, . . . , EM} where each Es ⊆ E,
and a non-negative cost cs for each Es. (The conservation
problem has edge sets E = {Ep,t} with Ep,t = {(u, vki,t′) :

i ∈ p, t′ ≥ t} and cp,t = c(p)f(t)). A subset of E forms a
Steiner graph if the union of the edges connect r to all ver-
tices in T . The desired output is a minimum cost subset of

E that forms a Steiner graph. Note that the optimal Steiner
graph need not be a tree in SW-DSG.

4 Primal-Dual Algorithm
The SW-DSG problem is a generalization of the traditional
directed Steiner tree (DST) problem, which is known to be
NP-complete. Further, under standard complexity assump-
tions, DST is hard to approximate by a factor better than
log(|T |) (Charikar et al. 1998). Note that these results hold
for even acyclic directed graphs, which is the case for the
scenario graphs from our conservation problem. There are
a number of effective heuristic algorithms for DST (Drum-
mond and Santos 2009), with many of the most successful
relying on shortest path computations as a subroutine. While
shortest paths can be computed in edge weighted graphs ef-
ficiently, this turns out to not be the case for our set weighted
problem. In particular, note that the shortest path problem is
a special case of DST (or SW-DSG) where there is a single
terminal vertex. This problem turns out to be NP-Hard for
SW-DSG, even when restricted to acyclic graphs.

Theorem 1. The SW-DSG problem is NP-hard even when
restricted to a single terminal vertex and acyclic graphs.

The proof is in the full paper and is by reduction from the set
cover problem. Thus, it is difficult to extend prior shortest-
path-based heuristics to our problem.

Another approach is to encode an SW-DSG problem as a
mixed integer program (MIP), which is straightforward, and
to then use a MIP optimizer. However, as our experiments
show, this approach does not scale well. One could also
consider a rounding procedure for the MIP’s LP-relaxation.
However, our experiments show that the scalability of LP
solvers is also poor. Instead, we exploit the MIP encoding in
another way, by following the primal-dual schema (Vazirani
2001) to derive a scalable algorithm that performs near op-
timally in our experiments. Our work can be considered as
a non-trivial generalization of previous work (Wong 1984),
where the primal-dual schema was applied to DST.

To apply the primal-dual schema we start by giving a pri-
mal MIP for the SW-DSG problem along with the dual of its
LP-relaxation in Figure 2. The primal MIP uses a standard
network-flow encoding of the Steiner graph constraint. The
only integer variables are the y(Es) variables, one for each
edge set in E , which is a binary indicator of whether Es was
purchased or not. Thus, the objective corresponds to the to-
tal cost of purchased edge sets, as desired. The flow variable
xki,j encodes the flow on edge (i, j) destined for terminal
k. The flow balance constraints (2) guarantee that one unit
of flow is carried on a path from the root node r to k. The
LP-relaxation of the primal simply replaces the integer con-
straints on the y(Es) with a positivity constraint. The dual of
the relaxed primal includes dual variables uki and wki,j cor-
responding to the primal flow constraints, one of which is
redundant so that we can set ukr = 0 for all k ∈ T , simplify-
ing the dual objective.

At a high level, our primal-dual algorithm is iterative
where each iteration increases the value of the dual objec-
tive and purchases a single edge set Es, which corresponds
to setting the primal variable y(Es) = 1. The iteration stops
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(Primal) min
M∑
s=1

y(Es)× cs, subject to: (1)

∑
h∈V

x
k
i,h −

∑
j∈V

x
k
j,i =


1, if i = r

−1, if i = k

0, if i 6= r, k

, k ∈ T, i ∈ V (2)

x
k
i,j ≤

∑
s:(i,j)∈Es

y(Es), k ∈ T, (i, j) ∈ E (3)

x
k
i,j ≥ 0, (i, j) ∈ E, k ∈ T (4)

y(Es) ∈ {0, 1} (5)

(Dual) max
∑
k∈T

u
k
k − u

k
r , subject to: (6)

∑
k,(i,j)∈Es

w
k
i,j ≤ cs, s ∈ {1, . . . ,M} (7)

u
k
j − u

k
i − w

k
i,j ≤ 0, k ∈ T, (i, j) ∈ E (8)

w
k
i,j ≥ 0 (9)

Figure 2: MIP for the SW-DSG problem and the correspond-
ing dual LP of the MIP’s LP-relaxation.

when the purchased edges form a Steiner graph (i.e. the pri-
mal becomes feasible). The value of the dual objective at the
end of the iteration serves as a lower-bound on the optimal
primal objective, which provides a worst-case indication of
how far from optimal the returned solution is.

Algorithm 1 gives pseudo-code for the algorithm. The
main data structure is an auxiliary graph G′ = (V,A) with
the same vertices as the input graph G. The auxiliary graph
edge set A is initially empty and then each iteration adds the
newly purchased edges Es ∈ E . The algorithm terminates
when the edges in A form a Steiner graph. Given a current
auxiliary graph we denote all vertices having paths to ter-
minal node k via edges in A by C(k), which is considered
to include k. Also, we define the cut set of a terminal node
k, denoted by Cut(k) to be the set of all edges (i, j) such
that j ∈ C(k) and i 6∈ C(k). Intuitively, if k is not already
reachable from the root, we know that at least one edge in
Cut(k) must be added to A to arrive at a Steiner graph.

After initializing all dual variables to zeros, each iteration
randomly selects a terminal vertex k that is not connected to
r in the auxiliary graph. At an intuitive level, the algorithm
will then select an edge set Es that contains a cutset edge of
k according to a heuristic ∆(s, k) that is derived by applying
the primal-dual schema. More concretely, the aim of each it-
eration is to raise the dual objective value by increasing the
value of ukk while maintaining feasibility. Increasing ukk by
itself will violate constraints of type (8) in the dual and lines
5 through 8 maintain feasibility by selecting an edge set Es∗
among those that intersect the cut set of k and then raising
all variables corresponding to vertices in C(k) and edges in
Cut(k) by a value ∆(s∗, k) (including ukk). This is done in a
way that causes the dual constraint of type (7) correspond-
ing to edge set Es∗ to become tight. Since this constraint
corresponds to primal variable y(Es∗), the algorithm effec-
tively sets y(Es∗) = 1, indicating a purchase, by adding the

Algorithm 1 Primal-Dual Algorithm for SW-DSG.
1: {Inputs: Graph G = (V,E), edge sets E = {E1, . . . , EM}, costs
{c1, · · · , cM}, terminals T ⊆ V}

2: Initialize:
uk
i = 0, for each k ∈ T, i ∈ V; wk

i,j = 0, for each (i, j) ∈ E, k ∈ T
G′ = (V,A) with A = ∅
lowerBound = 0, solution = ∅

3: while G′ is not a Steiner graph do
4: Let k be random vertex in T not connected to r in G′

5: S = {s | Es ∩ Cut(k) 6= ∅, s 6∈ solution}
6: s∗ = arg mins∈S ∆(s, k)

where ∆(s, k) =
(
cs −

∑
k′∈T,(m,n)∈Es

wk′
m,n

)
/|Es ∩ Cut(k)|

7: uk
j = uk

j + ∆(s∗, k), for each j ∈ C(k)

8: wk
i,j = wk

i,j + ∆(s∗, k), for each (i, j) ∈ Cut(k)

9: A = A ∪ Es∗

10: lowerBound = lowerBound + ∆(s∗, k)

11: solution = solution ∪ {s∗}
12: end while
13: Pruning: solution = solution− {s | ∃s′ ∈ solution,Es ⊂ Es′}

edges in Es∗ to A. The dual objective value at termination is
the sum across iterations of ∆(s∗, k) and is returned as the
lower-bound. The key property is that each iteration main-
tains feasibility of the dual, which guarantees that the dual
corresponds to a true lower bound on the optimal value.
Theorem 2. Each iteration of the primal-dual algorithm
produces a feasible dual solution with increased objective.

Proof. (sketch) As the base case, the initialization assigns
all dual variables to be zero, which is a feasible solution.
Now suppose that iteration q − 1 starts with a feasible so-
lution {uli, wli,j}, which satisfies the dual constraints of type
(7) and (8). Now if the algorithm terminates, we get a feasi-
ble solution. Otherwise let k be the terminal vertex selected.
For all variables {uli, wli,j} with l 6= k the values are not
changed, so (8) is satisfied. For the remaining variables with
l = k, there are three cases. Case 1: For j 6∈ C(k), the vari-
ables ukj and wki,j are unchanged, so they cannot contribute
to a violation of (7) or (8). Case 2: For any edge (i, j) with
both j, i ∈ C(k), we increase both ukj and uki by ∆∗ and
continue to satisfy the corresponding constraint of (8). Case
3: For any cut set edge (i, j) ∈ Cut(k), we increase ukj and
wki,j by ∆∗ so that (8) remain satisfied. Since the wki,j for
edges in the cut set are increased, we must ensure that con-
straints of type (7) do not become violated. The choice of ∆∗

made by the algorithm can be verified to never violate any of
those constraints and makes at least one of them tight.

After the main portion of the algorithm terminates, a prun-
ing step is conducted to remove any edge set that is a subset
of some other edge set in the solution, which decreases the
total cost while maintaining feasibility. In particular, it en-
sures that each parcel is purchased no more than once in the
final solution.

5 Experiments
Our empirical evaluation uses the same dataset as in prior
work by Sheldon et al. (2010) on computing upfront con-
servation designs. The data is derived from a conservation
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Conservation Design Parcel Purchases (top row) and Population Spread (bottom row) versus Time
t = 20 t=60 t=80 t=100

Figure 3: (Left) Original conservation design used for scheduling shown as green shaded parcels. Free parcels are also shaded
in dark grey and red ‘+’ indicates initially occupied patches. (Right) The top row shows the parcels purchased (shaded green) by
our schedule over a horizon of 100 years. The bottom row shows the population spread over the same horizon for the schedule,
where lighter red shading of a patch indicates a smaller probability of being occupied (as measured by 20 simulations).

problem involving the Red-cockaded Woodpecker (RCW)
in a large land region of the southeastern United States that
was of interest to The Conservation Fund. The region was
divided into 443 non-overlapping parcels (each with area at
least 125 acres) and 2500 patches serving as potential habi-
tat sites. Parcel costs were based on land prices and some
land parcels were already conserved and thus had cost zero.
We use the same population spread model as Sheldon et al.,
which was based on individual-based models of the RCW.
Since our approach requires a conservation design as in-
put, we use the design computed by Sheldon et al. using
a total budget constraint of $320M. The map of the area is
shown in the left cell of Figure 3, with parcels making up the
design shaded green and free parcels shaded grey; red ‘+’
marks indicate initially occupied patches. Our method also
requires specifying a strictly decreasing function for defin-
ing the surrogate cost function, for which we use f(t) = βt

for β = 0.96 (the results are not very sensitive to β).
Comparing to Optimal Solutions. Here we compare the

solutions of our primal-dual algorithm to optimal solutions
found using the CPLEX solver applied to a MIP encod-
ing of the SW-DSG problem. Since the optimal solver can’t
scale to large versions of the problem, we consider problems
involving cascade networks with 2 scenarios and horizons
ranging from 15 to 40 years. We also use CPLEX to com-
pute solutions to the LP-relaxation of the MIP. The objective
value returned for the LP provides an alternative approach
to computing a lower-bound on the optimal solution and
thus is interesting to compare to our lower bound in terms
of tightness and runtime. Since our primal-dual algorithm is
stochastic due to the random selection of terminal nodes, we
report averages over 20 runs, noting that the standard errors
are negligible.

The first two data columns of Table 1 show the (surrogate)
cost of the solutions found by MIP and our algorithm (PD)
for increasing horizons, where larger horizons correspond
to larger problems. When a method fails to return a solution
due to memory constraints no value is shown in the table. We

see that for horizons where MIP is able to yield solutions,
our algorithm produces solutions that have very similar costs
(here lower cost is better).

The next two columns of Table 1 provide results for the
lower-bound computed by the LP and by the PD algorithm.
We see that the lower-bound produced by the LP is signif-
icantly tighter than the bound produced by our algorithm.
However, the LP is unable to be solved for the largest prob-
lem, while our approach still yields a lower bound. Overall,
while our lower bound is not as good as the LP (when it can
be computed) it is still quite useful as it is generally within
a factor of two of the optimal solution.

The final three columns of Table 1 presents the time used
by the approaches for each problem, where blank cells in-
dicate that the method ran out of memory. Our algorithm is
significantly faster than the MIP approach, which fails for
the two largest problems, and is comparable with the LP
approach, which only provides a lower bound and fails for
the largest problem. This later result indicates that a solution
based on LP-rounding would face difficulty, since even solv-
ing the LP for these large problems (40 time steps with 2500
patches each) is computationally demanding. An advantage
of the primal-dual algorithm is that it avoids encoding the
LP and rather works directly with a graph.

Quality of Conservation Schedules. We now evaluate
our algorithm on problems of more realistic sizes. Here, we
consider problems based on 10 cascades (following Sheldon
et al. (2010)) and horizons ranging from 20 to 100 years,
which are well beyond the range approachable for the MIP
and LP. The solution times for our algorithm ranged from 15
seconds for H = 20 to 29 minutes for H = 100.

First, we evaluate the average accumulated reward of the
schedule returned by our method for each horizon. This is
done by running 20 simulations of the stochastic popula-
tion spread model. Each simulation provides a reward value
(number of occupied patches at the horizon) and we aver-
aged the results. This was done for the schedules produced
by our primal-dual algorithm and for the upfront schedule.
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Table 1: Comparison of PrimalDual (PD) with MIP and LP.
Cost (M$) Lower Bound Run Time (s)

MIP PD LP PD MIP LP PD
H = 15 126.8 126.21 122.2 84.9 5.5 6.1 0.9
H = 20 123.6 125.7 117.7 71.9 8.2 7.6 2.5
H = 25 117.6 121.4 104.7 61.5 28 10 9.0
H = 30 130.4 134.0 117.3 56.9 5126 15 11
H = 35 131.3 109.9 64.1 18 25
H = 40 127.5 59.7 45

Figure 4: Cost curves for horizons 20 to 100.

Recall that the intention is to nearly match the reward of the
upfront schedule. The average reward of the upfront sched-
ule ranged from 332 for H = 20 to 615 at H = 100 and for
all time horizons the primal-dual solution attained average
reward at least 95.3% of optimal, with negligible error bars
about the averages. The small gap indicates that for 10 sce-
narios the SAA approximation is quite good—the gap could
be further reduced by increasing the number of scenarios.

Of course, we must also consider the cost curves corre-
sponding to the schedules, since that is what affords the
flexibility criterion of our problem. Figure 4 presents the
cost curves for our schedules. Note that the cost curve for
a schedule produced for horizon H will only increase un-
til time H and then remain flat, reflecting that no purchases
are made after that time. We see that for all horizons the
cost curves show a fairly gradual increase in cost expendi-
tures over time, indicating that the schedules are indeed pro-
viding a significant amount of flexibility regarding purchase
times, particularly compared to an upfront schedule. In ex-
periments not shown, we found that the cost curves vary by a
small amount for different values of β, but the same general
trend is present. Interestingly, in all curves there is a sudden
jump in cost at around 20 years. To understand this in Figure
3 we show both the parcel purchases made by our schedule
and the population spread on the map over the 100 year hori-
zon. We see that at t=20 the sharp increase in cost is due to
the purchase of some relatively expensive and vast parcels
in the southern part of the design. Looking at the population
spread dynamics it is apparent that those parcels are a crit-
ical gateway for ensuring reliable spread to the southwest-
ern part of the design in later years. Delaying the purchase
any longer significantly increases the probability that such
spread does not occur, which our approach discovers.

1Here PD cost is less than the “optimal” MIP cost. After inves-
tigating, it appears to be due to finite precision issues of CPLEX.

6 Future Work
We plan to consider a variant of our current problem where
we do not require that all terminals be connected, but rather
charge a penalty for unconnected terminals. This might al-
low for even more flexibility in a schedule with little loss
in reward. To further improve our algorithm, we will con-
sider an approach based on “simultaneous raising” of dual
variables where we consider all terminals at each iteration,
which has shown improved results in other contexts. Finally,
we plan to consider fully adaptive design approaches, in-
cluding replanning strategies that leverage our scheduling
algorithm.
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