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Abstract

A key problem in climate science is how to combine the pre-
dictions of the multi-model ensemble of global climate mod-
els. Recent work in machine learning (Monteleoni et al. 2011)
showed the promise of an algorithm for online learning with
experts for this task. We extend the Tracking Climate Models
(TCM) approach to (1) take into account climate model pre-
dictions at higher spatial resolutions and (2) to model geospa-
tial neighborhood influence between regions. Our algorithm
enables neighborhood influence by modifying the transition
dynamics of the Hidden Markov Model used by TCM, al-
lowing the performance of spatial neighbors to influence the
temporal switching probabilities for the best expert (climate
model) at a given location. In experiments on historical data
at a variety of spatial resolutions, our algorithm demonstrates
improvements over TCM, when tracking global temperature
anomalies.

Introduction
Climate models are complex systems of interacting mathe-
matical models designed by meteorologists, geophysicists,
and climate scientists, and run as computer simulations, to
predict climate. These General Circulation Models (GCMs)
simulate processes in the atmosphere and ocean such as
cloud formation, rainfall, wind, ocean currents, radiative
transfer through the atmosphere etc., and their simulations
are used to make climate forecasts. GCMs designed by dif-
ferent laboratories will often have a high level of variance
due to differing assumptions and principals that are used to
derive the models.

The Intergovernmental Panel on Climate Change, a panel
appointed by the United Nations, is a scientific body in-
formed by climate modeling laboratories around the world,
that produced a report on climate change for which it was
awarded the Nobel Peace Prize in 2007 (shared by Al Gore).
Due to the high variance between the predictions from the
different GCMs that inform the IPCC, climate scientists are
currently interested in methods to combine the predictions of
this “multi-model ensemble,” as indicated at the IPCC Ex-
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pert Meeting on Assessing and Combing Multi-Model Cli-
mate Projections in 2010.

Previous work provided techniques to combine the pre-
dictions of the multi-model ensemble, at various geographic
scales, when considering each geospatial region as an inde-
pendent problem (Reifen and Toumi 2009; Monteleoni et al.
2011). However since climate patterns can vary significantly
and concurrently across the globe, this assumption is unre-
alistic, and could therefore limit the performance of these
previous approaches.

Our contributions in this paper are the following:

1. A richer modeling framework in which the GCM predic-
tions are made at higher geospatial resolutions,

2. Modeling of neighborhood influence among the geospa-
tial regions, using a non-homogeneous Hidden Markov
Model,

3. Experimental validation of the effectiveness of these ex-
tensions.

Related Work
Machine learning and data mining techniques are starting to
be applied to a variety of problems in climate science. Our
work relates most directly to the Tracking Climate Mod-
els (TCM) approach of (Monteleoni et al. 2011). To our
knowledge, our work is the first extension of TCM to model
geospatial neighborhood influences.

A number of studies have looked at how a multi-model
ensemble of climate models can be used to enhance in-
formation over and above the information available from
just one model. For example, (Reichler and Kim 2008;
Reifen and Toumi 2009) show that the average of the mod-
els’ output gives a better estimate of the real world than any
single model.

There has been recent work on developing and apply-
ing more sophisticated ensemble methods (Raftery et al.
2005; Greene, Goddard, and Lall 2006; DelSole 2007;
Tippett and Barnston 2008; Peña and van den Dool 2008;
Casanova and Ahrens 2009; Smith et al. 2009; Sain and Fur-
rer 2010). For example, (Smith et al. 2009) propose univari-
ate and multi-variate Bayesian approaches to combine the
predictions over a variety of locations of a multi-model en-
semble, in the batch setting. In the case of regional climate

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

335



Algorithm: Neighborhood-augmented Tracking Climate Models (NTCM)
Input:
Set of geographic sub-regions, indexed by r ∈ {1, · · · ,q} that collectively span the globe, with weights wr.
Set of climate models, Mi,r, i ∈ {1, · · · ,n} that output predictions Mi,r(t) at each time t and each region r.
Set of α j ∈ [0,1], j ∈ {1, · · · ,m}: discretization of α parameter.
β, a parameter for regulating the magnitude of the spatial influence

Initialization:
∀ j,r, p1,r( j)← 1

m
∀i, j,r, p1,r, j(i)← 1

n
Upon tth observation:
For each r ∈ {1 . . .q}:
Set P(i|k;α j,β,r, t) using Equation (1), ∀i,k ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.
For each i ∈ {1 . . .n}:
Loss[i]← (yt,r−Mi,r(t))2

For each j ∈ {1 . . .m}:
LossPerAlpha[ j]←− log∑

n
i=1 pt, j,r(i)e−Loss[i]

pt+1,r( j)← pt,r( j)e−LossPerAlpha[ j]

For each i ∈ {1 . . .n}:
pt+1, j,r(i)← ∑

n
k=1 pt, j,r(k)e−Loss[k] P(i|k;α j,β,r, t)

Normalize Pt+1, j,r
PredictionPerAlpha[ j,r]← ∑

n
i=1 pt+1, j,r(i)Mi,r(t +1)

Normalize Pt+1,r
Prediction[r]← ∑

m
j=1 pt+1,r( j) PredictionPerAlpha[ j,r]

GlobalPrediction← ∑
q
r=1 wr Prediction[r]

Figure 1: NTCM, our extension of TCM (Monteleoni et al. 2011) to encorporate geospatial neighborhood influence.

P(i | k;α,β,r, t) =


(1−α) if i=k
1
Z

[
(1−β)+β

1
|S(r)| ∑

s∈S(r)
Pexpert(i, t,s)

]
if i6=k (1)

where Z =
1
α

∑
i ∈ {1 · · ·n}
s.t. i 6= k

[
(1−β)+β

1
|S(r)| ∑

s∈S(r)
Pexpert(i, t,s)

]

models, (Sain and Furrer 2010) proposes ensemble methods
involving multivariate Markov random fields.

Algorithms
The Tracking Climate Models (TCM) algorithm was intro-
duced in (Monteleoni et al. 2011) to dynamically combine
the temperature predictions of the multi-model ensemble us-
ing Learn-α, an algorithm for online learning with experts
under non-stationary observations (Monteleoni and Jaakkola
2003). The algorithm is a hierarchical learner, with updates
derived as Bayesian updates of a set of generalized Hidden
Markov Models (HMMs), in which the identity of the cur-
rent best climate model is the hidden variable.

In the present work, we extend the TCM algorithm to op-
erate in a setting in which the global climate models output
predictions at higher spatial resolution. We design a variant
of the algorithm to take into account regional neighborhood
influences when performing updates. Our algorithm differs
from TCM in two main ways:

1. The Learn-α algorithm is modified to include influ-
ence from a geospatial region’s neighbors, in updat-
ing the weights over experts (the multi-model ensem-
ble of GCMs’ predictions in that geospatial region). The
HMM transition dynamics are modified from a time-
homogenous transition matrix (as in TCM) to a non-
homogenous matrix based on the performance of GCMs
in neighboring regions. This influence is parameterized by
β; when β = 0 the new algorithm reduces to Learn-α.

2. Our master algorithm runs multiple instances of this mod-
ified Learn-α algorithm simultaneously, each on a differ-
ent geospatial region, and uses their predictions to make a
combined global prediction.

Neighborhood-augmented Tracking Climate
Models (NTCM)
In (Monteleoni and Jaakkola 2003) it was shown that a fam-
ily of algorithms for online learning with experts could be
derived as Bayesian updates of the appropriately defined
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generalized1 Hidden Markov Model, where the identity of
the current best expert is the hidden variable. This family
of algorithms generalizes the Fixed-Share(α) algorithm due
to (Herbster and Warmuth 1998) to arbitrary transition dy-
namics among experts. The Learn-α algorithm (Monteleoni
and Jaakkola 2003) hierarchically tracks (as “meta-experts”)
a set of Fixed-Share(α) algorithms, each with a different
value of the parameter α, the modeled temporal switching
rate among best experts.

Using the interpretation in (Monteleoni and Jaakkola
2003), our extension to TCM can be viewed as a modifi-
cation of the transition matrix among experts, of the HMM
from which the meta-experts (Fixed-Share(α) algorithms)
are derived. This modification uses a non-homogeneous
transition matrix, allowing a geospatial region to be influ-
enced by its neighbors.

Figure 1 shows our algorithm, Neighborhood-augmented
Tracking Climate Models (NTCM). The algorithm takes a
set of q geospatial regions indexed by r, as input, along with
weights wr. These user-specified weights could capture in-
formation such as the number of data points in each region
or the area of each region. As in TCM, the n global climate
models are indexed by i; here the ith model’s prediction at
time t, Mi,r(t) is additionally indexed by r, the geospatial
region. Similarly, j indexes Learn-α’s meta-experts, Fixed-
share(α j) algorithms each running with a different value of
the parameter α, computed via the discretization procedure
in (Monteleoni and Jaakkola 2003).

For each region r, the non-homogeneous transition ma-
trix among experts is defined by Equation (1). S(r) is the
set of all geographical regions that are spatial neighbors for
the region r. This set is determined by the neighborhood
scheme, which could be defined using a variety of shapes
and sizes. In this work, we define the neighborhood as the
four adjacent regions (as described in more detail in the Ex-
periments section), however one could also consider other
options such as more circularly-defined neighborhoods, or a
scheme that is complex enough to model teleconnections. β

is a parameter regulating the magnitude of the spatial influ-
ence, Pexpert(i, t,s) (conditioned over all α values) is the cur-
rent probability of expert (climate model) i, as determined
by the modified Learn-α algorithm for spatial neighbor s,
and Z is a normalization factor that ensures that each row of
the transition matrix sums to 1 (i.e. the off-diagonal terms of
each row sum to α).

The β parameter regulates the influence of the spatial
neighbors. A β value of 0 models no spatial influence and
corresponds to the normal Learn-α algorithm (with the
switching probability α being being shared equally by all
experts). Note however that our master algorithm still differs
from Learn-α in that we run multiple instances of Learn-α,
one per geospatial region, r. A β value of 1 would distribute
the switching probability α based solely on the expert prob-
abilities of the spatial neighbors. An interesting direction
of future work is to extend the algorithm to simultaneously
learn β, analogously to the learning of α.

1This HMM generalization allows arbitrary dependence among
the observations.

Time Complexity
The total running time of the global Learn-α algorithm with
m values of α, a set of n models, over t time iterations,
is bounded by O(tmn2), excluding all data pre-processing
and anomaly calculations. Subdividing the globe into q re-
gions adds a factor of q to this bound. The addition of the
neighborhood augmentation requires O(sn2) steps each time
a HMM transition matrix is updated, where s is the number
of neighbors. Since the matrix would need to be updated for
each time iteration, for each geographic region and for each
α-value, the overall complexity would be increased by a fac-
tor of qs to O(qstmn2). Additionally, if b separate β values
are used, the complexity would further increase by a factor
of b. So the total running time of NTCM will be bounded by
O(bqstmn2).

Experiments
We ran experiments with our algorithm on historical data,
comparing temperature observations and GCM hindcasts
(predictions of the GCMs using historical scenarios). Since
the GCMs are based on first principles and not data-driven,
it is valid to run them predictively on past data. The hindcast
GCM predictions were obtained from the International Panel
on Climate Changes (IPCC) Phase 3 Coupled Model Inter-
comparison Project (CMIP3) archive (CMIP3 2007). Data
from the Climate of the 20th Century Experiment (20C3M)
was used. Multiple institutions have contributed a number of
different models and runs to the 20C3M archive. In this ex-
periment, a single model from each institution, and a single
run of that model, was arbitrarily selected, as this is standard
practice according to (Monteleoni et al. 2011). Our ensem-
ble size was 13.

We obtained historical temperature anomaly observations
from across the globe and during the relevant time period
from the NASA GISTEMP archive (NASA GISS ). See the
Temperature Anomalies section for an explanation of tem-
perature anomalies.

Preprocessing
The different climate model data sets had been created with
different parameters, including different initialization dates
and spatial resolutions. We performed several preprocess-
ing tasks on the datasets to improve uniformity and consis-
tency. All datasets, including both the models and the ob-
served anomaly data, were temporally truncated to the pe-
riod occurring between the beginning of 1890 and the end
of 1999. The data was then averaged over entire years, form-
ing a consistent time series of 110 points across all data sets.
The dataset were also spatially resampled to a geographic
grid of 5 degree squares across the globe, creating a con-
sistent spatial grid of dimensions 36x72. The data was spa-
tially resampled using an unweighted mean of all original
data points that fell within each 5 degree square. Note that
these ”degree squares” were defined using the WGS 84 co-
ordinate system, and as such they are neither perfect squares
(in terms of their footprint on the Earth) nor of a consistent
area. However, the same grid of “squares” was used for all
data sets.
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The observed anomaly data set contains a number of
“missing” data points, where the observed temperature
anomaly was not available for a variety reasons. To improve
the uniformity of the data, any 5 degree geographic square
that had missing data (no observed data points within the 5
degree square) for at least one year in the time series was
excluded from the experiment. The majority of the excluded
cells are close to the Polar Regions, where limited historical
temperature observations are available, particularly for the
early part of the dataset.

Temperature Anomalies
Climate scientists often work with temperature anomalies as
opposed to raw temperatures. A temperature anomaly is the
change in temperature at a particular location from the (av-
erage) temperature at that same location during a particular
benchmark time period. Temperature anomalies are used by
climate scientists because they tend to have lower variance
when averaged across multiple locations than raw tempera-
tures (as discussed further in (Monteleoni et al. 2011)).

The observed data from NASA GISTEMP had already
been converted to temperature anomalies. The benchmark
data used to create these anomalies was not provided, how-
ever the benchmark period was noted as 1951-1980. The
models provided data in absolute temperatures. To convert
the absolute data to anomalies, separate benchmarks were
calculated for each model by averaging the model data over
the 1951-1980 time period.

Another motivating factor for using anomalies based on
benchmarks from the respective data set was that the GCMs
had been initialized at different times with different param-
eters. This caused a sizable and consistent offset between
different models, around 4 degrees Celsius for some pairs of
models. Using anomaly values based on a consistent bench-
mark period mitigates this constant offset.

Figure 2 shows the observed global temperature anoma-
lies, as well as the anomalies for input data (GCM predic-
tions), over the 1890-2000 time period. Both the observed
data and the input data had been spatially averaged over all
of the valid 5 degree cells (the included regions).

Results and Analysis
We ran several experiments with the goal of answering the
following questions:
• How does the β parameter impact performance? Will the

algorithm produce better results as the β parameter in-
creases (i.e. as more geospatial influence is applied)?

• How does the size of the regions impact performance? Is
there an optimal region size?
For most of the experiments, we use the set of regional

predictions from NTCM to calculate a global prediction. As
described in Figure 1, the NTCM global prediction is calcu-
lated from a weighted average of all the regional predictions.
In these experiments we base the regional weights, wr, on
the number of valid 5-degree cells in each region (in order
to properly weight the predictions from regions with mostly
excluded data, such as the Polar Regions). These global pre-
dictions from NTCM can then be directly compared with the

Figure 2: The observed global temperature anomaly (in bold
red), and the predicted anomalies from the 13 individual cli-
mate models.

Figure 3: The performance across different β values for 45
degree and 36 degree square cells, compared to the Global
Learn-α performance.

global Learn-α method of TCM(Monteleoni et al. 2011) that
tracks a single set of models at the global level. We compare
the performance using the annual global loss, which is the
squared difference between the predicted and observed tem-
perature anomalies.

β Values
Figure 3 shows the mean annual losses over a range of β

values for 45 degree and 36 degree square cells. This fig-
ure shows a clear trend of decreased loss with increased β

values, indicating that increased influence from the spatial
neighbors improves the performance. For comparison the
Global Learn-α performance is also shown on the graph.

Figure 4 shows how the global anomalies from the 45
degree square regions performed over time versus global
Learn-α through a graph of the cumulative annual loss.
This graph indicates that for most years, and in particular
for years later in the time-sequence, the NTCM cumula-
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Mean Annual Loss Variance Cumulative Annual Loss (1890-2000)
Global Learn-α 0.0144 0.0003 1.5879

45 Degree Squares β = 0 0.0138 0.0004 1.5194
45 Degree Squares β = 1 0.0129 0.0003 1.4173

Table 1: Cumulative Annual Losses for 45 degree square cells and Global Learn-α.

Figure 4: Cumulative annual losses for the 45 degree square
cells, compared to the Global Learn-α cumulative loss.

tive global loss was less than that of Learn-α, and with the
NTCM results, the β = 1 loss was less than the β = 0 loss.
The numeric results from this figure are shown in Table 1.

Region Sizes

The experiments described below used a larger set of spatial
resolutions to define the regional cells. Again we compare
the performance to the TCM algorithm at the global level.
The results shown in Table 2.

The data in Table 2 demonstrates two important results
at the global level: (1) each of the regional algorithms out-
performed all of the traditional global methods, including
Learn-α, and (2) for the regional methods the β = 1 meth-
ods outperformed the corresponding β = 0 method (corre-
sponding to no neighborhood influence) for the same region
size.

Figure 5 shows results for NTCM over various region
sizes (including a few other region sizes not shown in Ta-
ble 2). While this graph does not show a clear trend in per-
formance over region size, the best performance for this set
of region sizes is achieved with the 36 degree square cells. It
may be the case that smaller region sizes enhance the global
performance to a point, but as the regions become too small
the increased variability within each region begins to dimin-
ish the global performance. Another weakness of the smaller
regions is that they experience significant distortion near in
the Polar Regions as the actual length of a longitudinal de-
gree decreases. We can conclude however that using β = 1
is superior to β = 0 for all region sizes tested.

Algorithm Annual Loss (1890-2000)
Hemispherical Quadrants Mean: 0.0131

(β = 1) Variance: 0.0003
Hemispherical Quadrants Mean: 0.0141

(β = 0) Variance: 0.0004
45 Degree Square Cells Mean: 0.0129

(β = 1) Variance: 0.0003
45 Degree Square Cells Mean: 0.0138

(β = 0) Variance: 0.0004
15 Degree Square Cells Mean: 0.0137

(β = 1) Variance: 0.0004
15 Degree Square Cells Mean: 0.0139

(β = 0) Variance: 0.0004
5 Degree Square Cells Mean: 0.0138

(β = 1) Variance: 0.0004
5 Degree Square Cells Mean: 0.0140

(β = 0) Variance: 0.0004
Global Learn-α Mean: 0.0144

Variance: 0.0003
Global Mean Prediction Mean: 0.0162

Variance: 0.0005
Global Median Prediction Mean: 0.0164

Variance: 0.0004
Best Global Model Mean: 0.0159

Variance: 0.0005
Worst Global Model Mean: 0.1172

Variance: 0.0274

Table 2: Mean Annual Losses from Global Anomalies.

Figure 5: Mean annual global losses for various region sizes.
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Region (β = 0) (β = 0.5) (β = 1)
NW µ: 0.0609 µ: 0.0608 µ: 0.0579

Hemisphere σ2: 0.0049 σ2: 0.0049 σ2: 0.0047
NE µ: 0.0517 µ: 0.0516 µ: 0.0511

Hemisphere σ2: 0.0048 σ2: 0.0048 σ2: 0.0046
SE µ: 0.0074 µ: 0.0073 µ: 0.0075

Hemisphere σ2: 0.0001 σ2: 0.0001 σ2: 0.0001
SW µ: 0.0221 µ: 0.0221 µ: 0.0215

Hemisphere σ2e: 0.0008 σ2: 0.0008 σ2: 0.0007

Table 3: Mean Annual Losses for the Hemispherical Exper-
iment.

(β = 0) (β = 0.5) (β = 1)
Mean over µ: 0.1359 µ: 0.1357 µ: 0.1347
all regions σ2:0.1328 σ2: 0.1327 σ2:0.1357

Table 4: Mean Annual Losses for the 45-Degree Cell Exper-
iment.

Effect of β on regional results

In addition to examining the effect of β on the global losses
(as in the previous experiments), we also ran experiments
to determine the effect of β on regional losses (while
still incorporating the β-regulated influence between the
regions).

Hemispherical Regions
In this experiment we divided the globe into its 4 hemi-

spherical quadrants (NW, NE, SE, SW). The mean annual
losses for each of the hemisphere quadrants for each β value
are displayed in Table 3.

In three of the four quadrants the β=1 run outperforms
the other β values. The exception was the SE hemisphere,
where a particularly low mean annual loss and variance was
achieved for all β values.

45-Degree Cells
We also ran regional experiments at at higher spatial gran-

ularity (45-degree cells). The means of the annual losses
over all 32 regions are shown in Table 4. Note that these are
regional losses averaged over the globe, rather than global
losses from regional predictions averaged over the globe as
in the ‘Region Sizes’ experiment.

The results are of limited statistical significance due to the
high variance. The high variance was caused, in part, by the
cells around the Polar Regions, where the footprint of each
region is decreased, and additionally, significant portions of
these regions are excluded due to lack of observed anoma-
lies. Table 5 shows the mean losses when these Polar regions
are excluded (so the remaining 16 regions are included) from
the calculation, but still contribute to the algorithm’s neigh-
borhood augmentation.

When these Polar regions are excluded there is a much
smaller variance, and some indication that the β = 1 case is
outperforming the other β values.

(β = 0) (β = 0.5) (β = 1)
Mean over µ: 0.0380 µ: 0.0379 µ: 0.0368
non-polar σ2:0.0033 σ2: 0.0033 σ2:0.0031
regions

Table 5: Mean Annual Losses for the 45-Degree Cell Exper-
iment, Excluding Polar Regions.

Conclusions and Future Work
The NTCM algorithm showed promising signs when incor-
porating neighborhood influence. The results showed that
runs using the full neighborhood influence (β = 1) outper-
formed runs without neighborhood influence (β = 0) for
predicting global temperature anomalies. Also at the global
level, the NTCM algorithm outperformed previous global al-
gorithms such as the Learn-α method of TCM.

Several aspects of the experimental setup were primitive,
and it’s possible that improved results could be obtained
with modifications in future work:

• The grid system: A very basic system based on WGS 84
coordinates was used in these experiments. In this system
the cells become distorted towards the Polar Regions. Im-
provements could be made to this system so that it more
accurately reflects the Earth’s surface as well as the distri-
bution of observed temperatures.

• The shape and size of the neighborhoods: Only the imme-
diately adjacent four cells were used as neighbors in these
experiments. Future work could examine the effect of us-
ing more advanced neighborhood schemes. This could in-
clude a weighted scheme that considers a much larger
neighborhood, where cells in closer proximity are given
more weight, for example, by using a Gaussian weighting
function over distance.

• Algorithmic extensions include allowing the weights over
regions, wr, or the spatial influence parameter β, to vary
over time, or to be learned online.
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