
Complex Task Learning
from Unstructured Demonstrations

Scott Niekum
Department of Computer Science

University of Massachusetts Amherst
140 Governors Drive
Amherst, MA 01003

A simple system that allows end-users to intuitively pro-
gram robots is a key step in getting robots out of the labo-
ratory and into the real world. Although in many cases it is
possible for an expert to successfully program a robot to per-
form complex tasks, such programming requires a great deal
of knowledge, is time-consuming, and is often task-specific.
In response to this, much recent work has focused on robot
learning from demonstration (LfD) (Argall et al. 2009;
Billard et al. 2008), where non-expert users can teach a
robot how to perform a task by example. Such demonstra-
tions eliminate the need for knowledge of the robotic sys-
tem, and in many cases, require only a fraction of the time
that it would take an expert to design a controller by hand.

Ideally, an LfD system can learn to perform and gener-
alize complex tasks given a minimal number of demonstra-
tions without requiring knowledge about the robot. Much
LfD research has focused on the case in which the robot
learns a monolithic policy from a demonstration of a simple
task with a well-defined beginning and end. This approach
often fails for complex tasks that are difficult to model with a
single policy. Thus, structured demonstrations are often pro-
vided for a sequence of subtasks, or skills, that are easier to
learn and generalize than the task as a whole, and which may
be widely reusable across many tasks.

However, a number of problems are associated with seg-
menting tasks by hand and providing individual skill demon-
strations. The most obvious of these is simply an issue of
convenience, since the most natural way to demonstrate a
task is by performing it continuously from start to finish.
Dividing a task into component skills is not only time-
consuming, but often difficult—an effective segmentation
can require knowledge of the robot’s kinematic properties,
internal representations, and existing skill competencies.
Since skills may be repeated within and across tasks, defin-
ing skills also requires qualitative judgements to be made
about when two segments are similar enough to be consid-
ered the “same”, or in deciding the appropriate level of gran-
ularity at which to perform segmentation. Clearly, users can-
not be expected to manually manage this collection of skills
as it grows over time.

For this reason, recent work has aimed at automating the
segmentation process (Jenkins and Matarić 2004; Grollman
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and Jenkins 2010; Butterfield et al. 2010; Konidaris et al.
2010). Collectively, this body of work has addressed several
key issues that are critical to any system that aims to learn in-
creasingly complex tasks from unstructured demonstrations.
In this document, we use unstructured to refer to demonstra-
tions that are unsegmented, possibly incomplete, and may
come from multiple tasks or skills. First, the robot must be
able to recognize repeated instances of skills and general-
ize them to new settings. Segmentation should also be able
to be performed without the need for a priori knowledge
about the number or structure of skills involved in a task.
Additionally, the robot should be able to identify a broad,
general class of skills, including object manipulation skills,
gestures, and goal-based actions. Finally, the representation
of skill policies should be such that they can be corrected by
the user and improved through practice.

Although many of these issues have been addressed in-
dividually in these previous research efforts, no system that
we are aware of has jointly addressed them all in a princi-
pled manner in an unstructured setting. Our contribution is
a framework that addresses all of these issues by integrating
a principled Bayesian nonparametric approach to segmenta-
tion with state-of-the-art LfD and RL techniques as a first
step towards a natural, scalable system that will be able to
learn tasks of increasing complexity. Specifically, we pro-
pose to design a system that:

1. segments unstructured demonstrations into appropriate
numbers of component skills, recognizes repeated skills
across demonstrations and tasks, and generalizes these
skills to new situations.

2. allows the user to provide unstructured, interactive cor-
rections and feedback to the robot, without requiring any
knowledge of the robot’s underlying representation of the
task or its component skills.

3. infers the user’s intentions for each segmented skill and
autonomously improves these skills using reinforcement
learning.
To address trajectory segmentation and skill reuse, we

propose the use of recent developments in Bayesian non-
parametrics. Hidden Markov Models (HMMs) have a long
history of use for interpreting time series data, but have been
limited by several constraints, including the need to specify
the number of modes a priori. We examine the Beta-Process
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Autoregressive HMM (BP-AR-HMM) (Fox et al. 2009), a
nonparametric extension of the HMM that can automati-
cally infer an appropriate number of hidden states from data,
while also allowing the sharing of modes across trajectories
and the representation of rich time-series dependencies be-
tween observations. The BP-AR-HMM has been shown to
successfully segment human motion capture data into activi-
ties which can be shared across trajectories, a process similar
to our notion of skill parsing in unstructured demonstrations.

To address the problems of LfD and policy improve-
ment, we examine recent work at the intersection of control
theory and reinforcement learning (RL) (Sutton and Barto
1998). LfD algorithms often use demonstration trajectories
to construct fixed control policies that offer no mechanism
for improvement through practice. By contrast, reinforce-
ment learning has had much success learning and improv-
ing control policies through interaction with the environ-
ment. However, RL has only had limited success in gen-
eral robotics applications, largely due to the costs of gather-
ing data on physical robots and the difficulty of exploration
in high-dimensional spaces. Dynamic Movement Primitives
(DMPs) (Ijspeert, Nakanishi, and Schaal 2003) address these
issues by providing a unified framework in which stable
dynamic controllers can be created via LfD and improved
through RL. DMPs have successfully been used to learn
complex structured control tasks such as humanoid walk-
ing, but can also be used as building blocks for representing
larger, multi-step tasks.

The combination and extension of these techniques will
allow a robot to segment and identify repeated skills in
human demonstrations, create baseline skill policies from
demonstration segments, receive feedback from the user, im-
prove skills through practice, and expand the skill library as
needed. Together, these capabilities will be a major step to-
ward open-ended robotic task demonstration by end-users.

Part of this work will be integrative in nature, but there
are several major technical questions that must also be ad-
dressed, primarily stemming from the nature of working
with unstructured demonstrations. First, how can we ro-
bustly infer preconditions, postconditions, and reward func-
tions for skills when the underlying segmentations may be
unreliable? Second, how might human feedback and correc-
tions be able to help mitigate this difficulty? Third, how can
tasks and skills be improved through practice when the pre-
conditions, postconditions, and reward functions may also
be unreliable?

Finally, we propose to validate our approach through ex-
periments on the PR2 robot, a mobile manipulator developed
by Willow Garage. The PR2 is built on the widely used open
source Robot Operating System (ROS); all code developed
in this project will be open source and made available to the
growing community of users. In addition to working with
the freely available PR2 simulator, we will have access to
a physical PR2 robot through a partnership with the Robert
Bosch Research and Technology Center, allowing us to test
our approach in a variety of real world scenarios.

As of now, we have developed and tested the software in-
frastructure for demonstration collection on the PR2, trajec-
tory parsing using BR-AR-HMMs, and DMP training, ex-

ecution, and generalization. We have been able to leverage
code from the ROS community, including code for table-
top detection, object recognition, robust grasp planning, and
cartesian arm control, as well as a BP-AR-HMM implemen-
tation made available by Emily Fox1.

Using this software base, and extending it considerably,
we have preliminary results (currently in submission) that
display an intelligent parsing and replay of demonstrations
from a block stacking task performed in the simulator. By
recognizing repeated skills within and across demonstra-
tions, we are able to automatically detect a relevant coor-
dinate frame for each skill, facilitating generalization to new
situations. We show that the robot is able to successfully
complete the task in novel configurations, despite the fact
that the task requires multiple steps in various coordinate
frames and that only unstructured full-task demonstrations
were provided. We also demonstrate the ability of the robot
to recognize previously learned skills, allowing it to draw
on a library of skills to speed up learning. We are currently
moving this experimental framework over to the physical
PR2 at Bosch for a complex dishwasher loading task.
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