
Planning Under Time Pressure

Ethan Burns
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

eaburns at cs.unh.edu

Introduction
Heuristic search is a technique used pervasively in the fields
of artificial intelligence, automated planning and operations
research to solve a wide range of problems from planning
military deployments to planning tasks for a robot that must
clean a messy kitchen. An automated agent can use heuristic
search to construct a plan that, when executed, will achieve
a desired task. The search algorithm explores different se-
quences of actions that the agent can execute, looking for a
sequence that will lead it to a desired goal state. In many
situations, an agent is given a task that it would like to solve
as quickly as possible. The agent must allocate its time be-
tween searching for the actions that will achieve the task and
actually executing them. We call this problem planning un-
der time pressure.

Classic heuristic search algorithms do not address plan-
ning under time pressure. A* (Hart, Nilsson, and Raphael
1968), one of the most well-known heuristic search algo-
rithms, finds optimal plans that have the minimum execu-
tion time. (In general A* optimizes any cost metric, how-
ever, we are concerned with time so we assume that cost =
time.) Unfortunately, it is often impractical or intractable
to find an optimal plan. Other algorithms, such as greedy
best-first search (Doran and Michie 1966), will quickly find
solutions of unbounded sub-optimality. Unfortunately, these
greedy solutions often lead to plans that are too time con-
suming to execute. Finally techniques, such as weighted
A* (Pohl 1970) or more recently Explicit Estimation Search
(Thayer and Ruml 2011), try to find a balance between op-
timality and unbounded sup-optimality by returning solu-
tions that are guaranteed to be within a user-specified factor
of optimal. It is not clear, however, how to choose a sub-
optimality factor to properly trade-off planning time and ex-
ecution time. The thesis of my dissertation is: when under
time pressure, an automated agent should explicitly attempt
to minimize the sum of planning and execution times, not
just one or just the other.

My plan for tackling the problem of planning under time
pressure has three stages. The first stage focuses on paral-
lel heuristic search, where the parallel capabilities of mod-
ern computing hardware are used in order to decrease search

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time without increasing execution time. As of the writing of
this abstract, the first stage is complete with respect to my
dissertation. The second stage will focus on the setting of
off-line heuristic search where the entire plan is synthesized
before any actions are executed. I will be near the comple-
tion of my work on second stage by the time of the AAAI
doctoral consortium. The third and final stage will focus on
planning under time pressure when planning and execution
of actions may happen concurrently. The remainder of this
abstract discusses these three topics in more detail.

Parallel Search
One technique for decreasing the sum of planning and ex-
ecution time is based on the simple idea that decreasing
search time while holding execution time constant will de-
crease the sum of the two. To achieve this, we can exploit the
parallel nature of modern computer hardware to decrease the
search time by exploring portions of the search space con-
currently. This is no easy task, in fact, we have shown that
many naı̈ve techniques for parallelizing search actually per-
form worse than serial search (Burns et al. 2010).

Along with a fellow graduate student and my advisor,
I have created a parallel best-first search algorithm called
PBNF (Burns et al. 2010). PBNF is able to achieve state-
of-the-art performance by using information found in an ab-
stract representation of the search space. At a high level,
PBNF uses abstraction to find disjoint portions of the state
space that can be searched in parallel with perfect dupli-
cate detection without requiring any communication during
expansion. The idea of using abstraction for breadth-first
search was developed by Zhou and Hansen (2007), however,
PBNF adapts this technique for best-first search. We prove
that the basic PBNF algorithm is incomplete in infinite state
spaces and present a simple modification to it that we prove
makes it complete.

We have showed that PBNF can greatly decrease the
search time required to find optimal solutions to a variety of
planning problems. Additionally, PBNF has been adapted to
act as a bounded sub-optimal search algorithm like weighted
A* or as an anytime algorithm that returns a stream of solu-
tions of decreasing cost. PBNF is an important contribution
as it enables heuristic search to take advantage of modern
processors that rely on parallelism instead of better clock-
rates for increasing performance.

Seventeenth AAAI/SIGART Doctoral Consortium

2382



While parallelism helps to decrease the sum of planning
and execution time, it is possible to attack the problem of
planning under time pressure from a different angle. The
next sections describe work that involves meta-reasoning–
reasoning about search time in order to focus search ef-
fort toward inexpensive solutions that can be found more
quickly.

Off-line Planning
In many settings, planning problems are solved off-line, i.e.,
an entire plan is synthesized before any execution begins.
The goal of this stage is to develop an algorithm that at-
tempts to minimize the sum of both planning and execu-
tion time. Such an algorithm will need to reason about the
amount of planning time that it will require to find a certain
solution. A good starting point for this work is the BUGSY
algorithm, created by Ruml and Do (2007). BUGSY attempts
to solve the planning under time pressure problem by find-
ing a solution that minimizes a user-specified utility func-
tion, given as a linear combination of solution quality and
planning time.

While BUGSY has a lot of promise, it is technically flawed
because its method of estimating the search time required
to find a solution is incorrect. When estimating this value,
BUGSY assumes that it will only search nodes along the sin-
gle path to that solution from then on. In practice, how-
ever, BUGSY will vacillate between many different solu-
tion, spending time on many different paths and not just the
one path beneath a single node. BUGSY can grossly under-
estimate the amount of search time required to find a solu-
tion, so a solution may appear very desirable when it is in
fact very costly.

Dionne, Thayer, and Ruml (2011) introduce a method
called expansion delay for estimating search vacillation. Ex-
pansion delay estimates the number of expansions that an al-
gorithm performs between the expansion of a node and the
expansion of its successor, i.e. it estimates the number of ex-
pansions that will be performed along other paths between
each single step along one path to the goal. In current work,
I am adapting the BUGSY algorithm to use expansion de-
lay in order to achieve more accurate estimates of the search
time remaining to a goal, improving its ability to optimize
the sum of search time and execution time.

Combined Planning and Execution
It is often possible and, in fact, desirable to allow for con-
current or interleaved planning and execution. Allowing ex-
ecution before an entire plan is found is especially desirable
in robotics or video games, in which an agent is expected to
begin acting right when it is given a task, and likely before it
has finished planning for achieving the task. The parallelism
inherent in this setting may be exploitable by an algorithm
that is attempting to reduce the sum of planning and exe-
cution times. For example, it may be beneficial to begin an
action before thoroughly exploring plans that extend from it;
while executing an action there can be an abundance of time
for further planning before the next action must be returned.
As a more concrete example, consider cooking: you may

start boiling a pot of water before you have even decided
what meal to make because most meals require boiling wa-
ter and water requires a lot of time to boil.

The starting point for my research in planning under time
pressure with concurrent planning and execution is the De-
cision Theoretic A* (DTA*, Russell and Wefald 1991) algo-
rithm. DTA* handles concurrent planning and execution by
deciding when to stop planning and to execute each action
using a decision theoretic analysis the current planning state.
DTA* suffers from a few problems. First, DTA* does not di-
rectly optimize the sum of planning and execution time. Sec-
ond, it does not explicitly take advantage of concurrent ex-
ecution (c.f., the boiling water example from above). Third,
DTA* makes myopic decisions and, finally, it doesn’t take
into account uncertainty in its estimations. These issues all
point to possible places where better techniques can be de-
veloped for planning while under time pressure.

Conclusions
Current heuristic search algorithms are ill-suited for plan-
ning under time pressure. Most classic heuristic search algo-
rithms attempt to find short plans that will execute quickly.
Finding such short plans is problematic as it often requires
a prohibitive amount of time. Other search techniques dis-
regard execution time and simply attempt to find any legal
plan as quickly as possible. The resulting plans are usually
of very low quality and take a long time to execute. When
time is of the essence, it is undesirable to spend more time
looking for a shorter plan than the amount of time saved
by the decreased plan length. Likewise, it is undesirable to
spend more time executing a longer plan than the amount of
time saved by the decreased planning time. As such, new
techniques are required to explicitly solve the problem of
planning while under time pressure.

References
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-first
heuristic search for multicore machines. Journal of Artificial Intel-
ligence Research 39:689–743.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-aware
search using on-line measures of behavior. In Proceedings of the
Fourth Symposium on Combinatorial Search (SoCS-11).
Doran, J. E., and Michie, D. 1966. Experiments with the graph
traverser program. In Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 235–259.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions on Systems Science and Cybernetics SSC-4(2):100–107.
Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence 1:193–204.
Ruml, W., and Do, M. B. 2007. Best-first utility-guided search. In
Proceedings of IJCAI-07, 2378–2384.
Russell, S., and Wefald, E. 1991. Do the Right Thing: Studies in
Limited Rationality. MIT Press.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal search: A
direct approach using inadmissible estimates. In IJCAI, 674–679.
Zhou, R., and Hansen, E. A. 2007. Parallel structured duplicate
detection. In Proceedings of the Twenty-Second Conference on Ar-
tificial Intelligence (AAAI-07).

2383




