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Abstract 

How do reasoning systems that learn evolve over time? 
What are the properties of different learning strategies? 
Characterizing the evolution of these systems is important 
for understanding their limitations and gaining insights into 
the interplay between learning and reasoning.  We describe 
an inverse ablation model for studying how large 
knowledge-based systems evolve:  Create a small 
knowledge base by ablating a large KB, and simulate 
learning by incrementally re-adding facts, using different 
strategies to simulate types of learners.  For each iteration, 
reasoning properties (including number of questions 
answered and run time) are collected, to explore how 
learning strategies and reasoning interact. We describe 
several experiments with the inverse ablation model, 
examining how two different learning strategies perform.  
Our results suggest that different concepts show different 
rates of growth, and that the density and distribution of facts 
that can be learned are important parameters for modulating 
the rate of learning. 

 Introduction and Motivation   

In recent years, there has been considerable interest in 

Learning by Reading [Barker et al 2007; Forbus et al 2007, 

Mulkar et al 2007] and Machine Reading [Etzioni et al 

2005; Carlson et al 2010] systems.  The study of these 

systems has mainly proceeded along the lines of measuring 

their efficacy in improving the amount of knowledge in the 

system.   Learning by Reading (LbR) systems have also 

explored reasoning with learned knowledge, whereas 

Machine Reading systems typically have not, so we focus 

on LbR systems here.  These are evolving systems: over 

time, they learn new ground facts and new predicates and 

collections are introduced, thereby altering the structure of 

their knowledge base (KB). Given the nascent state of the 

art, so far the learned knowledge is typically small 

compared to the knowledge base the system starts with.  

Hence the learning trajectory and final state of the system 

is known for all practical purposes.  But what will be the 

learning trajectory as the state of the art improves, and the 
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number of facts the system has learned by reading (or 

using machine reading techniques) dwarfs its initial 

endowment?  
To explore such questions, we introduce an inverse 

ablation model.  The basic idea is to take the contents of a 

large knowledge base (here, ResearchCyc
1
) and make a 

simulation of the initial endowment of an LbR system by 

removing most of the facts.  Reasoning performance is 

tested on this initial endowment, including the generation 

of learning goals.  The operation of a learning component 

is simulated by gathering facts from the ablated portion of 

the KB that satisfy the learning goals, and adding those to 

the test KB.  Performance is then tested again, new 

learning goals are generated, and the process continues 

until the system converges (which it must, because it is 

bounded above by the size of the original KB).  This model 

allows us to explore a number of interesting questions, 

including: (1) How does the growth in the number of facts 

affect reasoning performance? (2) How might the speed at 

which different kinds of concepts are learned vary, and 

what factors does that depend upon? (3) Is learning 

focused, or are we learning facts about a wide range of 

predicates and concepts? (4) What are the properties of 

different learning strategies? (5) How does the distribution 

of facts that can be acquired affect the learning trajectory? 

The inverse ablation model provides a general way to 

explore the evolution of knowledge bases in learning 

systems.  This paper describes a set of experiments that are 

motivated by LbR systems.  Under the assumptions 

described below, we find that (1) the size of the KB rapidly 

converges, (2) the growth is limited to a small set of 

concepts and predicates, spreading to only about 33% of 

the entire growth possible, (3) different concepts show 

different rates of growth, with the density of facts being an 

important determining factor, and (4) Different learning 

strategies have significant differences in their performance, 

and the distribution of facts that can be learned also plays 

an important role.     

The rest of this paper is organized as follows: We start 

by summarizing related work and the conventions we 

assume for representation and reasoning. A detailed 
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description of the inverse ablation model and experimental 

results are described next. In the final section, we 

summarize our main conclusions.  

        Related Work  
 

A number of researchers have worked on Learning by 

Reading and Machine Reading systems.  Learning Reader 

[Forbus et al 2007] used a Q/A system for evaluating what 

the system learned, and included rumination. Mobius 

[Barker et al 2007] was evaluated by comparing the facts 

produced by their system to a manually-generated gold 

standard set of facts.  NELL [Carson et al 2010] also uses 

human inspection to evaluate the quality of the knowledge 

produced. These systems all produce formal 

representations.  In contrast, TextRunner [Etzioni et al 

2005] produces word-cluster triples.  These are not formal 

representations that can support deductive reasoning, so 

they are not relevant here.  A prototype system for deriving 

semantic representations of sentences for two domains has 

been discussed in [Mulkar et al 2007]. Experiments related 

to populating the Cyc KB from the web have been 

described in [Matuszek et al 2005]. These systems have 

provided useful insights for improving our understanding 

of learning systems. However, measurements involving the 

temporal evolution of KBs and the systemic properties of 

rapidly changing learning systems have not been the focus 

of these endeavors. In addition to LbR research, our work 

is inspired by the literature on the evolution of the World 

Wide Web [Ntoulas et al 2004], graphs [Leskovec et al 

2007] and social networks [Kossinets & Watts 2006]. 

These systems focus on the changing structure of graphs 

and networks. We believe that knowledge-based systems 

should be cognizant of how learning algorithms affect the 

structure of the KB. This knowledge will help them to 

choose those learning trajectories which would lead to 

more efficient KB structure.    

   Representation and Reasoning 

 
We use conventions from Cyc [Matuszek et al 2006] in 
this paper since that is the major source of knowledge base 
contents used in our experiments

2
.   We summarize the key 

conventions here. Cyc represents concepts as collections.  
Each collection is a kind or type of thing whose instances 
share a certain property, attribute, or feature. For example, 
Cat is the collection of all and only cats. Collections are 
arranged hierarchically by the genls relation. (genls <sub> 

<super>) means that anything that is an instance of <sub> is 
also an instance of <super>. For example, (genls Dog 

Mammal) holds.  Moreover, (isa <thing> <collection>) means 
that <thing> is an instance of collection <collection>.  

                                                 
2
 We use a subset of ResearchCyc knowledge base with our FIRE 

reasoning system [Forbus & de Kleer 1993]. 

Learning by Reading systems typically use a Q/A 

system to examine what the system has learned.  For 

example, Learning Reader used a parameterized question 

template scheme [Cohen et al, 1998] to ask ten types of 

questions.  The templates were: (1) Who was the actor of 

<Event>?, (2) Where did <Event> occur?, (3) Where might 

<Person> be?, (4) What are the goals of <Person>?, (5) 

What are the consequences of <Event>?, (6) When did 

<Event> occur?, (7) Who was affected by the <Event>?, 

(8) Who is acquainted with (or knows) <Person>?, (9) 

Why did <Event> occur?, and (10) Where is 

<GeographicalRegion>? In each template, the parameter 

(e.g., <Person>) indicates the kind of thing for which the 

question makes sense (specifically, a collection in the Cyc 

ontology).   The queries that each template expand to all 

contain exactly one open variable, whose binding is found 

via inference in order to answer the question (e.g. for Q1, 

the answer variable is bound to a person). If BillGates and 

BillClinton are the instances of Person in KB then question 

type 3 would expand to {(objectFoundInLocation BillGates 

?x),(objectFoundInLocation BillClinton ?x)}. We use these 

questions in our experiments below, to provide a realistic 

and relevant test of reasoning. 

  

      An Inverse Ablation Model 
 

Deductive reasoning is a primary reason for accumulating 

large knowledge bases
3
.  In large knowledge-based 

systems, inference engines generate and examine 

thousands of potential proof paths for answering target 

queries.  Understanding how deductive inference 

performance changes as KBs grow is the fundamental 

motivation for the inverse ablation model.  Since large-

scale learning systems are in their infancy, instrumenting a 

learning system that is operating over months is still not 

possible.  Hence we start by ablating a large KB and 

                                                 
3
 We are referring to the goal of building machines capable of doing 

various tasks which need common sense. It is generally accepted that such 
systems must be able to reason deductively with large amounts of data.  
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Figure 1: Inverse Ablation model 
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measure reasoning performance as we add knowledge back 

in.  Figure 1 shows a schematic diagram of how the inverse 

ablation model works.  The parameters of an inverse 

ablation model include (1) What is the initial endowment?  

(2) What reasoning methods are used?, (3) How are queries 

generated?, (4) What is the distribution of facts in the 

external knowledge source?, and (5) What is the strategy 

used to grow the knowledge base?  We discuss each 

decision in turn. 

Initial endowment:  Since we are using ResearchCyc 

contents, the initial endowment consists of the basic 

ontology definitions (the BaseKB and UniversalVocabularyMt 

microtheories
4
) plus about 5,000 facts chosen at random. 

This leaves 491,091 facts that could be added on 

subsequent iterations to simulate learning.  We refer to this 

collection of facts as the fact repository, to distinguish it 

from the KB used in reasoning during a learning iteration.  

One interesting measure is how much of the fact repository 

ends up being added back when the system converges:  

Facts that remain in the repository at that point have no 

perceived relevance to the questions that are driving 

learning.  

Reasoning method: CSP solvers are arguably the 

most efficient solvers available today, but are largely 

limited to propositional reasoning, making them 

inappropriate for open domains and large-scale worlds 

where propositionalization would lead to an exponential 

explosion in the number of axioms.  By contrast, Cyc 

systems include broadly capable reasoners that handle a 

wide variety of higher-order constructs and modals, 

making them very flexible, at the cost of efficiency.  The 

reasoning system we use here is FIRE because it was used 

in the Learning Reader system [Forbus et al 2007].  FIRE 

performs backchaining over Horn clauses, similar to 

Prolog but without clause ordering or cut, and uses an 

LTMS [Forbus & de Kleer 93] for caching answers. 

Following Learning Reader, inference is limited to depth 5 

for all queries, with a timeout of 90 seconds per query
5
.  

Each parameterized question template is expanded into a 

set of formal queries, all of which are attempted in order to 

answer the original question.  

Query Generation:  We automatically generate a set 

of queries at each iteration by asking every question for 

every entity that satisfies the collections associated with 

each type of parameterized question.  Thus the types of 

entities, given the set of parameterized questions, are Event, 

Person, and GeographicalRegion. Note that as the KB grows, so 

too can the number of queries generated, since new entities 

of these types can be added.  This allows us to measure 

                                                 
4
 These microtheories were chosen because they contain the definitions of 

predicates and collections. It would not be possible to generate questions 
without the generalization hierarchy. However, including the hierarchy 

precludes the possibility of studying the evolution of its structure.    
5 Due to the large size of search space, such parameters are used by most 
inference engines. 

how costly different strategies for generating learning 

goals might be.  

Growth Strategy:  The method for growing the KB 

by adding back in facts should reflect assumptions made 

about the way the system generates learning goals. 

Moreover, it is also interesting to study the properties of 

different learning strategies. Below we compare the 

performance of two strategies: 

(1) Entity-based Learning Strategy: At each iteration, 

we use reasoning failures to generate learning goals, which 

are then used to gather facts from the fact repository.  

Specifically, the proof trees for failed queries are examined 

to find nodes representing queries involving specific 

entities.  Finding out more about these entities become the 

learning goals for that iteration.  For example, a query like 

(acquaintedWith BillClinton ?x) leads to an intermediate query 

like (mother ChelseaClinton ?x).  Hence learning about 

ChelseaClinton would become one of the learning goals for 

that iteration. We model the effect of learning by gathering 

all the facts which mention the entities in learning goals 

from the fact repository.  This is tantamount to assuming a 

large amount of learning effort in every cycle, essentially 

mining out everything that is going to become known 

about an entity the first time that it becomes a target for 

learning.  While optimistic, pursuing any other strategy 

would require making more assumptions, thereby making 

them harder to justify.  This gives us an extreme point, at 

least
6
. 

(2) Predicate-based Learning Strategy: While using 

this strategy, the reasoner chooses a new predicate pred in 

every learning iteration, which would lead to maximum 

improvement in Q/A performance. All facts matching the 

pattern (pred ?x ?y) are sought from the fact repository. The 

algorithm used for assessing the utility of learning about 

predicate m is shown in Figure 2. Here NumberOfFacts(p) 

represents our estimate of the number of facts which can be 

inferred about predicate p. In step 1 of the algorithm, we  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6
 Obviously mining everything known about an entity is only feasible 

when the external knowledge source is small. In other cases, 

computational constraints will impose an upper limit on the number of 
ground facts acquired by the system.   

Algorithm: ReturnEstimateOfPerformance 

Input: Predicate m 

 

1. For all predicates p in the KB do: 

a. NumberOfFacts(p)←KBFacts(p) 

2. NumberOfFacts(m)←KBFacts(m)+N 

3. OrderedList ← Perform a topological sort of the  

directed search space represented by the axioms. 

Break cycles arbitrarily.  

4. For each p in OrderedList 

          NumberOfFacts(p) ←∑Q NumberOfFacts(q) +                       

∑R ∏S α *NumberOfFacts(s) 

5. Return  ∑RootNodes NumberOfFacts(r) 

 

Figure 2: Algorithm for assessing the utility of learning 
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initialize it by KBFacts(p), which represents the number of 

ground facts in the KB about predicate p. In step 2, we 

assume that we can get N facts
7
 (In this work, N was set to 

1,000.) from the fact repository about predicate m. A 

topological sort of the directed search space is performed 

in step 3 and inference is propagated bottom-up in step 4. 

The first-term on the RHS of step 4(a) sums evidence from 

the OR nodes which are the children of p. The second term 

adds evidence from those AND nodes which are the 

children of p. The constant α represents the probability of 

unification and was set to 10
-3

. Step 5 returns the number 

of answers for the root nodes (i.e., the target queries). The 

process is repeated for all predicates and the predicate 

which return the maximum value is sent to the fact 

repository as the learning query. We chose this strategy for 

our experiments because predicates play an important role 

in any KR&R system. Secondly, given a search space 

represented by axioms, it is natural to represent the 

learning requests in the form of nodes, which are 

automatically mapped to predicates.  

 

 

Figure 3 describes the experimental procedure used, in 

algorithmic form. Step 6 describes the entity-based 

learning strategy, while Step 7 describes the predicate-

based strategy. Q/A performance (i.e., proportion of 

questions answered) is recorded in step 5, whereas 

                                                 
7
 The value of N used here is an estimate. However, building perfect 

models of an unseen repository is an interesting research problem.   

systemic properties of the KB (shown in Figures 5, 6 and 

8) are measured in step 9.  
 
 Distribution of Facts in the External Knowledge 
Source: It is useful to view the knowledge base as a giant 
graph where entities are connected via different kinds of 
relations. Given this representation, some parts of the 
graph are more densely connected than others

8
. Note that 

the degree of a given node in this graph corresponds to the 
number of facts associated with it

9
. Therefore, the 

trajectory of learning in the entity-based strategy is 
determined by the number of facts acquired from entities. 
Similarly, the number of facts acquired from predicates 
determines the trajectory for the predicate-based strategy. 
In Figure 4, we show the proportion of predicates and 
entities which have their number of facts in a given range. 
For example, the graph shows that the probability of a 
randomly chosen entity having 0-5 facts is 0.13. On the 
other hand, the probability that a randomly chosen 
predicate would have 0-5 facts is more than 0.5.  The graph 
should be seen as a descriptive summary of the density of 
the fact repository. The last bin in Figure 4 shows the 
probability mass not included in other bins (i.e. Pr(x> 50)). 
The difference shown in Figure 4 causes the differences in 
the properties of learning strategies shown in next section.    
 
 
 
 
 
 
 
 
             
 
 
 
 
 

                    Experimental Results 

 
The experiments were done for three starting points for 
KB(0). Since the results for these experiments were 
similar, we report average of these results in Figures 5 to 
10.  Figure 5 shows the change in number of ground facts. 
For the entity-based model, the number of facts increases 
rapidly from 4,968 at t=0 to 143,922 facts at t=2. The curve 
asymptotes to about 166,000 facts at t=5. It is also useful to 

                                                 
8
 Generally density is measured over a volume. However, in graph theory, 

a dense graph is a graph in which the number of edges is close to the 
maximal number of edges.  
9 Assume that the KB contains following two facts: {(wife HillaryClinton 

BillClinton), (daughter ChelseaClinton HillaryClinton)}, then 
HillaryClinton has 2 facts associated with her. BillClinton and 

ChelseaClinton have just one fact associated with them. Therefore the 

degree of the HillaryClinton node would be two. The degree of other two 
nodes is one.  

Figure 4: Distribution of facts in external knowledge source 

Algorithm 

1. Input: Growth Strategy (Entity-based or Predicate-

based)Set t← 0.  

2. Initialize KB(t) by choosing facts randomly from the 

repository.  

3. Repeat steps 4 to 9 until the process converges (i.e., 

∆KB → 0) 

4. Set Q ← Generate all questions for the question 

templates mentioned on page 2. 

5. Ask the set of questions Q and measure Q/A 

performance. 

6. If the Growth Strategy is Entity-based then: 

a. E ← the set of entities in intermediate queries 

generated during the reasoning process. 

b. Let Facts ← New facts about the elements of E in 

the Fact Repository. 

7. Else if growth strategy is Predicate-based 

a. Choose a predicate p from the search space which 

would lead to the maximum gain in Q/A 

performance. 

b. Let Facts ← New facts which match the pattern (p 

?x ?y) from the Fact Repository. 

8. KB(t+1) ← KB(t) + Facts 

9. Record the properties of interest for KB(t+1) 

 

            Figure 3: Inverse Ablation Model      
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compare the extent of this growth with respect to the 
contents of fact repository. The coverage increases from 
1% of the repository at t=0 to 33% at t=5. The high rate of 
growth shows that the domain is densely connected and the 
average distance between two nodes is pretty small.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 On the other hand, given these questions, about 67% of 
the repository is beyond our reach. The number of facts 
asymptotes at 5% of the fact repository for the predicate-
based model. Next, we turn to the rate of introduction of 
new predicates and concepts (see Figure 6). In this case, 
both learning strategies showed similar performance. At 
t=0, about 55% of the predicates had least one ground fact 
associated with them. After five learning iterations, 65% 
predicates had at least one ground fact

10
. 

 
 Similarly, the proportion of concepts with at least one 
instance increased from 53% to 62%. This shows that the 
learning is focused and new facts are being drawn from a 
small set of predicates and concepts. It also points towards 

                                                 
10

 Let us assume that the KB has following three facts: (doneBy 

Speaking-100 BillClinton), (doneBy Killing-209 Person-198) and, (isa 

Canada Country). Then the number of ground facts associated with 

predicates doneBy and isa are 2 and 1 respectively. Similarly, the 
collection Country has just one instance.  

homophily
11

 in the ground facts because many different 
concepts are out of our reach. In Figure 7, the dynamics of 
Q/A performance is shown. The proportion of questions 
answered improves significantly with the size of the KB. 
For the entity-based model, the size of KB increased by 
3,104% in five iterations, but the proportion of questions 
answered increased by only 637%. The time needed per 
query increased by 533% during this period.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 These results suggest that time-constrained deductive 
reasoning systems will need new methods to select the best 
set of axioms due to increasing resource requirements and 
changing distribution of facts and collections. The entity-

                                                 
11

 In this context, homophily refers to the phenomenon of entities linking 

to similar entities via relations.  

    Figure 8: Number of answers per unit ground fact 

(Average of three experiments).  

 

Figure 6: Change in the number of new 

predicates/concepts (Average of three experiments.) 
 

Figure 7: Q/A performance (Average of three 

experiments). The results are statistically significant. 

(p<0.05) 

 Figure 9: Growth of different concepts (Average of 

three experiments). The results are statistically 

significant. (p<0.05) 

 

 

Figure 5: Change in Number of Ground Facts 

(Average of three experiments).The results are 

statistically significant (p<0.05).  
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based model performs better than the predicate-based 
model as far as net Q/A coverage is concerned. On the 
other hand, Figure 8 shows that the predicate-based model 
uses fewer facts to derive its answers than the entity-based 
model. The number of question answered per ground fact 
also improves with time for both strategies

12
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Entity-based Predicate-

based 

No. of Facts 33% of maximum 5% of 

maximum 

Focused 

Learning 

Yes Yes 

Q/A (%) Better Worse 

Utilization of 

ground facts 

for deriving 

answers 

Worse Better 

Distribution of 

Learning 

Skewed Uniform 

               Table 1: Summary of key differences 

 

It is also interesting to compare the rate of growth of 

different regions of the KB and check if some of them 

display unusual patterns. Recall that the question types 

discussed involve three kinds of concepts: Person, Event and 

GeographicalRegion13. The predicate-based model did not 

show any significant difference in growth patterns in 

different regions of the KB (see Figure 9). However, the 

rates of growth of instances of these concepts vary greatly 

for the entity-based model. In the figure below, we see that 

the KB had 1.4% of all instances of Person at t=0. This 

grew to 2% after five iterations. During the same period, 

the proportion of GeographicalRegion increased from 7.9% 

to 58%. The proportion of instances of Event grew from 

                                                 
12

 In this case, the differences between the performances of two strategies 

are less significant and pronounced. We intend to study this issue in more 

detail in future work. However, it is interesting to note that the number of 

answers per ground fact increases with the size of KB in both cases. 
13

 These concepts were chosen because they are general enough to 

include thousands of other concepts via the generalization hierarchy. 

26% to 33% (not shown in Figure). It shows that the rate of 

growth of GeographicalRegion is high, whereas this model 

has not made significant progress in accumulating 

knowledge about instances of Person. One important reason 

for this difference is the density of facts for these concepts.  

In Figure 10, we show the distribution of number of 

facts per entity for these concepts. The x-axis shows the 

number of facts per entity for instances of each of these 

three concepts. The mean of facts per entity for Person, 

Event and GeographicalRegion are 2.14, 5.58 and 11.29 

respectively. The medians of facts for these concepts are 1, 

2 and 5 respectively. The net growth in coverage for these 

concepts was 0.5%, 6.2% and 50.1% respectively.  This 

shows that the density and the rate of growth show a 

nonlinear relationship and it can be used to modulate the 

rate of learning. In Table 1, we summarize key differences 

between entity-based and predicate-based strategies. 

  

     Conclusion and Discussion 

 
There has been growing interest in creating large-scale 

learning systems, such as Learning by Reading systems. 

However, there has been relatively little work in studying 

the properties of reasoning systems which grow 

significantly over time.  We have proposed an inverse 

ablation model for studying how reasoning performance 

changes with KB growth, as might be caused by learning. 

The method proposed here is very general and could be 

used with any large KB or KR&R system. The results 

show significant differences between the performances of 

two learning strategies that are of particular interest from 

the perspective of learning systems. The points of 

convergence of learning strategies pose interesting 

questions for design of learning strategies. In particular, 

what kind of strategies would help us to acquire facts from 

all parts of the KB? Secondly, how should we change these 

strategies to ensure that we can get close to 100% facts 

from the repository?  

The interplay of learning and reasoning is visible in the 

properties of entity-based learning strategy. Seeking facts 

about entities in reasoning paths leads to higher growth in 

denser regions. This positive feedback leads us to believe 

that such learning systems would enhance their knowledge 

of those domains about which the KB already contains 

some minimum threshold of knowledge. For other 

domains, the level of knowledge would stagnate. In a 

sparsely connected domain, learning systems may need to 

find ways to hop from one island to another using other 

learning methods. How can we use this analysis up front? 

If we already know the distribution of knowledge in the 

external source, then we might control the rate of learning 

by designing appropriate parameters. The task is more 

difficult if the distribution is unknown. Since we cannot 

make the assumption that we have a fair model of the 

Figure 10: Probability distribution of facts/entity for 

concepts 
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complete external source, we will have to continuously 

revise our approximation of distribution of knowledge. The 

inference engine should use it for better allocation of 

resources.          

  The differences discussed above are due to the different 

probability distributions of entities and predicates in the 

external knowledge source
14

 (Figure 4). We observed that 

one of the models proposed here increased the size of the 

KB from 1% to 33% of the repository in five iterations. As 

the number of facts, predicates and collections increase, the 

size of search space and dynamics of reasoning would 

change as well. This implies that learning algorithms and 

inference engines should use distribution-sensitive 

algorithms in order to adapt well to a changing KB. 

Growth is compartmentalized but spreads to a significant 

fraction of the fact repository.  Growth is focused, as 

indicated by the new facts being about a small number of 

predicates and concepts. Given these results, we believe 

that the entity-based strategy should be preferred over the 

predicate-based strategy. However, understanding how 

best to combine these strategies and use the distribution of 

facts to achieve a balanced and efficient learning trajectory 

is an interesting open question. How would one decide on 

a policy for KB growth? We believe that minimizing time 

requirements for reasoning is critical for large knowledge-

based systems. Therefore, we should choose a strategy 

which satisfies Q/A performance thresholds by acquiring 

facts about minimum number of predicates. This would 

help us to minimize time requirements because we would 

be able to choose a small number of axioms to reason with 

them.   Applying these learning strategies in a new learning 

by reading system is something we plan to do in future 

work.  
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