
Double-Bit Quantization for Hashing

Weihao Kong and Wu-Jun Li
Shanghai Key Laboratory of Scalable Computing and Systems

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
{kongweihao,liwujun}@cs.sjtu.edu.cn

Abstract
Hashing, which tries to learn similarity-preserving bi-
nary codes for data representation, has been widely
used for efficient nearest neighbor search in massive
databases due to its fast query speed and low storage
cost. Because it is NP hard to directly compute the best
binary codes for a given data set, mainstream hash-
ing methods typically adopt a two-stage strategy. In the
first stage, several projected dimensions of real values
are generated. Then in the second stage, the real val-
ues will be quantized into binary codes by thresholding.
Currently, most existing methods use one single bit to
quantize each projected dimension. One problem with
this single-bit quantization (SBQ) is that the threshold
typically lies in the region of the highest point density
and consequently a lot of neighboring points close to
the threshold will be hashed to totally different bits,
which is unexpected according to the principle of hash-
ing. In this paper, we propose a novel quantization strat-
egy, called double-bit quantization (DBQ), to solve the
problem of SBQ. The basic idea of DBQ is to quantize
each projected dimension into double bits with adap-
tively learned thresholds. Extensive experiments on two
real data sets show that our DBQ strategy can signifi-
cantly outperform traditional SBQ strategy for hashing.

Introduction
With the explosive growth of data on the Internet, there
has been increasing interest in approximate nearest neigh-
bor (ANN) search in massive data sets. Common approaches
for efficient ANN search are based on similarity-preserving
hashing techniques (Gionis, Indyk, and Motwani 1999;
Andoni and Indyk 2008) which encode similar points in
the original space into close binary codes in the hashcode
space. Most methods use the Hamming distance to measure
the closeness between points in the hashcode space. By us-
ing hashing codes, we can achieve constant or sub-linear
search time complexity (Torralba, Fergus, and Weiss 2008;
Liu et al. 2011). Furthermore, the storage needed to store the
binary codes will be greatly decreased. For example, if we
encode each point with 128 bits, we can store a data set of 1
million points with only 16M memory. Hence, hashing pro-
vides a very effective and efficient way to perform ANN for

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

massive data sets, and many hashing methods have been pro-
posed by researchers from different research communities.
The existing hashing methods can be mainly divided into
two categories (Gong and Lazebnik 2011; Liu et al. 2011;
2012): data-independent methods and data-dependent meth-
ods.

Representative data-independent methods include
locality-sensitive hashing (LSH) (Gionis, Indyk, and
Motwani 1999; Andoni and Indyk 2008) and its ex-
tensions (Datar et al. 2004; Kulis and Grauman 2009;
Kulis, Jain, and Grauman 2009), and shift invariant kernel
hashing (SIKH) (Raginsky and Lazebnik 2009). LSH and
its extensions use simple random projections which are
independent of the training data for hash functions. SIKH
chooses projection vectors similar to those of LSH, but
SIKH uses a shifted cosine function to generate hash values.
Both LSH and SIKH have an important property that points
with high similarity will have high probability to be mapped
to the same hashcodes. Compared with the data-dependent
methods, data-independent methods need longer codes
to achieve satisfactory performance (Gong and Lazebnik
2011), which will be less efficient due to the higher storage
and computational cost.

Considering the shortcomings of data-independent meth-
ods, more and more recent works have focused on data-
dependent methods whose hash functions are learned from
the training data. Semantic hashing (Salakhutdinov and Hin-
ton 2007; 2009) adopts a deep generative model to learn the
hash functions. Spectral hashing (SH) (Weiss, Torralba, and
Fergus 2008) uses spectral graph partitioning for hashing
with the graph constructed from the data similarity relation-
ships. Binary reconstruction embedding (BRE) (Kulis and
Darrell 2009) learns the hash functions by explicitly min-
imizing the reconstruction error between the original dis-
tances and the Hamming distances of the corresponding bi-
nary codes. Semi-supervise hashing (SSH) (Wang, Kumar,
and Chang 2010) exploits some labeled data to help hash
function learning. Selt-taught hashing (Zhang et al. 2010)
uses supervised learning algorithms for hashing based on
self-labeled data. Composite hashing (Zhang, Wang, and
Si 2011) integrates multiple information sources for hash-
ing. Minimal loss hashing (MLH) (Norouzi and Fleet 2011)
formulates the hashing problem as a structured prediction
problem. Both accuracy and time are jointly optimized to

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

634

learn the hash functions in (He et al. 2011). One of the
most recent data-dependent methods is iterative quantization
(ITQ) (Gong and Lazebnik 2011) which finds an orthogonal
rotation matrix to refine the initial projection matrix learned
by principal component analysis (PCA) so that the quanti-
zation error of mapping the data to the vertices of binary
hypercube is minimized. It outperforms most other state-of-
the-art methods with relatively short codes.

Because it is NP hard to directly compute the best bi-
nary codes for a given data set (Weiss, Torralba, and Fer-
gus 2008), both data-independent and data-dependent hash-
ing methods typically adopt a two-stage strategy. In the first
stage, several projected dimensions of real values are gener-
ated. Then in the second stage, the real values will be quan-
tized into binary codes by thresholding. Currently, most ex-
isting methods use one single bit to quantize each projected
dimension. More specifically, given a point x, each projected
dimension i will be associated with a real-valued projection
function fi(x). The ith hash bit of x will be 1 if fi(x) ≥ θ.
Otherwise, it will be 0. One problem with this single-bit
quantization (SBQ) is that the threshold θ (0 for most cases
if the data are zero centered) typically lies in the region of
the highest point density and consequently a lot of neighbor-
ing points close to the threshold might be hashed to totally
different bits, which is unexpected according to the princi-
ple of hashing. Figure 1 illustrates an example distribution
of the real values before thresholding which is computed
by PCA1. We can find that point “B” and point “C” in Fig-
ure 1(a) which lie in the region of the highest density will be
quantized into 0 and 1 respectively although they are very
close to each other. On the contrary, point “A” and point “B”
will be quantized into the same code 0 although they are far
away from each other. Because a lot of points will lie close
to the threshold, it is very unreasonable to adopt this kind of
SBQ strategy for hashing.

To the best of our knowledge, only one existing method,
called AGH (Liu et al. 2011), has found this problem of
SBQ and proposed a new quantization method called hierar-
chical hashing (HH) to solve it. The basic idea of HH is to
use three thresholds to divide the real values of each dimen-
sion into four regions, and encode each dimension with dou-
ble bits. However, for any projected dimension, the Ham-
ming distance between the two farthest points is the same
as that between two relatively close points, which is unrea-
sonable. Furthermore, although the HH strategy can achieve
very promising performance when combined with AGH pro-
jection functions (Liu et al. 2011), it is still unclear whether
HH will be truly better than SBQ when it is combined with
other projection functions.

In this paper, we clearly claim that using double bits
with adaptively learned thresholds to quantize each pro-
jected dimension can completely solve the problem of
SBQ. The result is our novel quantization strategy called
double-bit quantization (DBQ). Extensive experiments on
real data sets demonstrate that our DBQ can significantly
outperform SBQ and HH.

1Distribution of real-valued points computed by other hashing
methods, such as SH and ITQ, are similar.

Problem Definition
Given a set of n data points S = {x1,x2, · · · ,xn} with
xi ∈ Rd, the goal of hashing is to learn a mapping
to encode point xi with a binary string yi ∈ {0, 1}c,
where c denotes the code size. To achieve the similarity-
preserving property, we require close points in the original
space Rd to have similar binary codes in the code space
{0, 1}c. To get the c-bit codes, we need c binary hash func-
tions {hk(·)}ck=1. Then the binary code can be computed
as yi = [h1(xi), h2(xi), · · · , hc(xi)]

T . Most hashing algo-
rithms adopt the following two-stage strategy:

• In the first stage, c real-valued functions {fk(·)}ck=1
are used to generate an intermediate vector
zi = [f1(xi), f2(xi), · · · , fc(xi)]

T , where zi ∈ Rc.
These real-valued functions are often called
projection functions (Andoni and Indyk 2008;
Wang, Kumar, and Chang 2010; Gong and Lazeb-
nik 2011), and each function corresponds to one of the c
projected dimensions;

• In the second stage, the real-valued vector zi is encoded
into binary vector yi, typically by thresholding. When the
data have been normalized to have zero mean which is
adopted by most methods, a common encoding approach
is to use function sgn(x), where sgn(x) = 1 if x ≥ 0 and
0 otherwise. For a matrix or a vector, sgn(·) will denote
the result of element-wise application of the above func-
tion. Hence, let yi = sgn(zi), we can get the binary code
of xi. This also means that hk(xi) = sgn(fk(xi)).

We can see that the above sgn(·) function actually quan-
tizes each projected dimension into one single bit with the
threshold 0. As stated in the Introduction section, this SBQ
strategy is unreasonable, which motivates the DBQ work of
this paper.

Double-Bit Quantization
This section will introduce our double-bit quantization
(DBQ) in detail. First, we will describe the motivation of
DBQ based on observation from real data. Then, the adap-
tive threshold learning algorithm for DBQ will be proposed.
Finally, we will do some qualitative analysis and discussion
about the performance of DBQ.

Observation and Motivation
Figure 1 illustrates the point distribution (histogram) of the
real values before thresholding on one of the projected di-
mensions computed by PCA on 22K LabelMe data set (Tor-
ralba, Fergus, and Weiss 2008) which will be used in our
experiments. It clearly reveals that the point density is high-
est near the mean, which is zero here. Note that unless oth-
erwise stated, we assume the data have been normalized to
have zero mean, which is a typical choice by existing meth-
ods.

The popular coding strategy SBQ which adopts zero as
the threshold is shown in Figure 1(a). Due to the threshold-
ing, the intrinsic neighboring structure in the original space
is destroyed. For example, points A, B, C, and D are four
points sampled from the X-axis of the point distribution

635

Figure 1: Point distribution of the real values computed by
PCA on 22K LabelMe data set, and different coding results
based on the distribution: (a) single-bit quantization (SBQ);
(b) hierarchical hashing (HH); (c) double-bit quantization
(DBQ).

graph. After SBQ, points A and B, two distant and almost
irrelevant points, receive the same code 0 in this dimension.
However, B and C, two points which are extremely close in
the original space, get totally different codes (0 for B, and 1
for C). Because the threshold zero lies in the densest region,
the occurrence probability of the cases like B and C is very
high. Hence, it is obvious that SBQ is not very reasonable
for coding.

The HH strategy (Liu et al. 2011) is shown in Figure 1(b).
Besides the threshold zero which has been shown to be
a bad choice, HH uses two other thresholds to divide the
whole dimension into four regions, and encode each re-
gion with double bits. Note that the thresholds are shown
in vertical lines in Figure 1(b). If we use d(A,B) to de-
note the Hamming distance between A and B, we can
find that d(A,D) = d(A,B) = d(C,D) = d(B,C) = 1
for HH, which is obviously not reasonable.

In fact, if we adopt double bits to encode four regions
like those in Figure 1(b), the neighboring structure will
be destroyed no matter how we encode the four regions.
That is to say, no matter how we assign the four codes
(‘00’,‘01’,‘10’,‘11’) to the four regions, we cannot get any
result which can preserve the neighboring structure. This re-
sult is caused by the limitation of Hamming distance. More
specifically, the largest Hamming distance between 2-bit
codes is 2. However, to keep the relative distances between
4 different points, the largest Hamming distance should
be at least 3. Hence, no matter how we choose the 2-bit
codes for the four regions, we cannot get any neighborhood-
preserving result.

In this paper, DBQ is proposed to preserve the neighbor-
ing structure by omitting the ‘11’ code, which is shown in
Figure 1(c). More specifically, we find two thresholds which
do not lie in the densest region to divide the dimension
into three regions, and then use double bits to code. With
our DBQ code, d(A,D) = 2, d(A,B) = d(C,D) = 1, and
d(B,C) = 0, which is obviously reasonable to preserve the
similarity relationships in the original space. Please note that
the neighboring structure near the thresholds can still be de-

stroyed in DBQ. But we can design some adaptive threshold
learning algorithm to push the thresholds far way from the
dense regions, and solve the problems of SBQ and HH.

Adaptive Threshold Learning
Now we describe how to adaptively learn the optimal thresh-
olds from data. To find the reasonable thresholds, we want
the neighboring structure in the original space to be kept as
much as possible. The equivalent goal is to make the points
in each region as similar as possible.

Let a denote the left threshold, b denote the right threshold
and a < b, S denote real values of the whole point set on one
projected dimension, S1, S2, S3 denote the subsets divided
by the thresholds, i.e., S1 = {x| −∞ < x ≤ a, x ∈ S},
S2 = {x|a < x ≤ b, x ∈ S}, S3 = {x|b < x <∞, x ∈ S}.
Our goal is to find a and b to minimize the following objec-
tive function:
E =

∑
x∈S1

(x− µ1)
2 +

∑
x∈S2

(x− µ2)
2 +

∑
x∈S3

(x− µ3)
2,

where µi is the mean of the points in Si.
As we have discussed above, cutting off right on 0 is not

a wise way as the densest region is right there. So we set µ2
to be 0, which means that a < 0 and b > 0. Then E can be
calculated as follows:
E =

∑
x∈S

x2 − 2
∑
x∈S1

xµ1 +
∑
x∈S1

µ2
1 − 2

∑
x∈S3

xµ3 +
∑
x∈S3

µ2
3

=
∑
x∈S

x2 − |S1|µ2
1 − |S3|µ2

3

=
∑
x∈S

x2 −
(
∑

x∈S1
x)2

|S1|
−

(
∑

x∈S3
x)2

|S3|
,

where |S| denotes the number of elements in set S.
Because

∑
x∈S x

2 is a constant, minimizing E equals to
maximizing:

F =
(
∑

x∈S1
x)2

|S1|
+

(
∑

x∈S3
x)2

|S3|
subject to : µ2 = 0.

Algorithm 1 outlines the procedure to learn the thresholds,
where sum(S) denotes the summation of all points in set S.

The basic idea of our algorithm is to expand S2 from
empty set by moving one point from either S1 or S3 each
time while simultaneously keeping sum(S2) close to 0. Af-
ter all the elements in initial S1 and S3 have been moved
to S2, all possible candidate thresholds (points in S) have
been checked, and those achieving the largest F have been
recorded in a and b. After we have sorted the points in the
initial S1 and S3, the while loop is just an one-time scan of
all the points, and hence the total number of operations in
the while loop is just n where n is the number of points in
S. Each operation is of constant time complexity if we keep
sum(S1), sum(S2), sum(S3) in memory. Hence, the most
time-consuming part in Algorithm 1 is to sort the initial S1

and S3, the time complexity of which is O(n log n).
After we have learned a and b, we can use them to divide

the whole set into S1, S2 and S3, and then use the DBQ in
Figure 1(c) to quantize the points in these subsets into 01,
00, 10, respectively.

636

Algorithm 1 The algorithm to adaptively learn the thresh-
olds for DBQ.

Input: The whole point set S
Initialize with
S1 ← {x| −∞ < x ≤ 0, x ∈ S}
S2 ← ∅
S3 ← {x|0 < x < +∞, x ∈ S}
max← 0
sort the points in S1

sort the points in S3

while S1 6= ∅ or S3 6= ∅ do
if sum(S2) ≤ 0 then

move the smallest point in S3 to S2

else
move the largest point in S1 to S2

end if
compute F
if F > max then

set a to be the largest point in S1, and b to be the
largest point in S2

max← F
end if

end while

Discussion
Let us analyze the expected performance of our DBQ. The
first advantage of DBQ is about accuracy. From Figure 1
and the corresponding analysis, it is expected that DBQ will
achieve better accuracy than SBQ and HH because DBQ can
better preserve the similarity relationships between points.
This will be verified by our experimental results.

The second advantage of DBQ is on time complexity, in-
cluding both coding (training) time and query time. For a c-
bit DBQ, we only need to generate c/2 projected dimensions
while SBQ need c projected dimensions. For most meth-
ods, the projection step is the most time-consuming step.
Although some extra cost is needed to adaptively learn the
thresholds for DBQ, this extra computation is just sorting
and an one-time scan of the training points which are actu-
ally very fast. Hence, to get the same size of code, the over-
all coding time complexity of DBQ will be lower than SBQ,
which will also be verified in our experiment.

As for the query time, similar to coding time, the num-
ber of projection operations for DBQ is only half of that for
SBQ. Hence, it is expected that the query speed of DBQ will
be faster than SBQ. The query time of DBQ is similar to that
of HH because HH also uses half of the number of projection
operations for SBQ. Furthermore, if we use inverted index
or hash table to accelerate searching, ordinary c-bit SBQ or
HH coding would have 2c possible entries in the hash table.
As DBQ does not allow code ‘11’, the possible number of
entries for DBQ is 3c/2. This difference is actually very sig-
nificant. Let r denote the ratio between the number of entries
for DBQ and that for SBQ (or HH). When c = 32, 64, 256,
r will be 1%, 0.01%, and 10−16, respectively. Much less en-
tries will gain higher collision probability (improve recall),
faster query speed and less storage. In fact, the number of

possible entries of c bits of DBQ code only equals to that of
c log2 3

2 ≈ 0.79c bits of ordinary SBQ or HH code.

Experiment
Data Sets
We evaluate our methods on two widely used data sets,
CIFAR (Krizhevsky 2009) and LabelMe (Torralba, Fergus,
and Weiss 2008).

The CIFAR data set (Krizhevsky 2009) includes different
versions. The version we use is CIFAR-10, which consists of
60,000 images. These images are manually labeled into 10
classes, which are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. The size of each image is 32×32
pixels. We represent them with 512-dimensional gray-scale
GIST descriptors (Oliva and Torralba 2001).

The second data set is 22K LabelMe used in (Torralba,
Fergus, and Weiss 2008; Norouzi and Fleet 2011). It con-
sists of 22,019 images. We represent each image with 512-
dimensional GIST descriptors (Oliva and Torralba 2001).

Evaluation Protocols and Baseline Methods
As the protocols widely used in recent papers (Weiss,
Torralba, and Fergus 2008; Raginsky and Lazebnik 2009;
Gong and Lazebnik 2011), Euclidean neighbors in the orig-
inal space are considered as ground truth. More specifi-
cally, a threshold of the average distance to the 50th nearest
neighbor is used to define whether a point is a true positive
or not. Based on the Euclidean ground truth, we compute
the precision-recall curve and the mean average precision
(mAP) (Liu et al. 2011; Gong and Lazebnik 2011). For all
experiments, we randomly select 1000 points as queries, and
leave the rest as training set to learn the hash functions. All
the experimental results are averaged over 10 random train-
ing/test partitions.

Our DBQ can be used to replace the SBQ stage for any
existing hashing method to get a new version. In this paper,
we just select the most representative methods for evalua-
tion, which contain SH (Weiss, Torralba, and Fergus 2008),
PCA (Gong and Lazebnik 2011), ITQ (Gong and Lazebnik
2011), LSH (Andoni and Indyk 2008), and SIKH (Raginsky
and Lazebnik 2009). SH, PCA, and ITQ are data-dependent
methods, while LSH and SIKH are data-independent meth-
ods. By adopting different quantization methods, we can
get different versions of a specific hashing method. Let’s
take SH as an example. “SH-SBQ” denotes the original SH
method based on single-bit quantization, “SH-HH” denotes
the combination of SH projection with HH quantization (Liu
et al. 2011), and “SH-DBQ” denotes the method combining
the SH projection with double-bit quantization. Please note
that threshold optimization techniques in (Liu et al. 2011)
for the two non-zero thresholds in HH can not be used for
the above five methods. In our experiments, we just use the
same thresholds as those in DBQ. For all the evaluated meth-
ods, we use the source codes provided by the authors. For
ITQ, we set the iteration number to be 100. To run SIKH, we
use a Gaussian kernel and set the bandwidth to the average
distance of the 50th nearest neighbor, which is the same as
that in (Raginsky and Lazebnik 2009). All experiments are

637

Table 1: mAP on LabelMe data set. The best mAP among SBQ, HH and DBQ under the same setting is shown in bold face.
bits 32 64 128 256

SBQ HH DBQ SBQ HH DBQ SBQ HH DBQ SBQ HH DBQ
ITQ 0.2926 0.2592 0.3079 0.3413 0.3487 0.4002 0.3675 0.4032 0.4650 0.3846 0.4251 0.4998
SH 0.0859 0.1329 0.1815 0.1071 0.1768 0.2649 0.1730 0.2034 0.3403 0.2140 0.2468 0.3468

PCA 0.0535 0.1009 0.1563 0.0417 0.1034 0.1822 0.0323 0.1083 0.1748 0.0245 0.1103 0.1499
LSH 0.1657 0.105 0.12272 0.2594 0.2089 0.2577 0.3579 0.3311 0.4055 0.4158 0.4359 0.5154
SIKH 0.0590 0.0712 0.0772 0.1132 0.1514 0.1737 0.2792 0.3147 0.3436 0.4759 0.5055 0.5325

conducted on our workstation with Intel(R) Xeon(R) CPU
X7560@2.27GHz and 64G memory.

Accuracy
Table 1 and Table 2 show the mAP results for different
methods with different code sizes on 22K LabelMe and
CIFAR-10, respectively. Each entry in the Tables denotes the
mAP of a combination of a hashing method with a quan-
tization method under a specific code size. For example,
the value “0.2926” in the upper left corner of Table 1 de-
notes the mAP of ITQ-SBQ with the code size 32. The best
mAP among SBQ, HH and DBQ under the same setting
is shown in bold face. For example, in Table 1, when the
code size is 32 and the hashing method is ITQ, the mAP
of DBQ (0.3079) is the best one compared with those of
SBQ (0.2926) and HH (0.2592). Hence, the value 0.3079
will be in bold face. From Table 1 and Table 2, we can find
that when the code size is small, the performance of data-
independent methods LSH and SIKH is relatively poor and
ITQ achieves the best performance under most settings es-
pecially for those with small code size, which verifies the
claims made in existing work (Raginsky and Lazebnik 2009;
Gong and Lazebnik 2011). This also indicates that our im-
plementations are correct.

Our DBQ method achieves the best performance under
most settings, and it outperforms HH under all settings ex-
cept the ITQ with 32 bits on the CIFAR-10 data set. This im-
plies that our DBQ with adaptively learned thresholds is very
effective. The exceptional settings where our DBQ method
is outperformed by SBQ are LSH and ITQ with code size
smaller than 64. One possible reason might be from the fact
that the c-bit code in DBQ only utilizes c/2 projected di-
mensions while c projected dimensions are utilized in SBQ.
When the code size is too small, the useful information for
hashing is also very weak, especially for data-independent
methods like LSH. Hence, even if our DBQ can find the best
way to encode, the limited information kept in the projected
dimensions can not guarantee a good performance. Fortu-
nately, when the code size is 64, the worst performance of
DBQ is still comparable with that of SBQ. When the code
size is 128 or larger, the performance of DBQ will signifi-
cantly outperform SBQ under any setting. As stated in the
Introduction session, the storage cost is still very low when
the code size is 128. Hence, the setting with code size 128
can be seen as a good tradeoff between accuracy and stor-
age cost in real systems. Please note that although we argue
that our method can achieve the best performance with code
size larger than 64, the overall performance of DBQ is still

the best under most settings with small code size such as the
case of 32 bits.

Figure 2, Figure 3 and Figure 4 show precision-recall
curves for ITQ, SH and LSH with different code sizes on
the 22K LabelMe data set. The relative performance among
SBQ, HH, and DBQ in the precision-recall curves for PCA
and SIKH is similar to that for ITQ. We do not show these
curves due to space limitation. From Figure 2, Figure 3 and
Figure 4, it is clear that our DBQ method significantly out-
performs SBQ and HH under most settings.

Computational Cost
Table 3 shows the training time on CIFAR-10. Although
some extra cost is needed to adaptively learn the thresholds
for DBQ, this extra computation is actually very fast. Be-
cause the number of projected dimensions for DBQ is only
half of that for SBQ, the training of DBQ is still faster than
SBQ. This can be seen from Table 3. For query time, DBQ is
also faster than SBQ, which has been analyzed above. Due
to space limitation, we omit the detailed query time compar-
ison here.

Table 3: Training time on CIFAR-10 date set (in seconds).
bits 32 64 256

SBQ DBQ SBQ DBQ SBQ DBQ
ITQ 14.48 8.46 29.95 14.12 254.14 80.09

SIKH 1.76 1.46 2.00 1.57 4.55 2.87
LSH 0.30 0.19 0.53 0.30 1.80 0.95
SH 5.60 3.74 11.72 5.57 133.50 37.57

PCA 4.03 3.92 4.31 3.99 5.86 4.55

Conclusion
The SBQ strategy adopted by most existing hashing methods
will destroy the neighboring structure in the original space,
which violates the principle of hashing. In this paper, we
propose a novel quantization strategy called DBQ to effec-
tively preserve the neighboring structure among data. Exten-
sive experiments on real data sets demonstrate that our DBQ
can achieve much better accuracy with lower computational
cost than SBQ.

Acknowledgments
This work is supported by the NSFC (No. 61100125) and the 863
Program of China (No. 2011AA01A202, No. 2012AA011003). We
thank Yunchao Gong and Wei Liu for sharing their codes and pro-
viding useful help for our experiments.

638

Table 2: mAP on CIFAR-10 data set. The best mAP among SBQ, HH and DBQ under the same setting is shown in bold face.
bits 32 64 128 256

SBQ HH DBQ SBQ HH DBQ SBQ HH DBQ SBQ HH DBQ
ITQ 0.2716 0.2240 0.2220 0.3293 0.3006 0.3350 0.3593 0.3826 0.4395 0.3727 0.4140 0.5221
SH 0.0511 0.0742 0.1114 0.0638 0.0936 0.1717 0.0998 0.1209 0.2501 0.1324 0.1697 0.3337

PCA 0.0357 0.0646 0.1072 0.0311 0.0733 0.1541 0.0261 0.0835 0.1966 0.0217 0.1127 0.2053
LSH 0.1192 0.0665 0.0660 0.1882 0.1457 0.1588 0.2837 0.2601 0.3153 0.3480 0.3640 0.4680
SIKH 0.0417 0.0359 0.0466 0.0953 0.0911 0.1063 0.1836 0.1969 0.2263 0.3677 0.3601 0.3975

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

ITQ−SBQ
ITQ−HH
ITQ−DBQ

(a) ITQ 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

ITQ−SBQ
ITQ−HH
ITQ−DBQ

(b) ITQ 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

ITQ−SBQ
ITQ−HH
ITQ−DBQ

(c) ITQ 128 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

ITQ−SBQ
ITQ−HH
ITQ−DBQ

(d) ITQ 256 bits

Figure 2: Precision-recall curve for ITQ on 22K LabelMe data set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

SH−SBQ
SH−HH
SH−DBQ

(a) SH 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

SH−SBQ
SH−HH
SH−DBQ

(b) SH 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

SH−SBQ
SH−HH
SH−DBQ

(c) SH 128 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

SH−SBQ
SH−HH
SH−DBQ

(d) SH 256 bits

Figure 3: Precision-recall curve for SH on 22K LabelMe data set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

LSH−SBQ
LSH−HH
LSH−DBQ

(a) LSH 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

LSH−SBQ
LSH−HH
LSH−DBQ

(b) LSH 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

LSH−SBQ
LSH−HH
LSH−DBQ

(c) LSH 128 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

LSH−SBQ
LSH−HH
LSH−DBQ

(d) LSH 256 bits

Figure 4: Precision-recall curve for LSH on 22K LabelMe data set

639

References
Andoni, A., and Indyk, P. 2008. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions.
Commun. ACM 51(1):117–122.
Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S.
2004. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the ACM Symposium on
Computational Geometry.
Gionis, A.; Indyk, P.; and Motwani, R. 1999. Similarity
search in high dimensions via hashing. In Proceedings of
International Conference on Very Large Data Bases.
Gong, Y., and Lazebnik, S. 2011. Iterative quantization: A
procrustean approach to learning binary codes. In Proceed-
ings of Computer Vision and Pattern Recognition.
He, J.; Radhakrishnan, R.; Chang, S.-F.; and Bauer, C. 2011.
Compact hashing with joint optimization of search accuracy
and time. In Proceedings of Computer Vision and Pattern
Recognition.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Tech report, University of Toronto.
Kulis, B., and Darrell, T. 2009. Learning to hash with bi-
nary reconstructive embeddings. In Proceedings of Neural
Information Processing Systems.
Kulis, B., and Grauman, K. 2009. Kernelized locality-
sensitive hashing for scalable image search. In Proceedings
of International Conference on Computer Vision.
Kulis, B.; Jain, P.; and Grauman, K. 2009. Fast similarity
search for learned metrics. IEEE Trans. Pattern Anal. Mach.
Intell. 31(12):2143–2157.
Liu, W.; Wang, J.; Kumar, S.; and Chang, S.-F. 2011. Hash-
ing with graphs. In Proceedings of International Conference
on Machine Learning.
Liu, W.; Wang, J.; Ji, R.; Jiang, Y.-G.; and Chang, S.-F.

2012. Supervised hashing with kernels. In Proceedings of
Computer Vision and Pattern Recognition.
Norouzi, M., and Fleet, D. J. 2011. Minimal loss hashing
for compact binary codes. In Proceedings of International
Conference on Machine Learning.
Oliva, A., and Torralba, A. 2001. Modeling the shape of
the scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision 42(3):145–175.
Raginsky, M., and Lazebnik, S. 2009. Locality-sensitive
binary codes from shift-invariant kernels. In Proceedings of
Neural Information Processing Systems.
Salakhutdinov, R., and Hinton, G. 2007. Semantic Hashing.
In SIGIR workshop on Information Retrieval and applica-
tions of Graphical Models.
Salakhutdinov, R., and Hinton, G. E. 2009. Semantic hash-
ing. Int. J. Approx. Reasoning 50(7):969–978.
Torralba, A.; Fergus, R.; and Weiss, Y. 2008. Small codes
and large image databases for recognition. In Proceedings
of Computer Vision and Pattern Recognition.
Wang, J.; Kumar, S.; and Chang, S.-F. 2010. Sequential
projection learning for hashing with compact codes. In Pro-
ceedings of International Conference on Machine Learning.
Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In Proceedings of Neural Information Processing Sys-
tems.
Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In Proceedings of Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.
Zhang, D.; Wang, F.; and Si, L. 2011. Composite hash-
ing with multiple information sources. In Proceedings of
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval.

640

