Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

On Completeness Classes for Query Evaluation on Linked Data

Andreas Harth and Sebastian Speiser
Institute AIFB
Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe, Germany

Abstract

The advent of the Web of Data kindled interest in link-
traversal (or lookup-based) query processing methods, with
which queries are answered via dereferencing a potentially
large number of small, interlinked sources. While several
algorithms for query evaluation have been proposed, there
exists no notion of completeness for results of so-evaluated
queries. In this paper, we motivate the need for clearly-
defined completeness classes and present several notions of
completeness for queries over Linked Data, based on the idea
of authoritativeness of sources, and show the relation between
the different completeness classes.

1 Introduction

A tenet in work on query evaluation and reasoning on the
Semantic Web is the open world assumption (OWA): given
the size and decentralised nature of the web, it is impossible
to achieve complete results. Thus, an answer to a query or
reasoning task is therefore always a subset of all possible
answers. To what degree that subset is complete is left open.

In this paper we define more fine-grained completeness
classes for query answers. We do so in the context of
Linked Data, a set of principles detailing how to publish
graph-structured data on the web. Recently developed query
evaluation algorithms traverse the Web of Data and at the
same time record answers to a query (Hartig, Bizer, and
Freytag 2009; Harth et al. 2010; Ladwig and Tran 2010;
Haase, Mathif}, and Ziller 2010; Umbrich, Hogan, and
Polleres 2011). These algorithms, however, lack a clear
specification of result completeness.

Thus, we present several completeness classes that rigor-
ously define which sources may contribute to an answer to
Linked Data queries. Doing so has a number of benefits;
with a clear specification of complete answers:

e users know what to expect from a query evaluation algo-
rithm;

o different algorithms become comparable;

e algorithms can have crisp termination criteria;

e developers can devise optimised algorithms that exclude
irrelevant sources;

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

613

e systems can implement operations that rely on checking
for the absence of results, such as negation-as-failure; and

e certain statements can be restricted to trustworthy
sources.

Our specific contributions are:

e We extend and generalise the idea of authoritative sources
from (Hogan, Harth, and Polleres 2009); based on author-
ity, we define the notion of completeness for sources.

e We define three completeness classes for triple patterns
and conjunctive queries: one that considers the entire
web, one that considers documents in the surrounding of
sources derived from the query and one that considers
documents based on the query execution.

e We show how the completeness classes related to each
other.

Please note that our results apply to both web and intranet
environments, as long as data providers follow Linked Data
principles. Our results also apply to Dataspaces (Franklin,
Halevy, and Maier 2005) without central registries.

The remainder of the paper is organised as follows: Sec-
tion 2 provides an example. Section 3 introduces necessary
notation and definitions. Section 4 presents the idea of au-
thoritative documents. Section 5 explains how query parts
can be answered completely, while Section 6 considers en-
tire queries under three completeness types. Section 7 ex-
plains the relation between the completeness classes. Sec-
tion 8 presents related work, and Section 9 concludes.

2 Example

We begin with an example of an RDF graph and a query over
that graph.

Example 1. Figure 1 shows an example RDF graph. We
use labels a:i, a:j, b:1, c:1, d:1, p:1i to denote re-
sources, and numbers 1 .. .8 to denote triples. Now, assume
the query Qo depicted in Figure 2. The overall goal is to
find bindings p to the variables in the query.

A system with access to the entire graph in Figure 1 could
evaluate the query using standard query processing tech-
niques. However, on the Linked Data web, the graph is dis-
tributed across multiple sources in form of web-accessible
RDF files (henceforth called documents).

o

d:i

aij 6

O~NOUITNWN R =

Triple

a:i p:ia:j Document| Triple
a:j p:i aii a 1,2,3
a:i p:i b:i b 4
b:i p:ridii o 5
b:i p:ic:i d 6,7
d:i p:i a:j e 8
ari p:idii p -

dii p:icii

Figure 1: An example RDF graph with six IRIs and eight triples. Numbers denote triples.

No | Triple pattern
Y T lali p:i ?x.
2 X pii ?y.

Figure 2: An acyclic query consisting of two triple patterns.

Assume a, b, ¢, d, e, p are documents; the right table
in Figure 1 lists the six documents and the triples they con-
tain. Please note that the assignment is rather arbitrary and
can differ, as maintainers of documents are free to decide
which triples they host. One thing we can assume, though,
is that identifiers are associated with documents (as man-
dated by the Linked Data principles (Berners-Lee 2006)).
Thus, we can assume that we get some triples with identifer
a:1 when looking up the corresponding document a (and
similarly, a: j foraand b: i for b, c: 1 for c).

Table 1: Bindings for variables in Qex, including which
triples and documents contributed to bindings.
g | p(?x) | u(2y) | Triple | Document

p1 | a:sj a:i 1,2 a
po | bl d:1i 3,4 a,b
ps | doi a:j 7,6 d

Now, to answer the query, we perform a lookup on a,
which results in triples 1 - 3 from which we can derive
bindings a: j and b: i for ?x, and a:1i for ?y. Next, we
perform a lookup on b which returns triple 4, from which
we can derive d: 1 for ?y. We also perform a lookup on
d which returns triple 7 and 6, from which we can derive
d:1 for ?x and a: j for ?y. As a result, we arrive at the
bindings as depicted in Table 1. Please note that bindings
{?x +— b:i, ?y — c:1} (via sources a and c) and bind-
ings {?x +> a:i, ?y > c:1i} (viasources d and e) cannot
be reached via link traversal.

The example illustrates a couple of issues: first, a link-
traversal algorithm cannot discover documents which are not
referenced in any already known document. Second, assum-
ing a larger graph, the link traversal process could actually
go on for a long time, as more and more new documents
are discovered and accessed. In the rest of the paper we
show how to decide which subset of documents should be
accessed to derive answers to queries.

614

3 Preliminaries

We introduce basic notation to clarify our understanding of
RDEF, Linked Data and queries. We stay close to similar
definitions as found in (Pérez, Arenas, and Gutierrez 2009;
Umbrich, Hogan, and Polleres 2011).

Definition 1 (RDF Terms, Triple, Graph). The set of RDF
terms consists of the set of IRIs I, the set of blank nodes
B and the set of literals L. A triple (s,p,0) € T = (Z U
B) x I x (ZUBUL) is called an RDF triple, where s is
the subject, p is the predicate and o is the object. We denote
by s(t) the subject, p(t) the predicate and o(t) the object of
a triple t. We denote by iris(t) all IRIs from a triple t, and
by terms(t) all RDF terms. A set of triples is called RDF
graph; G = 27 is the set of all graphs.

Next, we define ways for accessing RDF graphs pub-
lished on the web as Linked Data. A key characteristic
of Linked Data is the correspondence between an identifier
and a source; i.e., the name for a thing (non-information re-
source) is associated with the document where one can find
related information (information resource).

Definition 2 (Information Resource, Lookup). Let 77 C
T be the set of all information resources. The set of all non-
information resources is defined as Ty = T \ Z7. The func-
tion deref: Iy — G models a Linked Data lookup and re-
turns the graph represented in a document, or the empty set
if none found, e.g., if there is a timeout or the document re-
turns non-RDF content.

We use the terms information resource and document in-
terchangably. To be able to model the assocation between
non-information Resources and information resources we
introduce the concept of correspondence.

Definition 3 (Correspondence). The function co: I — Iz
associates to a resource its information resource. For inputs
from Iz, co behaves as the identity function.

Determining the kind of an IRI is not always possible
from the outset; a HTTP lookup clarifies the kind of IRI. We
define a high-level function which provide abstractions on
low-level functionality pertaining to protocol-level issues.
Thus, in co we abstract away the following cases:

1. remove the local identifier from an IRI (i.e., strip every-
thing after the # symbol);

2. dereference the IRI and follow redirects (HTTP status
codes 30x);

3. dereference the IRI and parse the Content-Location
header to yield the canonical name;

4. no-op: do nothing if the IRI is an information resource.

Options 1-3 may be called never or repreatedly, to ulti-
mately arrive at 4. The co function may never return due to
infitite redirects; in practice, one sets a limit on how often co
can be applied.

Definition 4 (Variable, Triple Pattern). Let V be a set of
variables; variables bind to RDF terms from T U B U L. A
triplep € (ZUV) x (ZUV) x (ZULUYV) is called triple
pattern. We omit blank nodes from triple patterns for ease
of exposition. P is the set of all triple patterns. We denote
by vars(p) all variables from a triple pattern p.

Definition 5 (Variable Binding). Let M be the set of all
partial functions 2V — Z U BU L. A function i € M is
called a variable binding.

Definition 6 (Basic Graph Pattern (BGP)). A BGP (or just
query) is a set Q C P. The set of all queries is Q = 27.

BGP queries are important as they present a large subset
of SPARQL. Previous work also focussed on such queries.

Definition 7 (Query Binding). The bindings of a query QQ €
Q on an RDF graph G € G consisting of the triples avail-
able at a set I C Iz, denoted as bindings: Q X 21z y oM,
is the set of minimal variable bindings which map @ to a
subgraph of G: bindings(Q,I) = {u € M | dom(u)
vars(Q) AVp € Q.u(p) € Uyerderef(u)}.

4 Authoritative Documents

We introduce the notion of authoritative document for an
identifier, that is, we define which information resource
can talk authoritatively about a specific identifier. In other
words, we restrict the documents which can make statements
containing certain identifiers. Our notion is an extension
and generalisation of the idea of authoritative source from
(Hogan, Harth, and Polleres 2009).

The notion of authoritativeness is important on the web,
which consists of a motley collection of data sources, some
of which may provide questionable information. Also, we
use authoritativeness to specify which information resources
are necessary to have complete information about an identi-
fier.

Definition 8 (Authoritative Document). Document u talks
with authority about a triple t if there is a correspondence
between w and any identifier from t, ie., co(s(t)) u,
co(p(t)) = wor co(o(t)) = u. We call a document u
to be subject-authoritative for t if co(s(t)) = wu (s-auth in
short). Analogously, p-auth and o-auth relate a document to
the identifier of a predicate or object.

Example 2. Consider the triples and documents from Fig-
ure 1. Document a talks with authority about triples I-3,
namely s-auth for 1-3 and o-auth for triples 1 and 2. Docu-
ment e contains triple 8 using identifiers (d:i,p:1,c:1)
without authority, as there is no connection in co between
any of the identifiers and e .

615

Definition 9 (Authority Types). We can have atomtic au-
thority types s, p, or o denoting whether a triple has been
stated with authority regarding its subject, predicate or ob-
Jject. We can combine atomic authority types using conjunc-
tion and disjunction to arrive at the set of possible authority
types A ={L,s,p,0,sVp,sVo,pVo,sVpVo,s \p,sA\
0,p N 0,8 A\ p A o}. Note that | denotes no authority.
Example 3. In the following, we explain two examplaric
authority types:

e A triple t is stated s N\ o-auth, if both t € deref(co(s(t)))
and t € deref(co(o(t))).

e A triple t is stated s \V p V o-auth, if t € deref(co(s(t)))
ort € deref(co(p(t))) ort € deref(co(o(t))).

Based on the notion of authority types we introduce a
modified deref function, the derefa function, which only se-
lects triples that satisfy specified authority types.

Definition 10 (Authoritative Lookup). The function
derefa: 7y x A — G models a Linked Data lookup and
returns the graph represented in an information resource,
while applying the specified authority types, i.e., filtering the
triples which do not adhere to the authority criteria. Please
note that derefa might perform additional lookups if those
are required for clarifying the authoritativeness of a triple.

Example 4. The function derefa(b, s A\o) involves deref(b),
vielding the triple (b:1i, p:1i, d:1i) and subsequently re-
quiring also a deref(co(d: 1)) to verify that the triple also
occurs in d.

In case a = L the results for deref and derefa coincide.

The different authority types specify the documents that
can contribute certain triples to query results, thus paving
the way towards defining completeness.

5 Authoritative Documents for Triple
Patterns

We now show which documents are relevant to a triple pat-
tern p under a specified authority type a. If we assure that
these relevant documents are dereferenced with the derefa
function, we can state that p has been completely answered
under a. Based on complete answers to single triple patterns,
we define complete answers to Basic Graph Pattern queries
in Section 6.

Consider a triple pattern p for which we want to get bind-
ings. In Linked Data query evaluation, the query processor
has to dereference (lookup) IRIs which yields data, which
in turn is matched with the triple pattern to ultimately yield
bindings.

Thus, to get all possible bindings on the web, we would
need to get all Z7 and match the resulting graphs to the triple
pattern p. However, based on the notion of authoritative
source, we can answer a triple pattern p completely, given
a defined authority type.

Example 5. Consider the triple pattern p,
(a:i,p:i, ?x). If we restrict the answers to be de-
rived from s-auth triples, we are sure to get all those triple if
we perform a lookup on a: i, that is, derefa(co(a: 1)), s).
Thus, we have answered p; completely under s-auth
assumption.

We now use the definition of A to derive, given a triple
pattern and authority specification, the subset of Z we have
to dereference to find the complete set of bindings for the
pattern.

Definition 11 (Completely Sufficient Documents). We de-

fine csuff: P x A +— 22" \which, given a pattern and an
authority type, returns a set of alternative documents sets,
each of which is sufficient to completely answer the triple
pattern.

The use of variables becomes clear in Section 6.

{Zz}, ifa=1
{{s(t)}}, ifa=s
{{p(t)}}, ifa=np
{{o(t)}}, ifa=o
o
s(t)}, {o(t)}}, ifa=sAo
suff(h:0) =4 (1)}, fol0)}). ifa—pho
{{s)}, {p(t)}, {p(0)}}, ifa=sApAo
{{s(t),p() }}, ifa=sVp
{{s(®),0(t)}}, ifa=sVo
{{p(t),0(t)}}, ifa=pVvo
{{s(t), p(t),0(t)}}, ifa=sVp\Vo

Note that when no authority type is given (¢ = L), we
would need to retrieve the set of all documents to arrive at
complete answers. There can be several alternatives that
are sufficient for completely answering a pattern (see s A o
authority), and each alternative can require more than one
position (see s V o authority).

If we know that a triple ¢ exists in the documents Z7 un-
der an authority type a, we can infer that ¢ exists in the cor-
responding document of one IRI of each alternatively suffi-
cient IRI set (denoted as L for alL.ternative):

t € derefa(Zz,a)
—VL € csuff(t,a).31 € L.t € derefa(co(l), a).
The fact that the triple must be contained in all alternatives

may not sound intuitive at first, but every alternative is suffi-
cient to determine whether the triple exists.

Example 6. Consider the triple pattern p;
(a:i,p:i,?x). We illustrate the complete answers
for p1 under different authority types:

o s-auth: csuff(py,s) = {{a:1}}, so there is only one al-
ternative for completely answering p1 by finding all bind-
ings p € M, such that u(py) € derefa(a:i,s), which
would result in the bindings 11 = {?x — a:1i}, and
o ={?x+— b:i}.

e s A p-auth: csuff(pi,s A p) Ha:1i},{p:i}}
so it would be sufficient to retrieve either the graph
derefa(a:i,s A p) or the graph derefa(p:i,s A p) to
find all bindings for p,. However, both graphs are empty,
as there is no triple in co(p: 1) = p and thus none of the
triples in co(a:1) = a is “confirmed”, as required by
s A p authority. Please note that the invocation of derefa

616

may involve additional lookups to ensure that triples ad-
here to a given authority type. These additional lookups
only invalidate existing results but never contribute new
ones.

e sVo-auth: csuff(pi,sVo) = {{a:1i, ?x}}, sowe cannot
answer py completely, because there is only one alterna-
tive, which would require a binding for ?x.

One complication arises when all alternatives returned by
csuff contain variables instead of IRIs. In this case, the
pattern cannot be completely answered under the authority
scheme. However, if we have conjunctions of several triple
patterns, another pattern may be used to find complete bind-
ings for the variables in a sufficient alternative, thus mak-
ing the conjunction completely answerable. We define com-
pleteness for such conjunctions in the next section.

6 Completeness of Basic Graph Patterns

In the following, we address the problem of answer-
ing queries consisting of several patterns (so-called Basic
Graph Patterns). A query () consisting of several patterns
tpo, tp1, ... tp, can be completely answered if the corre-
sponding required positions of a triple pattern are bound ei-
ther by a constant or by a variable in another completely
answerable pattern in the query. We thus define a mapping
for assigning a required authority to every pattern in a query.

Definition 12 (Authority Mapping). We define a mapping
a: Q — A that assigns triple patterns in Q to different
authority types. The set of all such mappings is denoted as

Definition 13 (Authoritative Query Bindings). We extend
the bindings: Q x 2T — 2M function to return only bind-
ings satisfying an authority mapping «: bindings®(Q, 1) =
{n € M | dom(n) = vars(Q) A Vp € Q.ulp) €
Unerderefa(u, a(p))}

We define completeness via a set s of documents that have
to be retrieved to completely answer a query @, i.e., a set s
is complete for an authority mapping «, if bindings®(Q, s)
contains all desired query results. A natural requirement for
such a set s of documents is that it holds the same results
for) as the entire Linked Data web, i.e. bindings®(Q, s) =
bindings®(Q, Zz).

As it is infeasible to materialise the entire Linked Data
web, i.e., deref(Z7), and thus instead we are searching for a
subset s C Zz, where |s| < |Zz|, which can be accessed at
query time and so that deref(s) contains sufficient informa-
tion to answer the query Q.

Thus, we define that a set s of documents is complete for
query () given an authority mapping «, if complete(Q, o) C
s, where complete is one of the different completeness
classes introduced in the following:

e web-complete we: Q x AU + 277 which is mainly of
theoretical interest when considering the web, but pos-
sibly applicable to controlled environments such as in-
tranets;

e seed-complete sc: Q x AU 277 which is practical and
pragmatic solution, if no authority restrictions are given;

e query-reachable-complete qrc: Q@ x AU + 277 which
defines complete results under given authority types for a
certain class of queries.

We now formally define the three different completeness
classes and then discuss the relationships between the differ-
ent notions in Section 7.

6.1 Web-complete Set

The web-complete set gives the results of the query, when
it is evaluated over the whole Linked Data web, i.e. Z7.
However it is sufficient to evaluate over every document that
helps to produce a result binding, (could also be a dupli-
cate of a binding that can be produced without it). Without
authority restrictions, every document can contain arbitrary
triples, thus there is no other way of determining the set than
accessing every u € Z7 or having some form of index struc-
ture, which has accessed every such wu before.

Definition 14. With authority restriction, we define web-
complete as the set of documents that contain a triple which
is part of a result when evaluating Q) over L.

we(Q,) = {u € Zz | Iu € bindings*(Q, I7).
Ip € Q. u(p) € derefa(u, a(p)}.

Example 7. Considering our example of query Qox and as-
suming two authority mappings oy and oy we get:

J—: fOV p € Qex-' WC(Qexaal)

o Let ai(p)
{a, b, c,d, e}.

o Let as(p) = s, for p € Qox: We(Qex, 2) = {a, b}.

6.2 Seed-complete Set

The seed-complete set consists of all documents that can be
reached via following triple paths of maximum length of the
query beginning from triples in the documents identified by
the IRIs in the query. The intuition is a traversal of Zz to get
the documents that are up to n hops away.

In the size-restricted seed-complete set, we fix n to the
query size |@|. In an alternative, length-restricted seed-
complete set (which we leave open for future work), we can
fix n to the depth of the query, i.e., the length of longest path
in the query, starting from a constant.

As there can be several different IRIs in the query and
from each IRI there can start several paths of triples, we pos-
sibly end up with forests, consisting of several trees starting
in different triples.

Definition 15 (Forest). A triple forest grounded in a set of
seed IRIs is a list of triples, where each triple is either in
the seed IRIs, or in the corresponding document of a re-
source occuring in a previous triple in the list. The func-
tion forests: 277 x N — 27 returns all forests of triples
of size up to n, starting with the triples in the seed IRIs

so = co(iris(Q)):

forests(sg,n) =

U {t--.

jE[L..n]

Jt5) € T7 | Vi € [1..5]t; € Uyes,deref(u)V

3k € 1.0 — 1].t; € Uyeiris(t,,)deref(u) }

617

Definition 16. We define the seed completeness set to con-
tain all documents corresponding to IRIs in the forests
grounded in the query’s IRIs:

sc(Q,) = co(iris(forests(iris(Q), |Q]))).

Example 8. Considering our example of query Qeyx, we get
Sforiris(Qex) ={a:i,p:1i}, and |Qex| = 2:

forests(iris(QCX), |ch|) = {(tl)’ (tlv tl)v (tlv tQ)a (tl, t3)7
t2)7 (t27t1)7 (thtQ)a (t27t3)7
t3)7 (t37t1)7 (t3’t2)v (t37t3)7

(
(
(ts,ta)}

sc(QeXa Oé) = {a7p7 ba d}a

where t; stands for triple number i from the runnnig example
(see Section 2).

6.3 Query-reachable-complete Set

We first define the notion of completely answerable queries
for a given authority mapping «. Then, we specify the set
of documents required to answer such a query completely in
the sense of obtaining the same results as if the query would
be evaluated over the web-complete set. The equivalence of
the result sets is shown in Section 7.

Definition 17 (Completely-answerable Query). A guery is
completely answerable if the triple patterns can be brought
into an order, such that for each triple pattern p, there ex-
ists a set of RDF terms sufficient to completely answer p,
where each term is either an IRI or a variable occuring in a
previous pattern. The predicate caq® defines the completely
answerable property of a query under an authority mapping
o

caq®(Q) ¢

(Q = {p} A 3L € csuff(p,a(p)).Vl € L.l €)V

(|Q| > IAHQmQLQnUQl = Q/\Qanl =0A
caq®(Qn) A Q1 = {pIA
3L € csuff(p, a(p)).Vl € L1 € I VI e vars(Qy)).

In other (recursive) words: a query Q) is completely answer-
able if either Q is of size 1 and there exists a set of sufficient
terms which are all IRIs in Q), or one can remove a pattern
p from the query, such that the resulting query Q,, is com-
pletely answerable, and p has a set of required terms which
are either IRIs or variables bound by query Q.

An IRI must be in the query-reachable-complete set if it
occurs in a forest, starting in the IRIs of the query, which is a
result for a completely answerable subquery of the original
query.

Definition 18 (Completely Answerable Subqueries). The
function csq®: Q +— 22 returns all completely-answerable
subqueries of a query:

csq?(Q) ={Q" € Q| caq®(Q)}.

The forests, which are results for a completely answer-
able subquery of @) are defined by the function qgforests® as

a subset of all forests starting in the IRIs contained in the
query.

gforests™(Q) = {F € forests(co(iris(Q)), |Q|) |
3Q" € csq™(Q) A p € M.pu(Q') = F}

Definition 19. We define the query-reachable-complete set,
to contain all documents corresponding to IRIs in the forests
that produce bindings for a completely answerable subquery

of Q:
qre(Q,) = co(iris(gforests® (Q))).

Example 9. Considering our example of query Qex, we get
Jor a, where a(p) = s, forall p € Qex:

qua(QeX) :{Qe)u {(a ti,pri, OX)}}
gforests™(Qex) ={(t1), (t1,t2), (t3), (t3,t4)}
qu(chva) :{aapa b, d}a

where t; stands for triple number i from the runnnig example
(see Section 2). We can see that we(Qex,) C qre(Qex, @),
meaning that the query reachable set produces all bindings
available in the web under the authority mapping «. In Sec-
tion 7 we show this in general for all completely answerable
queries.

7 Relations Between Completeness Classes

In the following, we show the relation between the different
completeness classes.

Theorem 1. QRC results are a subset of (size-restriced) SC
results: qre(Q,) C sc(Q, «).

Proof. Theorem 1 is obvious from the definition, as
gforests™(Q) C forests(co(iris(Q), |Q])). O

Theorem 2. SC query results are a subset of WC results:
bindings® (@, sc(Q, «)) C bindings® (Q, wc(Q, &)).

Proof. Theorem 2 is obvious from the definition, as web
complete is defined to contain all bindings, and thus seed
complete can not contain more bindings. OJ

Theorem 3. For a query Q that is completely answerable
under an authority mapping o, the bindings for query reach-
able complete and web complete coincide:

bindings® (@, qrc(Q,) = bindings®(Q, wc(Q, «)).

Proof. We prove the equivalence of the sets, by showing
their mutual containment:

(1) bindings®(Q, qrc(Q, «)) C bindings™(Q, we(Q, «))
follows from the definition, that web completeness means
that every (in this case «-authoritative) result is found.

(2) bindings®(Q, wc(Q, «v)) C bindings™(Q, qre(Q, «))

is shown by induction on the query size. As bindings is
monotonic over the set of documents, we reduce this case
to showing that we(Q, o) C qre(Q, o), if caq®(Q).
Induction start for a query @ of size 1:

from caq®(Q) A Q] = 1 Au € we(Q,) follows that
there exists a binding p for @ over Zz, which maps the

618

single triple pattern p € @ to a triple from u: Ju €
bindings®(Q,Zz).u(p) € derefa(u,a(p)). This implies
that uw € co(iris(u(p))), for a(p) # L, which is ruled
out by the definition of caq. Furthermore, we know that
(u(p)) € forests(co(iris(Q)), 1), as u(p) is a query answer
to @ = {p}, and p must be completely answerable, given
that caq®(Q), it follows, that (u(p)) € gforests®(Q) and
thus: u € qre(Q,).

We form the induction hypothesis:

caq®(Q) ANu e we(Q,a) A Q| =n — u € qre(Q,).

The inductive step: given caq®(Q) Au € we(Q, o) A Q| =
n + 1, we can split @ into @,, and @1, such that QQ =
QnUQnNQ,NQ =0A|Q1] =1Acaq®(Q,) (follows
from caq®(Q)). Accordingly our argument can be split into
two cases:

Case (2.1): wu is also in the web complete set of (),:
caq®(Qn) A |Qn] = n Au € we(Qy,). We can use the
induction hypothesis and conclude u € qrc(Q,,, «) and be-
cause the reachable completeness set is monotonic (a larger
query still has the smaller query as a subquery), we con-
clude: u € qre(Q, «).

Case (2.2): u is not in the web complete set of @,,, thus it
must be contributed by a variable binding or a constant in
(1. Evaluating @1 has to be done only for the bindings of
@, other results that do not join with the results for), can-
not contribute an result for Q. As caq®(Q), we know that
there exists a set of terms sufficient for completely answer-
ing ()1, in which all terms are either constants or variables
already occuring in),,. Therefore, we can reduce the case
to considering only those 1(Q1), where 1 is a result binding
for @,,. Thus, u(Q1) is completely answerable, and we can
use the induction start:

caq®(u(Q1)) N Q1] =1 = u € qre(Q1, @)
— u € qre(Q,).

8 Related Work

Early work on queries over the web graph include (Mendel-
zon and Milo 1997) and (Abiteboul and Vianu 2000). (Har-
tig, Bizer, and Freytag 2009) introduced Linked Data query
processing via link traversal. Subsequent work (Hartig,
Bizer, and Freytag 2009; Harth et al. 2010; Ladwig and Tran
2010; Haase, Mathif3, and Ziller 2010; Umbrich, Hogan,
and Polleres 2011) lack a rigorous specification of termi-
nation criteria (some use heuristics). (Fionda, Gutierrez,
and Pirrd 2011) introduce a navigation language, which
has different characteristics than our query language based
on BGPs. (Hartig 2012) analyses the computability of
SPARQL queries over Linked Data under different seman-
tics. The notion of semantics in (Hartig 2012) roughly cor-
responds to our notion of completeness: the full-web se-
mantics is similar to our web-completeness, whereas the
reachability-based semantics can be considered as an ab-
stract concept, while we provide two actual completeness
classes. While (Hartig 2012) shows that in the general case

the full-web semantics is not computable, we show that un-
der certain authority constraints it is possible to achieve re-
sults equivalent to web-completeness.

Several other papers propose definitions for semantics in
distributed settings. The Local Relational Model (Serafini et
al. 2003) uses model-theoretic means to specify the seman-
tics of a federation of relational databases. Context OWL
(Bouquet et al. 2003) considers description logic inference
and connects models via bridge rules, whereas our defini-
tions are on the RDF graph level with shared use of identi-
fiers. Our definitions have an operational aspect and are tied
to a view that assumes only local knowledge, in contrast to
the global view taken by typical model-theoric approaches.
Finally, (Polleres, Feier, and Harth 2006) use a form of a lo-
cal closed world model to specify the semantics of queries
with negation as failure under a modified OWA.

9 Conclusion

We have provided a general notion of authoritativeness and
defined three completeness classes for Linked Data query
evaluation. While the seed-complete class is straightforward
to implement, the query-reachable-complete class requires
less lookups while yielding a well-defined and useful set of
results, based on a specified authority assignment for each
query. However, implementing query-reachable is more in-
tricate.

Future work includes extending the authority types with
negation, thus allowing for a negation-as-failure semantics,
an algorithm for enumerating possible authority assignments
for queries, and an investigation of query result complete-
ness when allowing sources with query capabilities.

Acknowledgements

We thank Sebastian Rudolph for insightful comments, and
acknowledge the support of the European Commission’s
Seventh Framework Programme FP7/2007-2013 (Planet-
Data, Grant 257641).

References

Abiteboul, S., and Vianu, V. 2000. Queries and computation
on the web. Theoretical Computer Science 239:231-255.
Berners-Lee, T. 2006. Linked Data. http://www.w3.org/
Designlssues/LinkedData.

Bouquet, P.; Giunchiglia, F.; van Harmelen, F.; Serafini, L.;
and Stuckenschmidt, H. 2003. C-OWL: Contextualizing
ontologies. In Second International Semantic Web Confer-

ence, number 2870 in Lecture Notes in Computer Science,
164-179. Springer.

Fionda, V.; Gutierrez, C.; and Pirro, G. 2011. Semantic
navigation on the web of data: Specification of routes, web
fragments and actions. CoRR abs/1111.4316.

Franklin, M.; Halevy, A.; and Maier, D. 2005. From
databases to dataspaces: a new abstraction for information
management. SIGMOD Rec. 34:27-33.

Haase, P.; Mathaf3, T.; and Ziller, M. 2010. An evalua-
tion of approaches to federated query processing over linked

619

data. In 6th International Conference on Semantic Systems,
I-SEMANTICS 2010. ACM.

Harth, A.; Hose, K.; Karnstedt, M.; Polleres, A.; Sattler, K.-
U.; and Umbrich, J. 2010. Data summaries for on-demand
queries over linked data. In Proceedings of the 19th Inter-
national Conference on World Wide Web, 411-420. ACM.

Hartig, O.; Bizer, C.; and Freytag, J.-C. 2009. Executing
sparqgl queries over the web of linked data. In Eight Inter-
national Semantic Web Conference, volume 5823 of Lecture
Notes in Computer Science, 293-309. Springer.

Hartig, O. 2012. Sparql for a web of linked data: Semantics
and computability (extended version). CoRR abs/1203.1569.

Hogan, A.; Harth, A.; and Polleres, A. 2009. Scalable au-
thoritative owl reasoning for the web. International Journal
on Semantic Web Information Systems 5(2):49-90.

Ladwig, G., and Tran, T. 2010. Linked data query process-
ing strategies. In Ninth International Semantic Web Confer-
ence, volume 6496 of Lecture Notes in Computer Science.
Springer. 453-469.

Mendelzon, A. O., and Milo, T. 1997. Formal models of
web queries. In Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS *97,
134-143. ACM.

Pérez, J.; Arenas, M.; and Gutierrez, C. 2009. Semantics
and complexity of sparql. ACM Transactions on Database
Systems 34:16:1-16:45.

Polleres, A.; Feier, C.; and Harth, A. 2006. Rules with
contextually scoped negation. In Third European Semantic
Web Conference, number 4011 in Lecture Notes in Com-
puter Science, 332-347. Springer.

Serafini, L.; Giunchiglia, F.; Mylopoulos, J.; and Bernstein,
P. 2003. Local relational model: a logical formalization
of database coordination. In Proceedings of the 4th Inter-
national and Interdisciplinary Conference on Modeling and
Using Context, 286-299. Springer.

Umbrich, J.; Hogan, A.; and Polleres, A. 2011. Improv-
ing the recall of decentralised linked data querying through
implicit knowledge. CoRR abs/1109.0181.

