
FLP Semantics Without Circular
Justifications for General Logic Programs

Yi-Dong Shen
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing 100190, China

ydshen@ios.ac.cn

Kewen Wang
School of Computing and Information Technology

Griffith University
Brisbane, QLD 4111, Australia

k.wang@griffith.edu.au

Abstract

The FLP semantics presented by (Faber, Leone, and
Pfeifer 2004) has been widely used to define answer
sets, called FLP answer sets, for different types of logic
programs such as logic programs with aggregates, de-
scription logic programs (dl-programs), Hex programs,
and logic programs with first-order formulas (general
logic programs). However, it was recently observed that
the FLP semantics may produce unintuitive answer sets
with circular justifications caused by self-supporting
loops. In this paper, we address the circular justification
problem for general logic programs by enhancing the
FLP semantics with a level mapping formalism. In par-
ticular, we extend the Gelfond-Lifschitz three step def-
inition of the standard answer set semantics from nor-
mal logic programs to general logic programs and de-
fine for general logic programs the first FLP semantics
that is free of circular justifications. We call this FLP se-
mantics the well-justified FLP semantics. This method
naturally extends to general logic programs with addi-
tional constraints like aggregates, thus providing a uni-
fying framework for defining the well-justified FLP se-
mantics for various types of logic programs. When this
method is applied to normal logic programs with ag-
gregates, the well-justified FLP semantics agrees with
the conditional satisfaction based semantics defined by
(Son, Pontelli, and Tu 2007); and when applied to dl-
programs, the semantics agrees with the strongly well-
supported semantics defined by (Shen 2011).

Introduction
Answer set programming (ASP) is a major logic program-
ming paradigm for knowledge representation and reasoning.
In ASP, the semantics of a logic program is defined by a
set of intended models, called stable models or answer sets.
Such a semantics is thus called an answer set semantics. We
may use different ways to define answer sets of a logic pro-
gram. As summarized by (Lifschitz 2010), there have been
thirteen different definitions of answer sets in the literature.
These definitions agree with the standard answer set seman-
tics for normal logic programs (Gelfond and Lifschitz 1988)
in the sense that they define the same set of answer sets.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we are devoted to a currently widely used
definition of answer sets, called the FLP semantics (Faber,
Leone, and Pfeifer 2004; Faber, Pfeifer, and Leone 2011).
Let Π be a normal logic program with rules of the form
A0 ← A1, · · · , Am, not Am+1, · · · , not An, where each
Ai is an atom. Informally, given an interpretation I the FLP
reduct of Π w.r.t. I , denoted fΠI , consists of all ground
rules of Π whose bodies are satisfied by I . Then, I is an
FLP answer set of Π if I is a minimal model of fΠI . Ob-
serve that the FLP reduct can easily be extended to more
general classes of logic programs, provided that the satis-
faction relation for normal logic programs is extended to
those classes of logic programs. Due to this reason, the FLP
semantics has recently been extended, as a unifying for-
malism, to a variety of logic programs including logic pro-
grams with aggregates or abstract constraint atoms (c-atoms)
(Faber, Pfeifer, and Leone 2011), description logic programs
(dl-programs) (Eiter et al. 2008; 2005), Hex programs (Eiter
et al. 2005), disjunctive dl-programs (Lukasiewicz 2010),
and logic programs with first-order formulas (Bartholomew,
Lee, and Meng 2011).

However, when applied to the above mentioned classes
of logic programs, the FLP semantics may produce unintu-
itive answer sets with circular justifications caused by self-
supporting loops. This problem was observed in (Shen and
You 2009; Liu et al. 2010) for logic programs with aggre-
gates, in (Shen 2011) for dl-programs, and in (Shen and
Wang 2011) for disjunctive dl-programs.

Logic programs with first-order formulas, also called
general logic programs, were recently introduced by
(Bartholomew, Lee, and Meng 2011) and have now received
increasing attention. A general logic program consists of
rules of the form H ← B, where H and B are arbitrary
first-order formulas. Normal logic programs can be viewed
as a special form of general logic programs, where the nega-
tion not is identified with ¬, each rule head H with an atom,
and each rule body B with a conjunction of literals. An-
swer sets of a general logic program are defined by the FLP
semantics. We observe that this FLP semantics for general
logic programs also incurs circular justifications. To illus-
trate, consider the following general logic program:

Π1 : p(2)← p(2) ∧ (¬p(−1) ∨ p(1)). r1

p(−1)← ¬p(−1) ∨ p(1) ∨ p(2). r2

p(1)← p(−1). r3

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

821



Let I = {p(−1), p(1)} be an interpretation. Since the body
of rule r1 is not satisfied by I , the FLP reduct of Π1 w.r.t. I
is fΠI

1 = {r2, r3}. I is a minimal model of fΠI
1 and thus is

an answer set of Π1 under the FLP semantics. Observe that
this FLP answer set has circular justifications caused by the
following self-supporting loop:

p(1)⇐ p(−1)⇐ ¬p(−1) ∨ p(1) ∨ p(2)⇐ p(1).

That is, the evidence of the truth of p(1) ∈ I is supported by
p(−1) ∈ I (via r3), while the truth of p(−1) is supported by
¬p(−1) ∨ p(1) ∨ p(2) (via r2). Since ¬p(−1) and p(2) are
false in I , the truth of ¬p(−1)∨ p(1)∨ p(2) is supported by
p(1). As a result, p(1) in I is circularly supported (justified)
by itself.

Our study shows that the key reason behind the circular
justification problem for general logic programs is that the
FLP semantics is unable to build a level mapping on its an-
swer sets. Such a level mapping is defined implicitly by rules
of a logic program such that answers at upper levels i > 0
are derived from answers at lower levels j < i by apply-
ing rules in the way that if the rule bodies hold then infer
the rule heads. We would like to stress that it is such a level
mapping on answer sets that makes an if-then rule H ← B
in a logic program essentially different from an implication
B ⊃ H in classical logic. In fact, for normal logic programs,
(Fages 1994) shows that the standard answer set semantics
has a level mapping on its answer sets. Since the FLP se-
mantics agrees with the standard answer set semantics for
normal logic programs, FLP answer sets are free of circular
justifications for normal logic programs.

In this paper, we address the circular justification prob-
lem for general logic programs by enhancing the FLP se-
mantics with a level mapping formalism. Observe that for
a normal logic program Π under the standard answer set
semantics, each answer set I together with its level map-
ping is defined by a fixpoint, which is derived from the
Gelfond-Lifschitz reduct ΠI by iteratively applying the van
Emden-Kowalski one-step provability operator (van Emden
and Kowalski 1976). Inspired by this, we define each FLP
answer set I together with a level mapping by a fixpoint,
which is derived in a similar way from the FLP reduct fΠI .
To achieve this, we first extend the van Emden-Kowalski
provability operator from a positive logic program to a gen-
eral logic program. Next we extend the Gelfond-Lifschitz
three step definition of the standard answer set semantics
from a normal logic program to a general logic program
by replacing the Gelfond-Lifschitz reduct ΠI with the FLP
reduct fΠI and applying the extended van Emden-Kowalski
provability operator to derive a fixpoint from fΠI . An an-
swer set I is then defined in terms of the fixpoint. We show
that such answer sets are FLP answer sets with a level map-
ping and thus are free of circular justifications. Therefore,
we call such answer sets well-justified FLP answer sets, and
call the new semantics the well-justified FLP semantics. This
method naturally extends to general logic programs with ad-
ditional constraints like aggregates, thus providing a unify-
ing framework for defining the well-justified FLP semantics
for various types of logic programs. We show that when this
method is applied to normal logic programs with aggregates,

the well-justified FLP semantics agrees with the conditional
satisfaction based semantics defined by (Son, Pontelli, and
Tu 2007); and when applied to dl-programs, the semantics
agrees with the strongly well-supported semantics defined
by (Shen 2011).

Due to the page limit, we omit the proof of all theorems
in this paper.

A First-Order Logic Language
First-Order Logic
We consider a first-order logic language LΣ with equality
over a signature Σ = (P,F), whereP,F are a countable set
of predicate and function symbols, respectively. Let C ⊆ F
be the set of 0-ary function symbols called constants, and
V be a countable set of variables. A term is a variable or a
function f(t1, · · · , tm), where f is an m-ary function sym-
bol (m ≥ 0) and each ti is a term. An atom is of the form
p(t1, · · · , tn), where p is an n-ary predicate symbol and each
ti is a term. Let NΣ denote the set of ground terms of Σ,
and HΣ the set of ground atoms of Σ. Formulas are con-
structed as usual from atoms using connectives ¬, ∧, ∨, ⊃,
≡, ∃, ∀, (, and ). Literals are of the form A or ¬A, where
A is an atom. Formulas are closed if they contain no free
variables (i.e., all variables are quantified either by ∀ or ∃).
A (first-order) theory is a set of closed formulas. Ground
terms/atoms/formulas contain no variables.

An interpretation of LΣ is a pair I = 〈U, .I〉, where U is a
domain, and .I a mapping which assigns a relation pI ⊆ Un

to each n-ary predicate symbol p ∈ P , and a function f I :
Um → U to each m-ary function symbol f ∈ F . A variable
assignment B for I is a mapping which assigns an element
XB ∈ U to each variable X ∈ V . The interpretation of a
term t, denoted tI,B , is defined as usual, where B is omitted
when t is ground. Satisfaction of a formula F in I relative
to B is defined as usual. I is a model of F if I satisfies F
for every variable assignment. I is a model of (or I satisfies)
a theory O if I is a model of all formulas in O. A theory is
consistent or satisfiable if it has a model. A theory O entails
a formula F , denoted O |= F , if all models of O are models
of F .

An SNA interpretation I is an interpretation 〈U, .I〉 of LΣ

that employs the following standard name assumption: (1)
The signature Σ includes a countably infinite set of constants
and the 2-ary predicate symbol≈ that expresses equality, (2)
U = NΣ and tI = t for each t ∈ NΣ, and (3) ≈I is a con-
gruence relation over U , which is reflexive, symmetric and
transitive, and allows the replacement of equals by equals.

For an SNA interpretation I , each variable assignment
over the domain U is a substitution of variables over NΣ.
Moreover, since pI ⊆ Nn

Σ for each n-ary predicate symbol
p ∈ P , there is a one-to-one correspondence between SNA
interpretations of LΣ and subsets ofHΣ. Therefore, we may
well define an SNA interpretation I as a subset of HΣ, i.e.,
I ⊆ HΣ. Then, an SNA interpretation I satisfies a ground
atom A if A ∈ I; I satisfies ¬A if A 6∈ I .

(Motik and Rosati 2010) show that using SNA interpreta-
tions preserves satisfiability of first-order logic; i.e., a first-
order formula is satisfiable if and only if it is satisfiable in a

822



model that employs the standard name assumption. There-
fore, in the sequel we consider only SNA interpretations,
which are expressed as a subset I of HΣ. We denote I−

forHΣ \ I , and ¬I− for {¬A | A ∈ I−}.
For convenience, in the sequel by function symbols we

refer to m-ary function symbols with m > 0.

General Logic Programs
We extend the above first-order language LΣ with rules of
the form H ← B, where H and B are formulas. Such a
rule r expresses an if-then statement, saying that if the logic
property B holds then infer H . We use body(r) to refer to
B, and head(r) to H . When body(r) is empty, we omit←.

A general logic program Π consists of a finite set of rules.
Π is a normal logic program if each rule r is of the form
A0 ← A1 ∧ ...∧Am ∧¬Am+1 ∧ ...∧¬An, where each Ai
is an atom without equality and function symbols. We use
pos(r) and neg(r) to denote A1 ∧ ... ∧ Am and ¬Am+1 ∧
...∧¬An, respectively. A positive logic program is a normal
logic program without negative literals.

Let CΠ⊆ C be a non-empty, finite set of constants includ-
ing all constants occurring in Π. A closed instance of a rule
is obtained by replacing every free variable in the rule with
a constant in CΠ. The grounding of Π w.r.t. CΠ, denoted
ground(Π), is the set of closed instances of all rules in Π.
Since both Π and CΠ are finite, ground(Π) is finite.

An interpretation I satisfies a closed instance r of a rule
if it satisfies head(r) or it does not satisfy body(r). I is
a model of a logic program Π if it satisfies all rules in
ground(Π). A minimal model is a subset-minimal model.

From the definition of models, a logic program Π is
viewed as shorthand for ground(Π), where each rule in Π
is viewed as shorthand for the set of its closed instances.
The FLP semantics for general logic program is defined as
follows.

Definition 1 Let Π be a general logic program and I an in-
terpretation. The FLP-reduct of Π w.r.t. I is fΠI = {r ∈
ground(Π) | I satisfies body(r)}. I is an FLP answer set
of Π if I is a minimal model of fΠI .

Well-Justified FLP Answer Sets for General
Logic Programs

As mentioned in the introduction, rules H ← B in a logic
program differ essentially from implications B ⊃ H in clas-
sical logic because rules define a level mapping on their an-
swer sets such that answers at upper levels are derived from
answers at lower levels by applying the rules in the way that
if the rule bodies hold then infer the rule heads. However,
the FLP semantics defined by Definition 1 is unable to cap-
ture such a level mapping. For I to be an answer set of Π,
the FLP semantics only requires I to be a minimal model of
fΠI . This amounts to treating all rules H ← B in fΠI as
implications B ⊃ H in classical logic because I is a model
of the rules H ← B in fΠI if and only if I is a model
of the corresponding implications B ⊃ H in classical logic.
Since classical implications define no level mapping on their
models, some minimal models of fΠI may have no level

mapping and thus some FLP answer sets may have circular
justifications (see the example in the introduction).

Therefore, the key to overcome the circular justification
problem is to enhance the FLP semantics with a level map-
ping formalism whereby the FLP reduct is treated as rules
instead of classical implications. To achieve this, let us first
look at how the standard answer set semantics builds a level
mapping for its answer sets from normal logic programs.

For a normal logic program Π and an interpretation I , the
definition of answer sets under the standard answer set se-
mantics consists of three steps (Gelfond and Lifschitz 1988):

1. Eliminate from ground(Π) all rules whose bodies contain
a negative literal not satisfied by I .

2. Eliminate from the bodies of the remaining rules of
ground(Π) all negative literals.
Note: All negative literals removed in the second step
are in ¬I−. The remaining part of ground(Π) after the
two steps of transformation is called the Gelfond-Lifschitz
reduct, denoted ΠI .

3. Compute a fixpoint TαΠI (∅) from ΠI via the sequence
〈T iΠI (∅)〉∞i=0, where T 0

ΠI (∅) = ∅ and for i ≥ 0 T i+1
ΠI (∅) =

TΠI (T iΠI (∅)).
Note: TP (S), where P is a positive logic program and S
is a set of ground atoms, is the van Emden-Kowalski one-
step provability operator (van Emden and Kowalski 1976)
defined by TP (S) = {head(r)|r ∈ ground(P ) such that
body(r) is satisfied by S}.

Then, I is an answer set of Π under the standard answer set
semantics if I = TαΠI (∅). Note that the derivation sequence
〈T iΠI (∅)〉∞i=0 defines a level mapping on I such that A ∈ I is
at level i > 0 if A ∈ T iΠI (∅) but A 6∈ T i−1

ΠI (∅). As a result,
for any A ∈ I at level i there is a rule r ∈ ground(Π) whose
head is A such that all negative literals in neg(r) are in ¬I−
and all positive literals in pos(r) are in T i−1

ΠI (∅).
The above Gelfond-Lifschitz three step definition of an-

swer sets for normal logic programs are not applicable to
general logic programs, since rule heads and bodies of a
general logic program are arbitrary first-order formulas. For
example, let Π = {A ← A ∨ ¬A}, where A is a ground
atom. Since the rule body A∨¬A is a tautology, I = {A} is
supposed to be an answer set of Π. Apparently, this answer
set cannot be obtained following the above three steps.

To deal with arbitrary first-order formulas in rule heads
and bodies in a general logic program, we propose to extend
the above Gelfond-Lifschitz three step definition of answer
sets to general logic programs as follows:

1. We extend the first step to first-order formulas by elim-
inating from ground(Π) all rules whose bodies are not
satisfied by I . This yields the FLP reduct fΠI .

2. Instead of directly eliminating from fΠI all negative liter-
als in ¬I−, we adapt the second step to first-order formu-
las by adding the negative literals in ¬I− as constraints
on fΠI .

3. We extend the third step to first-order formulas by com-
puting a fixpoint Oα from fΠI under the constrains ¬I−

823



via the sequence 〈Oi〉∞i=0, where O0 = ∅ and for i > 0
and any rule r in fΠI , if body(r) is true in Oi−1 under
the constrains ¬I−, i.e. Oi−1 ∪ ¬I− |= body(r), then
head(r) is in Oi, where |= is the entailment relation.
To formally define the sequence 〈Oi〉∞i=0 for the above

extension 3, we extend the van Emden-Kowalski one-step
provability operator TP (S), which is applicable only to a
positive logic program P parameterized with a set S of
ground atoms, to a new operator TΠ(O,N), which is ap-
plicable to a general logic program Π parameterized with
two first-order theories O and N . Intuitively, by applying
TΠ(O,N) we infer all rule heads from ground(Π) whose
rule bodies are true in O under the constraints N . Formally
we define

TΠ(O,N) = {head(r) | r ∈ ground(Π) such
that O ∪N |= body(r)}.

Since the entailment relation |= is monotone, when the
constraints N are fixed, TΠ(O,N) is monotone w.r.t. O.
That is, for any O1 ⊆ O2, TΠ(O1, N) ⊆ TΠ(O2, N). There-
fore, the sequence 〈T iΠ(∅, N)〉∞i=0, where T 0

Π(∅, N) = ∅ and
for i ≥ 0 T i+1

Π (∅, N) = TΠ(T iΠ(∅, N), N), will converge to
a fixpoint, denoted TαΠ (∅, N).

Thus, when replacing the constraints N with ¬I−, we
obtain a fixpoint TαΠ (∅,¬I−); and when further replac-
ing Π with the FLP reduct fΠI , we obtain a fixpoint
TαfΠI (∅,¬I−). This achieves the above extension 3, where
for i ≥ 0, Oi = T ifΠI (∅,¬I−) and Oα = TαfΠI (∅,¬I−).

The first important result about our extended van Emden-
Kowalski one-step provability operator is that when I is a
model of a general logic program Π, applying the operator
to Π and fΠI derives the same rule heads. This justifies the
above extension 1, where the FLP reduct fΠI is used as a
simplified form of Π.

Theorem 1 Let I be a model of a general logic program
Π. For any i ≥ 0, T iΠ(∅,¬I−) = T ifΠI (∅,¬I−) and thus
TαΠ (∅,¬I−) = TαfΠI (∅,¬I−).

The next result shows that the extended provability opera-
tor TΠ(O,N) for general logic programs is a proper general-
ization of the original van Emden-Kowalski operator TP (S)
for positive logic programs.

Theorem 2 Let I be a model of a normal logic program Π.
For any i ≥ 0, T iΠI (∅) = T iΠ(∅,¬I−) and thus TαΠI (∅) =
TαΠ (∅,¬I−).

It follows immediately from Theorems 2 and 1:

Corollary 1 A model I of a normal logic program Π is an
answer set under the standard answer set semantics if and
only if I = TαΠI (∅) if and only if I = TαΠ (∅,¬I−) if and
only if I = TαfΠI (∅,¬I−).

The conditions listed in Corollary 1 of an answer set of
a normal logic program do not apply to a general logic pro-
gram because for a general logic program Π, TαfΠI (∅,¬I−)

(resp. TαΠ (∅,¬I−)) would be a first-order theory instead
of a set of ground atoms. However, these conditions sug-
gest that answer sets of a general logic program Π can be

defined by requiring that each A ∈ I be true in the fix-
point TαfΠI (∅,¬I−) under the constraints ¬I−; i.e., for each
A ∈ I , TαfΠI (∅,¬I−) ∪ ¬I− |= A. Formally, we have

Definition 2 Let I be a model of a general logic program Π.
I is an answer set of Π if for each A ∈ I , TαfΠI (∅,¬I−) ∪
¬I− |= A.

Such answer sets are minimal models.

Theorem 3 If I is an answer set of a general logic program
Π, then I is a minimal model of Π and is also a minimal
model of fΠI .

It is immediate from Theorem 3 and Definition 1:

Corollary 2 If a model I is an answer set of a general logic
program Π, then I is an FLP answer set of Π.

As a result, answer sets under Definition 2 are FLP an-
swer sets enhanced with a level mapping, which is built from
the FLP reduct fΠI via the sequence 〈T ifΠI (∅,¬I−)〉∞i=0,
where for each A ∈ I , A is at level i > 0 if T ifΠI (∅,¬I−)∪
¬I− |= A but T i−1

fΠI (∅,¬I−)∪¬I− 6|= A. The enhancement
of the level mapping makes the resulting FLP answer sets
free of circular justifications. Due to this, we call answer
sets (resp. the semantics) under Definition 2 well-justified
FLP answer sets (resp. the well-justified FLP semantics).

For normal logic programs, by Corollary 1 the well-
justified FLP semantics agrees with the standard answer set
semantics that agrees with the FLP semantics.

Example 1 Consider the general logic program Π1 in the
introduction. I = {p(−1), p(1)} is a model of Π1 and is also
an FLP answer set. ¬I− contains ¬p(2). T 0

fΠI
1
(∅,¬I−) = ∅,

T 1
fΠI

1
(∅,¬I−) = TfΠI

1
(T 0
fΠI

1
(∅,¬I−),¬I−) = ∅, and thus

Tα
fΠI

1
(∅,¬I−) = ∅. Neither p(−1) ∈ I nor p(1) ∈ I can be

proved true in Tα
fΠI

1
(∅,¬I−) under the constraints ¬I−, so

I is not a well-justified FLP answer set of Π1.

Next, we briefly discuss computational properties of the
well-justified FLP semantics. Since it is undecidable in gen-
eral to determine if a first-order theory is satisfiable, it is
undecidable to determine if a general logic program has ei-
ther an FLP answer set or a well-justified FLP answer set.
Therefore, we restrict to the propositional case under Her-
brand interpretations. By a propositional program we refer to
a general logic program that contains no variables, no func-
tion symbols, and no equalities. The Herbrand base HBΠ of
a propositional program Π is the set of atoms p(a1, ..., an),
where p is a predicate symbol occurring in Π and each ai is
a constant in CΠ. Any I ⊆HBΠ is a Herbrand interpretation
of Π, where I− =HBΠ \ I .

Since it is NP-complete to determine if a propositional
theory is satisfiable, it is easy to show the following result.

Theorem 4 Let Π be a propositional program and I a Her-
brand interpretation. It is NP-complete to determine if I is
an FLP answer set of Π. It is also NP-complete to determine
if I is a well-justified FLP answer set of Π.

824



Well-Justified FLP Answer Sets for General
Logic Programs with Aggregates

COUNT, SUM, TIMES, MIN and MAX are commonly used
aggregate functions, which map a finite set of elements in a
domain to a value in a range. For simplicity, we assume the
range is a set of (positive and negative) integers. We adopt
the formulation of aggregates as given in (Bartholomew,
Lee, and Meng 2011) with slight modification. An aggregate
atom over the signature Σ of our logic language LΣ is of the
form OP〈(D,X) : F (X)〉 � b, where OP is an aggregate
function symbol (not included in Σ); D ⊆ NΣ is the domain
of OP; X is an aggregate variable (can easily be extended to
a list of aggregate variables), which takes on values from D;
F (X) is a first-order formula in LΣ without free variables
(X is not treated as a free variable; it is bounded by D);
� is a comparison operator, such as ≤,≥, <,>, etc., which
defines a binary relation over integers; and b is an integer.
When the context is clear, the parameter D can be omitted.

A general logic program Π with aggregate atoms is a fi-
nite set of rules of the form H ← B, where H and B are
first-order formulas in LΣ extended with aggregate atoms.

Let I be an interpretation of LΣ and A be an aggregate
atom OP〈(D,X) : F (X)〉 � b. Let SI = {a | a ∈ D
such that I satisfies F (a)}. I satisfies the aggregate atom A
if OP(SI) � b holds; I satisfies ¬A if I does not satisfy A.

Once the satisfaction relation is extended to aggregate
atoms, the entailment relation |= is extended accordingly
in terms of the extended satisfaction and thus the one-step
provability operator TΠ(O,N) can be applied to general
logic programs with aggregate atoms. Therefore, all results
(definitions and theorems) obtained in the above section for
general logic programs are applicable to general logic pro-
grams with aggregate atoms. By Definition 2, a model I
of a general logic program Π with aggregate atoms is a
well-justified FLP answer set of Π if for every A ∈ I ,
TαfΠI (∅,¬I−) ∪ ¬I− |= A. By Corollary 2, such answer
sets are FLP answer sets enhanced with a level mapping and
thus are free of circular justifications.

Example 2 Consider the following logic program with ag-
gregate atoms, which is borrowed from (Bartholomew, Lee,
and Meng 2011).

Π2 : p(2)←¬SUM〈({−1, 1, 2}, X) : p(X)〉 < 2. r1

p(−1)← SUM〈({−1, 1, 2}, X) : p(X)〉 ≥ 0. r2

p(1)← p(−1). r3

For an interpretation I = {p(−1), p(1)}, SUM(SI)
= SUM({−1, 1}) = 0. So I satisfies the two aggre-
gate atoms SUM〈({−1, 1, 2}, X) : p(X)〉 < 2 and
SUM〈({−1, 1, 2}, X) : p(X)〉 ≥ 0. The FLP reduct is
fΠI

2 = {r2, r3}. I is a minimal model of fΠI
2 and thus it is

an FLP answer set of Π2. However, I is not a well-justified
FLP answer set because Tα

fΠI
2
(∅,¬I−) = ∅. One can check

that this FLP answer set has the same circular justification
as that shown in Π1 in the introduction.

Many aggregate atoms can be represented in an abstract
form as abstract constraint atoms (or c-atoms) (Marek and
Truszczynski 2004). A c-atom is a pair (V,C), where V ,

the domain of the c-atom, is a finite subset of HΣ, and
C, the admissible solutions of the c-atom, is a collection
of sets of atoms in V . For instance, the aggregate atom
SUM〈{−1, 1, 2}, X) : p(X)〉 < 2 in Π2 can be represented
as a c-atom (V,C), where V = {p(−1), p(1), p(2)} and
C = {∅, {p(−1)}, {p(1)}, {p(−1), p(1)}, {p(−1), p(2)}}.

Let I be an interpretation of LΣ. I satisfies a c-atom
(V,C) if I ∩V ∈ C; I satisfies ¬(V,C) if I does not satisfy
(V,C). With this extended satisfaction relation, the entail-
ment relation |= and the provability operator TΠ(O,N) are
directly extended to general logic programs with c-atoms.
Therefore, all results, including the definition and properties
of well-justified FLP answer sets, for general logic programs
with aggregate atoms carry over to general logic programs
with c-atoms.

A positive basic logic program is a finite set of function
and equality free rules of the form A← A1∧...∧Am, where
A is a ground atom and each Ai is a c-atom. Note that any
ground atom A can be represented as an elementary c-atom
({A}, {{A}}), and ¬A represented as a c-atom ({A}, {∅}).
For any c-atom (V,C), ¬(V,C) can be represented as a c-
atom (V, 2V \C), where 2V is the power set of V . Therefore,
for any normal logic program Π with c-atoms, its grounding
ground(Π) can be represented in this way by an equivalent
positive basic logic program.

(Son, Pontelli, and Tu 2007) define an answer set seman-
tics for positive basic logic programs based on a notion of
conditional satisfaction. Let R and S be two sets of ground
atoms with R ⊆ S. For a c-atom A = (V,C), R condition-
ally satisfies A w.r.t. S, denoted R |=S A, if for every F
with R ∩ V ⊆ F ⊆ S ∩ V , F ∈ C; for a ground atom A,
R |=S A if R |=S ({A}, {{A}}). For a positive basic logic
program Π, define ΓΠ(R,S) = {A | A ← body(r) ∈ Π
and R |=S body(r)}. It is proved that when the second argu-
ment S is a model of Π, the sequence 〈ΓiΠ(∅, S)〉∞i=0, where
Γ0

Π(∅, S) = ∅ and for i > 0 ΓiΠ(∅, S) = ΓΠ(Γi−1
Π (∅, S), S),

is monotone and will converge to a fixpoint ΓαΠ(∅, S). A
model I of Π is a conditional satisfaction based answer set
of Π if I = ΓαΠ(∅, I).

Since positive basic logic programs are a special form of
general logic programs with c-atoms, the following result
shows that the well-justified FLP semantics is a proper ex-
tension of the conditional satisfaction based semantics.

Theorem 5 A model I of a positive basic logic program Π
is a well-justified FLP answer set if and only if I is a condi-
tional satisfaction based answer set.

Well-Justified FLP Answer Sets for
DL-Programs

In principle, the above method of defining well-justified FLP
answer sets can be applied to different types of logic pro-
grams, provided that the satisfaction relation of LΣ is ex-
tended to those programs. As another illustration, in this sec-
tion we briefly describe how to define well-justified FLP an-
swer sets for dl-programs. Other well-known types of logic
programs, such as Hex programs (Eiter et al. 2005) and dis-
junctive dl-programs (Lukasiewicz 2010), can be handled in
a similar way. Due to the page limit, we assume familiarity

825



with dl-programs (Eiter et al. 2008) and with the basics of
description logics (DLs) (Baader et al. 2003). DLs are frag-
ments of first-order logic and thus a DL knowledge base can
be viewed as a first-order theory.

A dl-program Π relative to an external DL knowledge
base L is a normal logic program extended in rule bodies
with equalities and dl-atoms as an interface to access L. A
dl-atom is of the form DL[S1op1p1, · · · , Smopmpm;Q](t),
where each Siopipi semantically maps a predicate symbol
pi in Π to a concept or role Si in L via a special interface
operator opi ∈ { ∪+ , ∪- , ∩- }, and Q(t) is a DL expression
which will be evaluated against L after the predicate map-
ping.

The semantics of a dl-program Π relative to L is de-
fined in terms of Herbrand interpretations. ground(Π) is
defined as before except that (1) all those ground instances
of rules which contain invalid equalities or inequalities (un-
der the unique name assumption) are removed, and (2) all
valid equalities and inequalities are removed. Let I be a
Herbrand interpretation of Π and A = DL[S1op1p1, · · · ,
Smopmpm;Q](c) be a dl-atom occurring in ground(Π). I
satisfies A if L∪

⋃m
i=1 Ai(I) |= Q(c), where for 1 ≤ i ≤ m,

Ai(I) is defined by the predicate mapping Siopipi such that

Ai(I) =

{ {Si(e) | pi(e) ∈ I}, if opi = ∪+ ;
{¬Si(e) | pi(e) ∈ I}, if opi = ∪- ;
{¬Si(e) | pi(e) 6∈ I}, if opi = ∩- .

I satisfies ¬A if I does not satisfy A.
This extended satisfaction relation to dl-atoms is called

satisfaction under L, denoted |=L, in (Eiter et al. 2005;
2008). An FLP semantics for dl-programs is defined in (Eiter
et al. 2005) using this satisfaction relation; i.e., a Herbrand
model I of a dl-program Π is an FLP answer set of Π if I is
a minimal model of fΠI .

Note that dl-programs are a special form of general logic
programs extended with dl-atoms (in rule bodies and heads).
When applying the above extended satisfaction relation to
dl-atoms, the definition and properties of well-justified FLP
answer sets for general logic programs carry over to general
logic programs with dl-atoms. Therefore, a Herbrand model
I of a dl-program Π is a well-justified FLP answer set if for
every A ∈ I , TαfΠI (∅,¬I−) ∪ ¬I− |= A. By Corollary 2,
such well-justified FLP answer sets for dl-programs are FLP
answer sets enhanced with a level mapping and thus are free
of circular justifications.

For a dl-program Π, since the head of each rule in
ground(Π) is a ground atom, the fixpoint TαfΠI (∅,¬I−) is a
set of ground atoms. Thus for each A in a Herbrand model I ,
TαfΠI (∅,¬I−)∪¬I− |= A if and only if A ∈ TαfΠI (∅,¬I−).
This leads to the following.
Corollary 3 A Herbrand model I of a dl-program Π rela-
tive to an external DL knowledge base L is a well-justified
FLP answer set if and only if I = TαfΠI (∅,¬I−).

(Shen 2011) observes that the FLP semantics defined in
(Eiter et al. 2005) for dl-programs incurs circular justifica-
tions. Then an alternative semantics without circular justifi-
cations, called the strongly well-supported semantics, is pro-
posed by extending the Fages’ well-supportedness condition

(Fages 1994) from normal logic programs to dl-programs.
Informally, a Herbrand model I of a dl-program Π is a
strongly well-supported answer set if there exists a strict
well-founded partial order ≺ on I such that for any A ∈ I ,
there is a rule A ← body(r) in ground(Π) and a subset
E ⊂ I such that (1) for every B ∈ E, B ≺ A, and (2) for
every F with E ⊆ F ⊆ I , F satisfies body(r).

The following result shows that the well-justified FLP se-
mantics is a proper extension of the strongly well-supported
semantics from dl-programs to general logic programs with
dl-atoms.

Theorem 6 A Herbrand model I of a dl-program Π rela-
tive to an external DL knowledge base L is a well-justified
FLP answer set if and only if I is a strongly well-supported
answer set.

Related Work
The FLP semantics is first introduced in (Faber, Leone,
and Pfeifer 2004) for normal (and disjunctive) logic pro-
grams with aggregates. It is then extended to dl-programs
and Hex programs (Eiter et al. 2005; 2008), modular logic
programs (Dao-Tran et al. 2009), disjunctive dl-programs
(Lukasiewicz 2010), and general logic programs with aggre-
gates (Bartholomew, Lee, and Meng 2011). In the last exten-
sion, the FLP semantics defined by Definition 1 is reformu-
lated in terms of a modified circumscription. (Truszczynski
2010) and (Ferraris, Lee, and Lifschitz 2011) also extend the
FLP semantics of (Faber, Leone, and Pfeifer 2004) to propo-
sitional formulas and first-order formulas, respectively. As
illustrated in (Bartholomew, Lee, and Meng 2011), the two
extensions do not agree with the FLP semantics defined by
Definition 1 for general logic programs. However, we ob-
serve that the problem of circular justifications with the FLP
semantics persists in the extensions.

For normal logic programs with c-atoms, (Shen and You
2009) observe that answer sets under the FLP semantics of
(Faber, Leone, and Pfeifer 2004) have circular justifications.
They propose a default semantics by translating a propo-
sitional logic program to a default logic theory and show
that the default semantics agrees with the conditional sat-
isfaction based semantics of (Son, Pontelli, and Tu 2007).
(Liu et al. 2010) also indicate the circular justification (self-
supportedness) problem with the FLP semantics of (Faber,
Leone, and Pfeifer 2004). They propose a computation
based semantics for normal logic programs with c-atoms,
which proves to coincide with the conditional satisfaction
based semantics. For dl-programs, (Shen 2011) observes the
circular justification problem with the FLP semantics de-
fined by (Eiter et al. 2005). For disjunctive dl-programs,
(Shen and Wang 2011) notice the circular justification prob-
lem with the FLP semantics defined by (Lukasiewicz 2010).

Summary and Future Work
In this paper, we observe that the FLP semantics for gen-
eral logic programs suffers from circular justifications. The
key reason behind the circular justification problem is that
the FLP semantics is unable to build a level mapping on

826



its answer sets. Therefore, we address this problem by en-
hancing the FLP semantics with a level mapping formal-
ism. Inspired by the fact that for a normal logic program
Π under the standard answer set semantics, each answer
set I together with its level mapping is defined by a fix-
point, which is derived from the Gelfond-Lifschitz reduct
ΠI by iteratively applying the van Emden-Kowalski one-
step provability operator TP (S), we define each FLP an-
swer set I together with a level mapping by a fixpoint,
which is derived from the FLP reduct fΠI by iteratively
applying our extended van Emden-Kowalski provability op-
erator TΠ(O,N). We call the new FLP semantics without
circular justifications the well-justified FLP semantics. This
method naturally extends to general logic programs with ad-
ditional constraints like aggregates and dl-atoms, thus pro-
viding a unifying framework for defining the well-justified
FLP semantics for various types of logic programs. When
this method is applied to normal logic programs with aggre-
gates, the well-justified FLP semantics agrees with the con-
ditional satisfaction based semantics defined by (Son, Pon-
telli, and Tu 2007); and when applied to dl-programs, the se-
mantics agrees with the strongly well-supported semantics
defined by (Shen 2011). To the best of our knowledge, no
existing work in the literature can capture the well-justified
FLP semantics for general logic programs.

As future work, it is interesting to extend the well-justified
FLP semantics to disjunctive rules of the form H1|...|Hk ←
B, where B and each Hi are a first-order formula and |
is an epistemic disjunction operator that is different from
the classical disjunction connective ∨. It is also interest-
ing to study the relation of the well-justified FLP seman-
tics with major nonmonotonic formalisms such as circum-
scription (McCarthy 1980) and default logic (Reiter 1980).
Finally, efficiently implementing the well-justified FLP se-
mantics presents a challenging work.

Acknowledgments
We would like to thank all anonymous reviewers for their
helpful comments. Yi-Dong Shen is supported in part by
the National Natural Science Foundation of China (NSFC)
grants 60970045 and 60833001. Kewen Wang is partially
supported by the Australia Research Council (ARC) grants
DP1093652 and P110101042.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Bartholomew, M.; Lee, J.; and Meng, Y. 2011. First-order
extension of the FLP stable model semantics via modified
circumscription. In IJCAI, 724–730.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In ICLP, 145–159.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005. A
uniform integration of higher-order reasoning and external
evaluations in answer-set programming. In IJCAI, 90–96.

Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining answer set programming
with description logics for the semantic web. Artificial In-
telligence 172(12-13):1495–1539.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive aggre-
gates in disjunctive logic programs: Semantics and complex-
ity. In Logics in Artificial Intelligence: European Workshop,
200–212.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Fages, F. 1994. Consistency of clark’s completion and ex-
istence of stable models. Journal of Methods of Logic in
Computer Science 1:51–60.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175(1):236–263.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP, 1070–1080.
Lifschitz, V. 2010. Thirteen definitions of a stable model. In
Fields of Logic and Computation, 488–503.
Liu, L.; Pontelli, E.; Son, T.; and Truszczynski, M. 2010.
Logic programs with abstract constraint atoms: the role of
computations. Artificial Intelligence 174(3-4):295–315.
Lukasiewicz, T. 2010. A novel combination of answer
set programming with description logics for the semantic
web. IEEE Transactions on Knowledge and Data Engineer-
ing 22(11):1577–1592.
Marek, V. W., and Truszczynski, M. 2004. Logic programs
with abstract constraint atoms. In AAAI, 86–91.
McCarthy, J. 1980. Circumscription and other non-
monotonic formalisms. Artificial Intelligence 13(1-2):171–
172.
Motik, B., and Rosati, R. 2010. Reconciling description
logics and rules. J. ACM 57(5).
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
Shen, Y. D., and Wang, K. W. 2011. Extending logic pro-
grams with description logic expressions for the semantic
web. In International Semantic Web Conference, 633–648.
Shen, Y. D., and You, J. H. 2009. A default approach to
semantics of logic programs with constraint atoms. In LP-
NMR, 277–289.
Shen, Y. D. 2011. Well-supported semantics for description
logic programs. In IJCAI, 1081–1086.
Son, T. C.; Pontelli, E.; and Tu, P. H. 2007. Answer sets
for logic programs with arbitrary abstract constraint atoms.
Journal of Artificial Intelligence Research 29:353–389.
Truszczynski, M. 2010. Reducts of propositional theo-
ries, satisfiability relations, and generalizations of semantics
of logic programs. Artificial Intelligence 174(16-17):1285–
1306.
van Emden, M. H., and Kowalski, R. A. 1976. The seman-
tics of predicate logic as a programming language. J. ACM
23(4):733–742.

827




