
A Well-Founded Semantics for Basic Logic Programs
with Arbitrary Abstract Constraint Atoms

Yisong Wang
Guizhou University

Guiyang, China

Fangzhen Lin
Hong Kong University of
Science and Technology

Hong Kong

Mingyi Zhang
Guizhou Academy of Sciences

Guiyang, China

Jia-Huai You
University of Alberta
Edmonton, Canada

Abstract

Logic programs with abstract constraint atoms proposed
by Marek and Truszczynski are very general logic pro-
grams. They are general enough to capture aggregate
logic programs as well as recently proposed descrip-
tion logic programs. In this paper, we propose a well-
founded semantics for basic logic programs with arbi-
trary abstract constraint atoms, which are sets of rules
whose heads have exactly one atom. We show that sim-
ilar to the well-founded semantics of normal logic pro-
grams, it has many desirable properties such as that it
can be computed in polynomial time, and is always cor-
rect with respect to the answer set semantics. This paves
the way for using our well-founded semantics to sim-
plify these logic programs. We also show how our se-
mantics can be applied to aggregate logic programs and
description logic programs, and compare it to the well-
founded semantics already proposed for these logic pro-
grams.

Introduction
Logic programming based on the stable model/answer set
semantics, also known as answer set programming (ASP),
has emerged as a practical paradigm for declarative prob-
lem solving (Niemelä 1999; Marek and Truszczynski 1999;
Brewka, Eiter, and Truszczynski 2011). Since the stable
model semantics was first proposed for normal logic pro-
grams by Gelfond and Lifschitz in 1988, various extensions
have been put forward for theoretical and/or practical rea-
sons. These include disjunctive logic programs (Gelfond and
Lifschitz 1991), nested logic programs (Lifschitz, Tang, and
Turner 1999), general logic program (Ferraris 2011), aggre-
gate programs (Faber, Pfeifer, and Leone 2011), description
logic programs (Eiter et al. 2008) and logic programs with
abstract constraint atoms (Marek and Truszczynski 2004;
Son, Pontelli, and Tu 2007). In this paper we consider logic
programs with abstract constraint atoms. These programs
are general enough to account for the semantics of aggre-
gate logic programs as well as description logic programs,
as aggregate atoms in the former and dl-atoms in the lat-
ter can be modeled naturally in terms of abstract constraint
atoms (Son, Pontelli, and Tu 2007; Wang et al. 2012).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While ASP assumes that solutions are given by answer
sets, well-founded models (Van Gelder, Ross, and Schlipf
1991) have been found to be very useful as well. First,
computing the well-founded model of a normal logic pro-
gram is tractable. This compares to the NP-completeness
of computing an answer set. Secondly, the well-founded
model of a normal logic program is “correct” under the an-
swer set semantics in the sense that all atoms in the well-
founded model (called well-founded atoms) are in every
answer set and all atoms whose negation are in the well-
founded model (called unfounded atoms) are not in any an-
swer set of the given logic program. Thus to date all ASP
solvers would first compute the well-founded model of a
given program and use it to simplify the program (Simons,
Niemelä, and Soininen 2002). Because of this and other rea-
sons, despite the dominance of the answer set semantics in
logic programming, work on well-founded semantics con-
tinues to draw interests in the ASP research community.
To date, the well-founded semantics has been extended to
disjunctive logic programs (Wang and Zhou 2005), aggre-
gates programs (Pelov, Denecker, and Bruynooghe 2007;
Alviano et al. 2011), description logic programs (Eiter et al.
2011) and nondisjunctive hybrid MKNF knowledge base for
the semantic web (Knorr, Alferes, and Hitzler 2011).

In this paper we consider logic programs with abstract
constraint atoms. As a first step, we consider rules whose
heads have exactly one atom. Rules of this form are called
basic, and sets of these rules are basic logic programs (Son,
Pontelli, and Tu 2007). For these basic logic programs with
abstract constraint atoms, we propose a well-founded model
semantics, and show that it has many desirable properties
as those for normal logic programs. Specifically, we show
that the well-founded model of a basic logic program al-
ways exists, is unique, and can be computed in polynomial
time. Furthermore, the well-founded atoms are in every an-
swer set while the unfounded ones are not in any of the an-
swer sets of the logic program. Thus, just like in the case of
normal logic programs, one can use our well-founded mod-
els to simplify basic logic programs with abstract constraint
atoms. In particular, they can be used to simplify aggregate
logic programs and description logic programs.

The rest of this paper is organized as follows. We briefly
review logic programs with abstract constraint atoms in the
next section. Then we define the notion of unfounded sets

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

835

and the associated well-founded model semantics. We then
prove some interesting properties about our proposed well-
founded model semantics, discuss related work, and then
conclude the paper.

Preliminaries
We assume an underlying propositional language L. A lit-
eral is either an atom (called a positive literal) or an expres-
sion of the form “not a” (called a negative literal), where a
is an atom. The complement of a literal l, denoted by l̄, is de-
fined as the literal not a (resp. a) if l = a (resp. l = not a).

Let I be a set of literals. In the following, we denote by
I+ the set of positive literals in I , and I− the set of atoms
whose negated form are in I , i.e., I− = {a|not a ∈ I}. A
set of literals I is said to be consistent if I+ ∩ I− = ∅. A
partial interpretation is a consistent set of literals. A partial
interpretation I is said to be total if I+ ∪ I− is exactly the
set of the atoms of L.

An abstract constraint atom (c-atom) is an expression
of the form (D,C), where D is a finite set of atoms and
C ⊆ 2D (the powerset of D). The elements in C are called
candidate solutions of the c-atom. In the following, given a
c-atom A = (D,C), we use Ad and Ac to refer to its first
and second components, D and C, respectively. The com-
plement of a c-atom A, written A, is then a c-atom such that
Ad = Ad and Ac = 2Ad \ Ac. A c-atom is said to be el-
ementary if it is of the form ({a}, {{a}}), where a is an
atom. In the following, an elementary c-atom of the above
form will be identified with a, and simply written as a. An
abstract constraint literal (c-literal) is an expression of ei-
ther the form A or the form notA, where A is a c-atom.

A logic program with abstract constraint atoms (logic
program or program, for simplicity) is a finite set of rules
of the form

A← A1, . . . , Ak, notAk+1, . . . , notAn (1)

where A and Ai’s are c-atoms. Given a rule r of the form
(1), we define Hd(r) = A and Bd(r) = Pos(r)∪notNeg(r)
where Pos(r) = {A1, . . . , Ak}, Neg(r) = {Ak+1, . . . , An}
and not S = {notA|A ∈ S} for a set S of c-atoms. A rule
of the form (1) is basic (resp. positive) if A is elementary
(resp. k = n). A logic program P is basic (resp. positive) if
every rule in P is basic (resp. positive). By HBP we denote
the set of atoms occurring in the logic program P .

Definition 1 Let M be a set of atoms and A a c-atom. We
say that M classically satisfies A iff M ∩ Ad ∈ Ac; M
classically satisfies “notA” iff M does not satisfy A; M
classically satisfies a set L of c-literals iff it satisfies each
c-literal in L.

For an atom p, the above definition implies that a set of
atomsM classically satisfies p (resp. not p) iff p ∈M (resp.
p /∈ M). A set M of atoms classically satisfies a rule r iff
M classically satisfies Bd(r) implies M classically satisfies
Hd(r), M is a classical model of a logic program P iff M
classically satisfies every rule in P .

A c-atom A is monotonic if for every M , if M classically
satisfies A, then M ′ also classically satisfies A for any M ′
such that M ⊆M ′, otherwise it is nonmonotonic. A c-atom

is anti-monotonic iff M classically satisfies A implies M ′
classically satisfies A for any M ′ such that M ′ ⊆M .

LetM and S be two sets of atoms. The set S conditionally
satisfies a c-atom A wrt M , denoted by S |=M A, iff S
classically satisfiesA and I ∈ Ac for every I with S∩Ad ⊆
I ⊆M ∩Ad.

Let P be a basic positive program and M a classical
model of P . We define the operator T(P,M) as follows:

T(P,M)(S) = {Hd(r)|r ∈ P such that S |=M Bd(r)}.

The operator is monotonic in the sense that if S1 ⊆ S2 ⊆
M then T(P,M)(S1) ⊆ T(P,M)(S2) ⊆M . Thus for any clas-
sical modelM of P , the least fixpoint T(P,M) exists, denoted
by lfp(T(P,M)), which can be iteratively evaluated as below:

• T 0
(P,M) = ∅,

• Tn+1
(P,M) = T(P,M)(T

n
(P,M)) where n ≥ 0.

A classical model M of a basic positive program P is an
answer set of P if M is the least fixpoint of T(P,M), i.e.,
M = lfp(T(P,M)). There are two different answer set se-
mantics for basic logic programs. One is defined by reduct,
and the other is by complement. Formally, let P be a ba-
sic logic program and M ⊆ HBP , the reduct of P wrt M ,
written PM , is the positive program obtained from P by

• eliminating each rule r if M classically satisfies B for
some B ∈ Neg(r);

• eliminating notB from the remaining rules where B is a
c-atom.

The complement of a basic logic program P , written P ,
is the positive program obtained from P by replacing each
notB withB. It is clear that bothPM andP are positive and
basic. For a basic logic program P andM a set of atoms, we
say that M is a c-answer set (resp. r-answer set) of P iff M
is an answer set of P (resp. PM). By rAS(P) (resp. cAS(P))
we denote the set of all r-answer sets (resp. c-answer sets) of
P . It was shown that both the above answer set semantics
generalize that of normal logic programs (cf. Proposition 3
of (Son, Pontelli, and Tu 2007)).

To study the characterization of such logic programs, a
compact representation of c-atoms (called local power set)
was proposed in (Shen, You, and Yuan 2009), which plays
an important role in this paper. Formally, let S and J be two
disjoint sets of atoms, by S] J we denote the set {S′|S ⊆
S′ ⊆ S ∪ J} which is called the S-prefixed powerset of
J . Let A be a c-atom, S and J two subsets of Ad. The S-
prefixed powerset of J is maximal in A if S] J ⊆ Ac and
there is no other sets S′ and J ′ such that S′] J ′ ⊆ Ac and
S]J ⊂ S′]J ′. By A∗c we denote the set of all maximal S-
prefixed powerset of J in A for two sets S and J . The A∗c is
unique (cf. Theorem 3.2 (Shen, You, and Yuan 2009)). The
abstract representation of a c-atom A is denoted by A∗ =
(Ad, A

∗
c).

Example 1 [Example 4 of (Son, Pontelli, and Tu 2007)]
The aggregate program P consists of

p(1), p(−1)← p(2), p(2)← SUM({X|p(X)}) ≥ 1.

836

The aggregate atom SUM({X|p(X)}) can be rep-
resented by the c-atom A with Ad = {p(−1),
p(1), p(2)}, Ac = {{p(1)}, {p(2)}, {p(1), p(2)},
{p(2), p(−1)}, {p(1), p(−1), p(2)}}. One can easily check
that A∗c = {{p(1)}] {p(2)}, {p(2)}] {p(1), p(−1)}}. The
interested readers can verify that the basic logic program has
neither c-answer set nor r-answer set.

Unfounded Sets and Well-founded Models
Following the approach of (Van Gelder, Ross, and Schlipf
1991), we define the notion of unfounded sets first, and then
use it to define the set of negative literals that can be derived
according to the well-founded semantics.

Unfounded sets
Definition 2 Let A be a c-atom and I a partial interpreta-
tion. We say that I satisfies A iff for some S] J ∈ A∗c ,
S ⊆ I+ and Ad \ (S∪J) ⊆ I−; I falsifies A iff S∩I− 6= ∅
or (Ad \ (S ∪ J))∩ I+ 6= ∅ for any S] J ∈ A∗c ; I satisfies
(resp. falsifies) notA iff I falsifies (resp. satisfies) A; I sat-
isfies (resp. falsifies) a set of c-literals L iff I satisfies each
(resp. falsifies some) c-literal in L.

For a literal l, the above definition implies that a partial in-
terpretation I satisfies (resp. falsifies) l iff l ∈ I (resp. l ∈ I).
By I |= α (resp. I ‖−α) we mean the partial interpretation
I satisfies (resp. falsifies) α, and by I 6|= α (resp. I ‖/−α) we
mean I does not satisfy (resp. falsify) α where α is a literal,
c-literal, a set of literals or a set of c-literals.

A partial interpretation I satisfies a rule r iff I satisfies
Bd(r) implies I satisfies Hd(r). A partial interpretation I is
a (partial) model of a logic program P iff I satisfies every
rule of P . A partial model of a logic program P is a total
model of P if I is total.

Lemma 1 Let P be a basic logic program and I a total in-
terpretation of P . Then I is a total model of P iff I+ is a
classical model of P .

Definition 3 Let P be a basic program and I a partial in-
terpretation. A set of atoms U is an unfounded set of P wrt
I iff, for any a ∈ U and any r ∈ P with Hd(r) = a, at least
one of the following two conditions holds:

(c-i) I ‖−notNeg(r);
(c-ii) there exists A ∈ Pos(r) s.t, for any S] J ∈ A∗c ,

either U ∩ S 6= ∅ or I ‖−S ∪ not (Ad \ (S ∪ J)).

It is easy to see that ∅ is an unfounded set of any ba-
sic logic program P wrt any partial interpretation. Please
note that, the c-atom representation of an atom a is A =
({a}, {{a}}) where A∗c = {{a}]∅}. It follows that the un-
founded set defined here is a generalization to that of normal
logic programs (Van Gelder, Ross, and Schlipf 1991).

Lemma 2 Let P be a basic logic program, I a partial inter-
pretation, and U1 and U2 two sets of atoms. If U1 and U2 are
unfounded sets of P wrt I then U1∪U2 is also an unfounded
set of P wrt I .

The above lemma implies that the greatest (under set in-
clusion) unfounded set of a basic logic program P wrt a par-
tial interpretation I always exists, that is the union of all

Algorithm 1: MaxUnfoundedSet(P, I)
Data: A basic logic program P and a partial

interpretation I
Result: The greatest unfounded set of P wrt I
U ← HBP ;
while true do

U ′ = {p ∈ U |∃r ∈ P with Hd(r) = p such that
(a) I ‖/−notNeg(r) and,
(b) for any A ∈ Pos(r), there is S] J ∈ A∗c s.t
U ∩ S = ∅ and I ‖/−S ∪ not (Ad \ (S ∪ J))};

if U ′ 6= ∅ then
U ← U \ U ′;

else
break;

return U ;

unfounded sets of P wrt I . We present an algorithm to com-
pute the greatest unfounded set of a basic logic program wrt
a partial interpretation as shown in Algorithm 1. The follow-
ing proposition justifies its soundness and completeness.

Proposition 1 Let P be a basic logic program and I a par-
tial interpretation. The result returned by Algorithm 1 is the
greatest unfounded set of P wrt I .

Proof: As each while-loop iteration removes at least one
atom from U , the algorithm terminates. When it terminates,
for any p ∈ U and any r ∈ P with Hd(r) = p, either

(a) I ‖−notNeg(r), or

(b) for someA ∈ Pos(r) and any S]J ∈ A∗c , either U ∩S 6=
∅ or I ‖−S ∪ not (Ad \ (S ∪ J)).

It follows that U is an unfounded set of P wrt I .
To show the maximality of U after the termination of the

algorithm, it is sufficient to show that, at each while-loop
iteration, any set U∗ with U ⊂ U∗ ⊆ U ∪ U ′ is not an
unfounded set of P wrt I . Let p ∈ U∗ \U . Note that p ∈ U ′.
It implies that there exists a rule r ∈ P with Hd(r) = p
satisfying

• I ‖/−notB for any B ∈ Neg(r) and,

• for any A ∈ Pos(r), there exists S] J ∈ A∗c such that
(U ∪ U ′) ∩ S = ∅ and I ‖/−S ∪ not (Ad \ (S ∪ J)).

Therefore, none of the conditions of Definition 3 applies in
this case. Thus U∗ is not an unfounded set of P wrt I .

As constructingA∗ from a c-atomA is in polynomial time
(cf. Theorem 3.5 of (Shen, You, and Yuan 2009)), it is not
difficult to see that Algorithm 1 runs in polynomial time as
well.

Well-founded models
Let P be a basic program and I a partial interpretation. We
define the operators TP , UP and WP as follows.

• TP (I) = {Hd(r)|r ∈ P and I satisfies Bd(r)};
• UP (I) = the greatest unfounded set of P wrt I;

837

• WP (I) = TP (I) ∪ notUP (I).
In terms of the above definition, we can show that

Proposition 2 Let P be a basic logic program. Then we
have that
(1) TP is monotonic.
(2) UP is monotonic.
(3) WP is monotonic.

By the monotonicity of WP , the least fixpoint of WP , de-
noted by lfp(WP), always exists and can be iteratively con-
structed as follows:
• W 0

P = ∅,
• Wn+1

P = WP (Wn
P) for n ≥ 0.

We call lfp(WP) the well-founded model of the basic logic
program P , written by WFS(P). The atoms in [WFS(P)]+

are well-founded (wrt P) and the atoms in [WFS(P)]− are
unfounded (wrt P). The operator TP is clearly polynomial.
It follows thatWP is polynomial as well since UP is polyno-
mial. Thus the well-founded model of a basic logic program
can be computed in polynomial time.

Example 2 Let us consider the following logic programs:
• For the basic logic programP of Example 1, we can check

that
TP (∅) = {p(1)} and UP (∅) = ∅;
TP ({p(1)}) = {p(1)} and UP ({p(1)}) = ∅.
It follows that the well-founded model of P is {p(1)}.

• Given the program P1 = {a← not ({a}, {∅})}, it is easy
to see that P1 has two r-answer sets ∅ and {a}, while the
unique c-answer set of P1 is ∅. Note that for the c-atom
A = ({a}, {∅}), A∗c = {∅] ∅}. The partial interpreta-
tion ∅ neither satisfies notA nor falsifies notA, since ∅
neither falsifies A nor satisfies A. Thus TP1

(∅) = ∅, and
UP1

(∅) = ∅. It follows thatWP1
(∅) = ∅ = lfp(WP1

), i.e.,
the well-founded model of P1 is ∅.

Properties and Applications
In this section, we prove some properties about our well-
founded semantics for basic logic programs, and show how
it can be used to simplify basic logic programs.

Some model-theoretic properties
Lemma 3 Let P be a basic logic program and I a total
model of P . We have UP (I) = HBP \ lfp(T(P I+ ,I+)).

Lemma 4 Let P be a basic logic program and I a total
model of P . We have lfp(T(P I+ ,I+)) ⊆ TP (I).

The following theorem shows that the fixpoints of WP

exactly capture the r-answer sets of the basic program P .
Theorem 1 Let P be a basic logic program and I a total
model of P . Then I+ is an r-answer set of P iff WP (I) = I .
Proof:(sketch) Let M = lfp(T(P I+ ,I+)). Since I is a total
model of P , we have UP (I) = HBP \M and M ⊆ TP (I)
by Lemmas 3 and 4. We show one direction only.

(⇐) By WP (I) = I we have that I+ = TP (I) and I− =
HBP \M , which implies I+ = M , i.e., I+ is an r-answer

set of P .

In the above theorem, it is necessary to require I to be
total. Otherwise the result would not be true in general.
For instance, for the program P = {p ← not p} and
I = ∅, we have WP (I) = I but P has no answer set.
On the other hand, for the program P ′ = {p ← not q}
and I ′ = {p}, we have that I ′+ is an answer set of P ′ but
WP ′(I ′) = {p, not q}.

Since c-answer sets coincide with r-answer sets for basic
positive programs, we have the following corollary.

Corollary 2 Let P be a basic logic program and I a total
model of P . Then I+ is a c-answer set of P iff WP (I) = I .

By the above two properties and Lemma 1, we have

Corollary 3 Let P be a basic logic program, M ⊆ HBP

and M ′ = M ∪ not (HBP \M). We have that

• if M is an r-answer set of P then M ′ = WP (M ′).

• if M is a c-answer set of P then M ′ = WP (M ′).

We can now state the main conclusion of this subsection,
which asserts that every well-founded atom is in each an-
swer set and no unfounded atoms can be in any answer sets.
This result is the basis for simplifying basic programs.

Theorem 4 Let P be a basic logic program. We have

(1) [WFS(P)]+ ⊆ (
⋂

rAS(P)),
[WFS(P)]+ ⊆ (

⋂
cAS(P)).

(2) [WFS(P)]− ∩ (
⋃

rAS(P)) = ∅,
[WFS(P)]− ∩ (

⋃
cAS(P)) = ∅.

Proof:(sketch) (1) It is enough to show the former. Since
WFS(P) is the least fixpoint of WP , we have

WFS(P) ⊆
⋂

I:WP (I)=I

WP (I) =
⋂

I:WP (I)=I

I.

For every r-answer set M of P , we can show that M ∪
not (HBP \M) is a fixpoint of WP . It implies

WFS(P) ⊆
⋂

M∈rAS(P)

M ∪ not (HBP \M). (2)

Thus WFS+(P) ⊆ (
⋂

rAS(P)).
(2) It suffices to show [WFS(P)]− ⊆ (HBP \(

⋃
rAS(P)))

and [WFS(P)]− ⊆ (HBP \ (
⋃

cAS(P))). Since every c-
answer set of P is also an r-answer set of P , the former
implies the latter. By the condition (2), we have

[WFS(P)]− ⊆
⋂

M∈rAS(P)

HBP \M = HBP \
⋃

rAS(P).

It completes the proof.

This theorem implies that, for the purpose of answer sets
evaluation, well-founded models can be used to simplify
programs.

838

Simplifying basic logic programs using
well-founded models
Let A be a c-atom and I a partial interpretation. The simpli-
fication of A wrt I , denoted R(A, I), is the c-atom (D,C)
where D = Ad \ (I+ ∪ I−) and C = {S \ I+|S ∈
Ac and S ∩ I− = ∅}. Intuitively, the candidate solutions
containing unfounded atoms are discarded, and the well-
founded atoms are deleted in remaining candidate solutions.

Let P be a basic logic program. The simplification of P
under the well-founded model WFS(P), denoted R(P), is
the basic logic program obtained from P by

• eliminating every rule r if either Hd(r) ∈ [WFS(P)]+ or
WFS(P) falsifies Bd(r),

• removing every c-literal which is satisfied by WFS(P),

• replacing each remaining c-atom A with R(A,WFS(P)).

It is clear that R(P) mentions no atom occurring in
WFS(P).

Example 3 [Continued from Example 1] We have that
R(P) consists of

p(−1)← p(2),

p(2)← ({p(−1), p(2)}, {∅, {p(2)}, {p(−1), p(2)}}).

It is obvious that [R(A)]∗c = {∅]{p(2)}, {p(2)}]{p(−1)}}
where A is the c-atom occurring in the body of the above
second rule. One can verify that R(P) has no r-answer set.

Lemma 5 Let P be a basic logic program, A a c-atom and
M a set of atoms such that M ∩ W− = ∅ and W+ ⊆
M where W = WFS(P). Then we have that M classically
satisfies A iff M \W+ classically satisfies R(A,W).

Lemma 6 Let P be basic logic program and M a classical
model of P such that [WFS(P)]− ∩M = ∅. Then we have
that [W i

P]+ ⊆ lfp(T(PM ,M)) for any i ≥ 0.

Theorem 5 Let P be a basic logic program. A set M of
atoms is an r-answer set of P iff X is an r-answer set of
R(P) where X = M \ [WFS(P)]+.

Proof: (sketch) We prove one direction only. The other can
be similarly proved using Lemma 6. Let W = WFS(P).

(⇒) It can be proved inductively by showing

T k
(PM ,M) \W

+ ⊆ lfp(T([R(P)]X ,X)), for any k ≥ 0.

Base case: It is trivial for k = 0.
Inductively, suppose it holds for the case k. For any atom

h ∈ T k+1
(PM ,M)

, there exists a rule (r : h ← Pos, notNeg)

in P such that M does not classically satisfies B for any
B ∈ Neg, and T k

(PM ,M) |=M A for any A ∈ Pos.
By Theorem 4 we have h /∈ W+ ∪ W− since

h ∈ M \W+ and M ∩W− = ∅. By Lemma 5, W does
not falsify Bd(r) since M classically satisfies Bd(r). It
follows that the rule (r′ : h ← Pos′, notNeg′) belongs to
R(P) where Pos′ = {R(A,W)|A ∈ Pos and W 6|= A} and
Neg′ = {R(B,W)|B ∈ Neg and W 6|= notB}. Thus the
rule (h← Pos′) is in [R(P)]X . By the inductive assumption
and Lemma 5, we have that lfp(T([R(P)]X ,X)) |=X A′ for

any A′ ∈ Pos′ since X = M \W+ and T k
(PM ,M) |=M A

for any A ∈ Pos. It follows h ∈ lfp(T([R(P)]X ,X)).

Recall that if a basic logic program P is positive then its
c-answer sets are exactly its r-answer sets. Thus we have
Corollary 6 Let P be a basic logic program. A set M of
atoms is a c-answer set of P iff X is a c-answer set of R(P)
where X = M \ [WFS(P)]+.

Most of the current ASP solvers first compute the well-
founded semantics as a simplification step. By our results, a
similar process can be done for basic logic programs. In par-
ticular, Theorem 5 and Corollary 6 suggest a way to compute
the answer sets of basic logic programs in a way analogue
to how SMODELS computes the answer sets for normal pro-
grams (Simons, Niemelä, and Soininen 2002).

Related Work
As mentioned in Introduction, our well-founded semantics
for basic logic programs can be applied to aggregate pro-
grams and description logic programs. In the following,
we compare our semantics with the well-founded semantics
proposed previously for these logic programs (Faber 2005;
Pelov, Denecker, and Bruynooghe 2007; Eiter et al. 2011).
We start with aggregate programs. Due to space limitation,
we omit the detailed technical definitions of aggregate pro-
grams, which can be found, e.g. in (Pelov, Denecker, and
Bruynooghe 2007).

Aggregate programs
The aggregate programs proposed in (Pelov, Denecker, and
Bruynooghe 2007; Alviano et al. 2011) do not allow de-
fault negation “not” in front of aggregate atoms, while
classical negation “¬” is allowed in (Pelov, Denecker, and
Bruynooghe 2007), and aggregate atoms in (Alviano et al.
2011) require to be either monotonic or anti-monotonic. One
may suggest that the default negation can be modeled as
classical negation and the well-founded semantics in (Pelov,
Denecker, and Bruynooghe 2007) can then be applied to ag-
gregate programs with default negation. However, the fol-
lowing example shows a subtle difference.

Example 4 Let P be an aggregate program consisting of:

p(0)← not COUNT({〈0 : p(0)〉, 〈1 : p(1)〉}) 6= 1.

If we take default negation as classical negation then the cor-
responding aggregate program P ′ consists of

p(0)← ¬COUNT({〈0 : p(0)〉, 〈1 : p(1)〉}) 6= 1.

In terms of (Pelov, Denecker, and Bruynooghe 2007),
we have that the ultimate well-founded model of P ′

is (∅, ∅) which corresponds to the partial interpretation
{not p(0), not p(1)}. According to (Son, Pontelli, and Tu
2007), while we take P as the logic program with abstract
constraint atoms P ′′ consisting of

p(0)← not ({p(0), p(1)}, {∅, {p(0), p(1)}}),

the well-founded model P ′′ is {not p(1)}. One can verify
that the well-founded model of P ′′ is {not p(0), not p(1)}.

839

Faber (2005) proposed a notion of unfounded sets for ag-
gregate programs which allows default negation preceding
aggregate atoms. The following example shows the differ-
ence between Faber’s and ours.
Example 5 Let P be the aggregate program consisting of

p(0)← notCOUNT({Y : p(Y)}) ≤ 0.

P corresponds to the basic logic program P ′:

{p(0)← not ({p(0)}, {∅})}.
One can check that ∅ is the unique c-answer set of P ′, the
unique answer set of P according to (Faber 2005), while P ′
has two r-answer sets ∅ and {p(0)}. Let I = ∅ and X =
{p(0)}. It is not difficult to check that X is an unfounded
set for P wrt I in terms of (Faber 2005), but X is not an
unfounded set for P ′ wrt I in terms of the definition in this
paper. Actually ∅ is the unique unfounded set for P wrt I ,
and the well-founded model of P ′ is ∅.

Description logic programs
Here, we introduce the basic description logicALC (Baader
et al. 2007), instead of the description logics SHIF and
SHOIN described in (Eiter et al. 2008). For the language
ALC, we assume a vocabulary Ψ = (A ∪R, I), where
A,R and I are pairwise disjoint (denumerable) sets of
atomic concepts, roles (including equality ≈ and inequal-
ity 6≈), and individuals respectively. The concepts of ALC
are defined as follows:

C,D −→ A|>|⊥|¬C|C uD|C tD|∀R.C|∃R.C
where A is an atomic concept and R is a role. The asser-
tions ofALC are of the forms C(a) or R(b, c), where C is a
concept, R is a role, and a, b, c are individuals. An inclusion
axiom ofALC has the form C v D where C andD are con-
cepts. A description knowledge base (or ontology) of ALC
is a set of inclusion axioms and assertions of ALC. The se-
mantics of ALC is defined by a mapping from description
logic to first-order logic and then the resulting formulas are
interpreted under classical first-order interpretations.

Let Φ = (P, C) be a first-order vocabulary with nonempty
finite sets C and P of constant symbols and predicate sym-
bols respectively such that P is disjoint from A ∪R and
C ⊆ I. Atoms are formed from the symbols in P and C as
usual.

A dl-atom is an expression of the form

DL[S1 op1 p1, . . . , Sm opm pm;Q](~t), (m ≥ 0) (3)

where
• each Si is either a concept, a role, or a special symbol in
{≈, 6≈};
• opi ∈ {⊕,�,	} (we call 	 the constraint operator);
• pi is a unary predicate symbol in P if Si is a concept, and

a binary predicate symbol in P otherwise.

• Q(~t) is a dl-query, i.e., either (1) C(t) where ~t = t; (2)
C v D where ~t is an empty argument list; (3) R(t1, t2)
where ~t = (t1, t2); (4) t1 ≈ t2 where ~t = (t1, t2); or their
negations, where C and D are concepts, R is a role, and ~t
is a tuple of constants.

A description logic program (dl-program in short) K is
a pair (O,P) where O is a ontology, which is a decidable
first-order theory, such as SHIF or SHOIN , and P is a
finite set of ground dl-rules

A← B1, . . . , Bm, notBm+1, . . . , notBn, (4)

where A is an atom, each Bi (1 ≤ i ≤ n) is an atom or a
dl-atom.

Given a dl-program K = (O,P), the Herbrand base of
P , denoted by HBP , is the set of atoms formed from the
predicate symbols of P and the constant symbols in C. An
interpretation I (relative to P) is a subset of HBP . Such an
I is a model of an atom or dl-atomA underO, written I |=O

A, if the following holds:
• if A ∈ HBP , then I |=O A iff A ∈ I;

• if A is a dl-atom DL(λ;Q)(~t) of the form (3), then
I |=O A iff O(I;λ) |= Q(~t) where O(I;λ) = O ∪⋃m

i=1Ai(I) and, for 1 ≤ i ≤ m,

Ai(I) =

{ {Si(~e)|pi(~e) ∈ I}, if opi = ⊕;
{¬Si(~e)|pi(~e) ∈ I}, if opi = �;
{¬Si(~e)|pi(~e) /∈ I}, if opi = 	;

where ~e is a tuple of constants over C. While define well-
founded semantics for description logic programs in (Eiter
et al. 2011), the constraint operator	 is not allowed. Thus in
what follows, we assume that	 does not appear in dl-atoms,
unless otherwise stated explicitly.

The notions of unfounded sets and well-founded models
of dl-programs are referred to (Eiter et al. 2011). In terms of
the translation τ in (Wang et al. 2012), dl-programs can be
modeled as basic logic programs.

Theorem 7 Let K = (O,P) be a dl-program mentioning
no constraint operators. We have WFS(K) = WFS(τ(K)).

To define the well-founded semantic for dl-programs con-
taining constraint operators, Eiter et al. propose an approach
of translating dl-programs into ones without constraint oper-
ators and then the well-founded semantics defined in (Eiter
et al. 2011) can be applied. The following example shows
some difference between their approach and ours.

Example 6 Let K = (O,P) where O = ∅ and

P = {p(a)← DL[S � p, S 	 p;¬S](a)}.

The unique strong answer set of K is {p(a)}. In terms of
our definition, the well-founded model of K is {p(a)} as the
corresponding basic logic program is

{p(a)← ({p(a)}, {∅, {{p(a)}})}

According to the proposal in (Eiter et al. 2011), the cor-
responding dl-program without using constraint operator is
K′ = (O,P ′) where P ′ consists of

p(a)← DL[S � p, S � p′;¬S](a),

p′(a)← notDL[S′ ⊕ p, S′](a).

We have that TK′(∅) = ∅ and UK′(∅) = ∅. Thus the well-
founded model of K is ∅ according to (Eiter et al. 2011).

840

Conclusion and Future Work
In the paper we proposed a notion of unfounded set for basic
logic programs with abstract constraint atoms, and based on
that a well-founded semantics for such logic programs. We
showed that our proposed well-founded semantics has many
desirable properties similar to those possessed by normal
logic programs, which can be used to simplify basic logic
programs and thus form a foundation for answer set compu-
tation. The notion of well-founded semantics can also be ap-
plied to aggregate programs and description logic programs.

Our next step is to extend the well-founded semantics to
disjunctive logic programs with abstract constraint atoms.
We expect this to be a challenging task, and to do that some
techniques and insights developed for disjunctive logic pro-
grams (e.g. (Wang and Zhou 2005; Cabalar, Odintsov, and
Pearce 2006)) may prove helpful.

Acknowledgement
We thanks the reviewers for their useful comments. This
work is partially supported by the Natural Science Founda-
tion of China under grant 60963009. Yisong Wang is also
partially supported by Open Funds of the State Key Labora-
tory of Computer Science of Chinese Academy of Science
under grant SYSKF1106.

References
Alviano, M.; Calimeri, F.; Faber, W.; Leone, N.; and Perri,
S. 2011. Unfounded sets and well-founded semantics of
answer set programs with aggregates. Journal of Artificial
Intelligence Research 42:487–527.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F. 2007. The Description Logic
Handbook: Theory, Implementation, and Applications. New
York, NY: Cambridge University Press, 2nd edition.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Cabalar, P.; Odintsov, S. P.; and Pearce, D. 2006. Logi-
cal foundations of well-founded semantics. In Proceedings,
Tenth International Conference on Principles of Knowledge
Representation and Reasoning, 2006, 25–35. Lake District
of the United Kingdom: AAAI Press.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining answer set programming
with description logics for the semantic web. Artifical In-
telligence 172(12-13):1495–1539.
Eiter, T.; Lukasiewicz, T.; Ianni, G.; and Schindlauer, R.
2011. Well-founded semantics for description logic pro-
grams in the semantic web. ACM Transactions on Compu-
tational Logic (TOCL) 12(2):11:1–11:41.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Faber, W. 2005. Unfounded sets for disjunctive logic pro-
grams with arbitrary aggregates. In Logic Programming

and Nonmonotonic Reasoning, 8th International Confer-
ence, LPNMR 2005, volume 3662 of Lecture Notes in Com-
puter Science, 40–52. Diamante, Italy: Springer.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic (TOCL) 12(4):25:1–25:40.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Knorr, M.; Alferes, J. J.; and Hitzler, P. 2011. Local closed
world reasoning with description logics under the well-
founded semantics. Artificial Intelligence 175(9-10):1528–
1554.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25(3-4):369–389.
Marek, V. W., and Truszczynski, M. 1999. Stable mod-
els and an alternative logic programming paradigm. In
Apt, K.; Marek, V.; Truszczynski, M.; and Warren, D., eds.,
The Logic Programming Paradigm: A 25-Year Perspective.
Berlin: Springer-Verlag. 375–398.
Marek, V. W., and Truszczynski, M. 2004. Logic pro-
grams with abstract constraint atoms. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence,
Sixteenth Conference on Innovative Applications of Artifi-
cial Intelligence (AAAI 2004), 86–91. San Jose, California,
USA: AAAI Press.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2007. Well-
founded and stable semantics of logic programs with aggre-
gates. Theory and Practice of Logic Programming 7(3):301–
353.
Shen, Y.-D.; You, J.-H.; and Yuan, L.-Y. 2009. Character-
izations of stable model semantics for logic programs with
arbitrary constraint atoms. Theory and Practice of Logic
Programming 9(4):529–564.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Son, T. C.; Pontelli, E.; and Tu, P. H. 2007. Answer sets
for logic programs with arbitrary abstract constraint atoms.
Journal of Artificial Intelligence Research 29:353–389.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. J. ACM
38(3):620–650.
Wang, K., and Zhou, L. 2005. Comparisons and com-
putation of well-founded semantics for disjunctive logic
programs. ACM Transactions on Computational Logic
6(2):295–327.
Wang, Y.; You, J.-H.; Yuan, L. Y.; Shen, Y.-D.; and Zhang,
M. 2012. The loop formula based semantics of description
logic programs. Theoretical Computer Science 415:60–85.

841

