
Query Rewriting for Horn-SHIQ plus Rules

Thomas Eiter1, Magdalena Ortiz1, Mantas Šimkus1, Trung-Kien Tran2 and Guohui Xiao1

1Institute of Information Systems, Vienna University of Technology
{eiter—ortiz—xiao}@kr.tuwien.ac.at simkus@dbai.tuwien.ac.at

2STARLab, Vrije Universiteit Brussel
truntran@vub.ac.be

Abstract

Query answering over Description Logic (DL) ontologies has
become a vibrant field of research. Efficient realizations often
exploit database technology and rewrite a given query to an
equivalent SQL or Datalog query over a database associated
with the ontology. This approach has been intensively stud-
ied for conjunctive query answering in the DL-Lite and EL
families, but is much less explored for more expressive DLs
and queries. We present a rewriting-based algorithm for con-
junctive query answering over Horn-SHIQ ontologies, pos-
sibly extended with recursive rules under limited recursion as
in DL+log. This setting not only subsumes both DL-Lite
and EL, but also yields an algorithm for answering (limited)
recursive queries over Horn-SHIQ ontologies (an undecid-
able problem for full recursive queries). A prototype imple-
mentation shows its potential for applications, as experiments
exhibit efficient query answering over full Horn-SHIQ on-
tologies and benign downscaling toDL-Lite, where it is com-
petitive with comparable state of the art systems.

Introduction
Description Logics (DLs) are the primary tool for represent-
ing and reasoning about knowledge given by an ontology.
They are mostly fragments of first-order logic with a clear-
cut semantics, convenient syntax and decidable reasoning,
performed by quite efficient algorithms. This has led to im-
portant applications of DLs in areas like Ontology Based
Data Access (OBDA), Data Integration and the Semantic
Web, where the OWL standard is heavily based on DLs.

An important reasoning task in DLs is query answering
similar as in databases, where a database-style query is eval-
uated over an ontology, viewing it as an enriched database.
Example 1. Consider the following sociopolitical ontology.
The Human Development Index (HDI) of certain territories
T , whose value V may be low, medium, high or very high
(as in the UN Development Programme) is given by facts
hasHDI(T, V). Further facts classify territories as cities,
countries, etc. and relate their locations. The facts are shown
in the two left columns of Table 1. The axioms (a)–(e) on the
right hand side provide a terminology (in DL syntax) stating
that: (a) the isLocatedIn relation is transitive; (b) the capital
of a territory is located in that territory; (c) every country

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has a capital; (d) only cities can be capitals; and (e) only one
capital can be located in each country. The query q1 can be
used to retrieve disadvantaged territories that lie in countries
with high HDI but have a low HDI themselves. Observe that
if we evaluate q1 over the database (i.e., the facts), it returns
no answer: indeed, Mexico is the only country with high
HDI, and there is no fact islocatedIn(X,Mexico) such that
territory X has low HDI. However, if we evaluate q1 over
the full ontology, we can infer from axiom (a) that Carichi is
located in Mexico, and return (Carichi ,Mexico) as an an-
swer. The query q2, which retrieves countries whose capital
city has a high HDI, would also have an empty answer over
the database, but from the axioms (b)–(e) we can infer that
Brasilia is the capital of Brazil and Islamabad the capital of
Pakistan, and return both countries as an answer to the query.

To supply this reasoning service, a number of chal-
lenges must be faced. Conjunctive queries (CQs) have typ-
ically much higher complexity than standard reasoning in a
DL, and recursive Datalog queries are undecidable even in
very weak DLs, including the ones considered here (Levy
and Rousset 1998). For reasoning with large instance
data, translating queries into database query languages has
proved to be efficient. Calvanese et al. (2007) introduced a
query rewriting technique for the DL-Lite family of DLs,
where the terminological information is incorporated into
the query in such a way that it can be straight evaluated over
the database facts. For example, a rewriting of query q1 in
Table 1 should include, among other queries,
disadvantagedTerritory(x, y)← hasHDI(x, low), country(y),

hasCapital(y, x), hasHDI(y, high)

which adds all tuples (x, y) to the query answer that can be
inferred using axiom (b). Such rewriting approaches have
been developed for answering CQs in DLs of the DL-Lite
family, and to a lesser extent for EL, but they are practi-
cally unexplored for more expressive DLs and queries (see
Related Work for details).

In this paper we present a rewriting-based method for
query answering over ontologies in Horn-SHIQ (the
disjunction-free fragment of SHIQ). This DL extends
DL-Lite and EL, two prominent DLs closely related to the
OWL 2 QL and the OWL 2 EL profiles, respectively, which
offer different expressiveness while allowing for tractable
reasoning. For example, axiom (b) is allowed in most DLs
of the DL-Lite family but not in EL, while (c) is allowed in

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

726

village(Carichi)
state(Chihuahua)
country(Mexico)

capital(Islamabad)
country(Pakistan)

capital(Brasilia)
country(Brazil)

hasHDI(Carichi, low)

hasHDI(Mexico, high)
hasHDI(Islamabad, high)
hasHDI(Brasilia, high)
isLocatedIn(Carichi,Chihuahua)
isLocatedIn(Chihuahua,Mexico)
isLocatedIn(Islamabad, Pakistan)
isLocatedIn(Brasilia, Brazil)

(a) trans(isLocatedIn) (c) countryv∃hasCapital.capital

(b) hasCapitalv isLocatedIn− (d) countryv∀hasCapital.city

(e) countryv61 isLocatedIn−.capital

(q1) disadvantagedTerritory(x, y)← hasHDI(x, low), isLocatedIn(x, y),

country(y), hasHDI(y, high)

(q2) hasDevelopedCapital(x)← country(x), hasCapital(x, y), city(y),

hasHDI(y, high)

Table 1: An example ontology and queries

EL but not in DL-Lite. Axioms (a), (d) and (e) are not ex-
pressible in either of them, but they are expressible in Horn--
SHIQ. Despite the increase in expressivity, reasoning in
Horn-SHIQ is still tractable in data complexity.

In this paper, we make the following contributions:
• We provide a practical algorithm for rewriting queries

over Horn-SHIQ ontologies. It first applies a special res-
olution calculus, and then rewrites the query w.r.t. the satu-
rated TBox into a Datalog program ready for evaluation over
any ABox. It runs in polynomial time in data complexity,
and thus is worst-case optimal.
• It can handle CQs and the more general weakly DL-

safe Datalog queries in the style of DL+log (Rosati 2006),
where only existentially quantified variables may be bound
to ‘anonymous’ domain elements implied by axioms.
• It is, to our knowledge, the first rewriting algorithm that

supports transitive roles, which are considered relevant in
practice (Sattler 2000), although challenging for query an-
swering (Glimm et al. 2006, Eiter et al. 2009). It simultane-
ously allows for full existential quantification, inverse roles,
and number restrictions, covering and extending the OWL2
profiles QL and RL, as well as a large fragment of EL.
• A prototype implementation for CQ answering (with-

out transitive roles) shows that our approach behaves well in
practice. In experiments it worked efficiently and it scaled
down nicely to DL-Lite, where it is competitive with state
of the art query rewriting systems.

Due to space constraints, we only provide proof sketches
of the central results, and refer the reader to (Eiter et al.
2012b) for more details.

Description Logic Horn-SHIQ
As usual, we assume countably infinite sets NC ⊃ {>,⊥}
and NR of atomic concepts and role names, respectively.
NR ∪ {r− | r ∈ NR} is the set of roles. If r ∈ NR, then
inv(r) = r− and inv(r−) = r. Concepts are inductively
defined as follows: (a) each A ∈ NC is a concept, and (b) if
C, D are concepts and r is a role, then C u D, C t D,
¬C, ∀r.C, ∃r.C, > n r.C and 6 n r.C, for n ≥ 1, are
concepts. An expression C vD, where C,D are concepts,
is a general concept inclusion axiom (GCI). An expression
rv s, where r, s are roles, is a role inclusion (RI). A tran-
sitivity axiom is an expression trans(r), where r is a role.
A TBox T is a finite set of GCIs, RIs and transitivity ax-
ioms. We let v∗T denote the reflexive transitive closure of
{(r, s) | rv s ∈ T or inv(r)v inv(s) ∈ T }. A role s is
transitive in T if trans(s) ∈ T or trans(s−) ∈ T . A role

s is simple in T if there is no transitive r in T s.t. r v∗T s.
T is a SHIQ terminology if roles in concepts of the form
>n r.C and6n r.C are simple. The semantics for TBoxes is
given by interpretations I = 〈∆I , ·I〉. We write I |= T if
I is a model of T . See (Baader et al. 2007) for more details.

A TBox T is a Horn-SHIQ TBox (in normalized
form), if each GCI in T takes one the following forms:

(F1) A1 u . . . uAnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

whereA1, . . . , An, B are concept names and r is a role. Ax-
ioms (F2) are called existential. W.l.o.g. we treat here only
Horn-SHIQ TBoxes in normalized form; our results gen-
eralize to full Horn-SHIQ by means of TBox normaliza-
tion; see e.g. (Kazakov 2009; Krötzsch, Rudolph, and Hit-
zler 2007) for a definition and normalization procedures.

An Horn-ALCHIQ TBox is a Horn-SHIQ TBox with
no transitivity axioms. Horn-ALCHIQu TBoxes are ob-
tained by allowing role conjunction r1 u r2, where r1, r2
are roles (we use it for a similar purpose as Glimm et al.
(2008)). In any interpretation I, (r1 u r2)I = rI1 ∩ rI2 . We
let inv(r1 u r2) = inv(r1)uinv(r2) and assume w.l.o.g. that
for each role inclusion r v s of an Horn-ALCHIQu TBox
T , (i) inv(r) v inv(s) ∈ T , and (ii) s ∈ {p, p−} for a role
name p. For a set W and a concept or role conjunction Γ =
γ1 u . . . u γm, we write Γ ⊆W for {γ1, . . . , γm} ⊆W .

Ontologies and Knowledge Bases
Following (Levy and Rousset 1998) we now define knowl-
edge bases (KBs). Let NI, NV and ND be countable infinite
sets of constants (or, individuals), variables and Datalog re-
lations, respectively; we assume these sets as well as NC and
NR are all mutually disjoint. Each σ ∈ ND has an associated
non-negative integer arity. An atom is an expression p(~t),
where ~t ∈ (NI)

n ∪ (NV)n, and (i) p ∈ NC and n = 1, (ii)
p ∈ NR and n = 2, or (iii) p ∈ ND and n is the arity of p.
If ~t ∈ (NI)

n, then p(~t) is ground. Ground atoms A(a) and
r(a, b), where A ∈ NC and r is a role, are concept and role
assertions, respectively. An ABoxA is a finite set of ground
atoms. A rule ρ is an expression of the form

h(~u)← p1(~v1), . . . , pm(~vm) (1)

where h(~u) is an atom (the head), {p1(~v1), . . . , pm(~vm)}
are also atoms (the body atoms, denoted body(ρ)), and
~u, ~v1, . . . , ~vm are tuples of variables. The variables in ~u are
distinguished. A KB is a tuple K = (T ,A,P), where T is a
TBox, A is an ABox, and P is a set of rules (a program).

727

The semantics for a KB K = (T ,A,P) is given by ex-
tending an interpretation I to symbols in NI ∪ ND. For any
c ∈ NI and p ∈ ND of arity n, we have cI ∈ ∆I and
pI ⊆ (∆I)n. A match in I for a rule ρ of the form (1) is
a mapping from variables in ρ to elements in ∆I such that
π(~t)∈ pI for each body atom p(~t) of ρ. We define:

(a) I |= ρ if π(~u)∈hI for every match π for ρ in I,
(b) I |= P if I |= ρ for each ρ ∈ P ,
(c) I |= A if (~c)I ∈ pI for all p(~c) ∈ A,
(d) I |= K if I |= T , I |= A and I |= P .

Finally, given a ground atom p(~c),K |= p(~c) if (~c)I ∈ pI for
all models I of K. We recall weak DL-safety (Rosati 2006).
A KB K = (T ,A,P) is weakly DL-safe if each rule ρ ∈ P
satisfies the next condition: every distinguished variable x
of ρ occurs in some body atom p(~t) of ρ such that p ∈ ND.
We make the Unique Name Assumption (UNA).

A KB K = (T ,A, ∅) is an ontology (for brevity, we use
O = (T ,A)). A conjunctive query (CQ) q over O is a rule
of the form (1) such that h does not occur inO. By ans(I, q)
we denote the set of all ~c ∈ NI

|~u| such that there is a match
π for q with π(~u) = (~c)I . By ans(O, q) we denote the
answer to q over O defined as the set of all ~c ∈ NI

|~u| such
that ~c ∈ ans(I, q) for every model I of O.

Note that, for a KB K = (∅,A,P), A ∪ P is an ordinary
Datalog program with constraints (cf. (Dantsin et al. 2001)).
By models of Datalog programs, we mean Herbrand models,
and we recall that a consistent A ∪ P has a unique least
(Herbrand) model MM (A ∪ P).

We also consider programs P with atoms r−(x, y), r ∈
NR. Its semantics is given by the semantics of the program
P ′ obtained by replacing in P each r−(x, y) by r(y, x).

Elimination of Transitivity Axioms It is handy to elimi-
nate transitivity axioms from SHIQ TBoxes (see, e.g., Hus-
tadt et al. (2007)). We use the transformation from (Kazakov
2009), which ensures the resulting TBox is in normal form.
Definition 1. Let T ∗ be the Horn-ALCHIQ TBox obtained
from a Horn-SHIQ TBox T by (i) adding for every A v
∀s.B ∈ T and every transitive role r with rv∗T s, the axioms
A v ∀r.Br, Br v ∀r.Br and Br v B, where Br is a fresh
concept name; and (ii) removing all transitivity axioms.

As the transformation does not preserve answers to CQs,
we relax the notion of match.
Definition 2. Let T be a Horn-SHIQ TBox. A T -match
for a query q in an interpretation I is a mapping π from
variables of q to elements in ∆I such that
(a) if α = p(~t) is a body atom in q, where p ∈ NC ∪ ND or

p is a simple role in T , then π(~t)∈ pI , and
(b) if α = s(x, y) with s non-simple, then there exist d1 ∈

∆I , . . . , dk ∈ ∆I and a transitive rv∗T s s.t. d1 = π(x),
dk = π(y), and (di, di+1) ∈ rT for all each 1 ≤ i < k.

The sets ansT (I, q) and ansT (O, q) are defined as
ans(I, q) and ans(O, q) but using T -matches instead of
matches. The next claim follows from known techniques,
see e.g. (Eiter, Ortiz, and Simkus 2012) for a similar result.
Proposition 1. For any Horn-SHIQ ontologyO = (T ,A)
and CQ q, we have ans(O, q) = ansT ((T ∗,A), q).

M v ∃S.(N uN ′) N vA

M v ∃S.(N uN ′ uA)
Rc
v

M v ∃(S u S′).N S v r

M v ∃(S u S′ u r).N
Rr
v

M v ∃S.(N u ⊥)

M v⊥
R⊥

M v ∃(S u r).N Av ∀r.B
M uAv ∃(S u r).(N uB)

R∀

M v ∃(S u inv(r)).(N uA) Av ∀r.B
M vB

R−∀

M v ∃(S u r).(N uB) Av 61 r.B
M ′ v ∃(S′ u r).(N ′ uB)

M uM ′ uAv ∃(S u S′ u r).(N uN ′)
R≤

M v∃(S u inv(r)).(N1 uN2 uA) Av 61 r.B
N1 uAv ∃(S′ u r).(N ′ uB u C)

M uB v C M uB v ∃(S u inv(S′ur)).(N1 uN2 uA)
R−≤

Table 2: Inference rules. M (′), N (′), (resp., S(′)) are conjun-
ctions of atomic concepts (roles); A,B are atomic concepts

Canonical Models
A stepping stone for tailoring query answering methods
for Horn DLs and languages like Datalog± is the canon-
ical model property (Eiter et al. 2008b; Ortiz, Rudolph,
and Simkus 2011; Calı̀, Gottlob, and Lukasiewicz 2009).
In particular, for a consistent Horn-ALCHIQu ontology
O = (T ,A), there exists a model I of O that can be ho-
momorphically mapped into any other model I ′ of O. We
show that such an I can be built in three steps:

(1) Close T under specially tailored inferences rules.
(2) Close A under all but existential axioms of T .
(3) ExtendA by “applying” the existential axioms of T .
For Step (1), we tailor from the inference rules in (Kaza-

kov 2009; Ortiz, Rudolph, and Simkus 2010) a calculus to
support model building for Horn-ALCHIQu ontologies.

Definition 3. Given a Horn-ALCHIQu TBox T , Ξ(T) is
the TBox obtained from T by exhaustively applying the in-
ference rules in Table 2.

For Step (2), we use Datalog rules that express the seman-
tics of GCIs, ignoring existential axioms.

Definition 4. Given a Horn-ALCHIQu TBox T , cr(T) is
the Datalog program described in Table 3.

Given a consistent Horn-ALCHIQu ontology O =
(T ,A), the least model J of the Datalog program cr(T)∪A
is almost a canonical model of O; however, existential ax-
ioms may be violated. We deal with this in Step (3), by
extending J with new domain elements as required by ax-
ioms A v ∃r.N in Ξ(T). This step is akin to the database
chase (Maier and Mendelzon 1979), where fresh values and
tuples are introduced to satisfy a given set of dependencies.

Definition 5. Let T be a Horn-ALCHIQu TBox and I an
interpretation. A GCI M v∃S.N is applicable at e ∈ ∆I if

(a) e ∈MI ,

728

B(y)←A(x), r(x, y) for each Av ∀r.B ∈ T
B(x)←A1(x), . . . , An(x) for all A1u . . .uAnvB ∈Ξ(T)

r(x, y)← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T
⊥(x)←A(x), r(x, y1), r(x, y2), B(y1), B(y2), y1 6= y2

for each Av 61 r.B ∈ T
Γ←A(x), A1(x), . . . , An(x), r(x, y), B(y)

for all A1u . . .uAn v ∃(r1u . . .urm).B1u . . .uBk and
Av 61 r.B of Ξ(T) such that r=ri and B=Bj for some
i, j with Γ ∈ {B1(y), . . . , Bk(y), r1(x, y), . . . , rk(x, y)}

Table 3: Completion rules cr(T) for Horn-ALCHIQu

(b) there is no e′ ∈ ∆I with (e, e′) ∈ SI and e′ ∈ NI ,
(c) there is no axiom M ′ v ∃S′.N ′ ∈ T such that e ∈

(M ′)I , S ⊆ S′, N ⊆ N ′, and S ⊂ S′ or N ⊂ N ′.
An interpretation J obtained from I by an application of an
applicable axiom M v ∃S.N at e ∈ ∆I is defined as:

- ∆J = ∆I ∪ {d} with d a new element not present in ∆I

(we call d a successor of e),
- For each atomic A ∈ NC and o ∈ ∆J , we have o ∈ AJ if

(a) o ∈ ∆I and o ∈ AI ; or (b) o = d and A ∈ N .
- For each role name r and o, o′ ∈ ∆J , we have (o, o′) ∈
rJ if (a) o, o′ ∈ ∆I and (o, o′) ∈ rI ; or (b) (o, o′) =
(e, d) and r ∈ S; or (c) (o, o′) = (d, e) and inv(r) ∈ S.

We denote by chase(I, T) a possibly infinite interpretation
obtained from I by applying the existential axioms in T .
We require the application to be fair: the application of an
applicable axiom can not be infinitely postponed.

We note that chase(I, T) is unique up to renaming of do-
main elements. As usual in DLs, it can be seen as a ‘forest’:
application of existential axioms simply attaches ‘trees’ to a
possibly arbitrarily shaped I. The following statement can
be shown similarly as in (Ortiz, Rudolph, and Simkus 2011).

Proposition 2. Let O= (T ,A) be a Horn-ALCHIQu on-
tology. ThenO is consistent iffA∪ cr(T) consistent. More-
over, if O is consistent, then

(a) chase(MM (A ∪ cr(T)),Ξ(T)) is a model of O, and
(b) chase(MM (A ∪ cr(T)),Ξ(T)) can be homomorphi-

cally mapped into any model of O.

In database terms, this means that checking consistency of
O = (T ,A) reduces to evaluating the (plain) Datalog query
cr(T) over the databaseA. Note that Ξ(T) can be computed
in exponential time in size of T : the calculus only infers
axioms of the form M v B and M v ∃S.N , where M,N
are conjunctions of atomic concepts, B is atomic and S is
a conjunction of roles. The number of such axiom is single
exponential in the size of T .

Rewriting Rules and Programs
The following is immediate from Propositions 1 and 2:

Theorem 3. Let O= (T ,A) be a Horn-SHIQ ontology.
Then A∪ cr(T ∗) is consistent iff O is consistent. Moreover,
if O is consistent, then ans(O, q) = ansT (IO, q), where
IO = chase(MM (A ∪ cr(T ∗),Ξ(T ∗)).

Computing ansT (IO, q) is still tricky because IO can
be infinite. So we rewrite q into a set Q of CQs such that
ansT (IO, q) =

⋃
q′∈Q ansT (MM (A ∪ cr(T ∗), q′). This

yields an algorithm for answering q over O, using only the
finite MM (A ∪ cr(T ∗)).

The rewriting of q is done in steps with the following intu-
ition. Suppose q has a T -match π in IO. A rewrite step clips
off some variable x such that π(x) has no descendant in the
image of π, merges the variables that are mapped to the pre-
decessor of π(x), and adds concept atoms to the resulting q′
that ensure that q has a T -match whenever q′ does.

Definition 6. For a rule ρ and a Horn-SHIQ TBox T , we
write ρ→T ρ′ if ρ′ is obtained from ρ by the following steps:

(S1) Select an arbitrary non-distinguished variable x in ρ.
(S2) Replace each role atom r(x, y) in ρ, where y is arbi-

trary, by the atom inv(r)(y, x).
(S3) For each atom α = s(y, x) in ρ, where y is arbitrary

and s is non-simple, either leave α untouched or re-
place it by two atoms r(y, uα), r(uα, x), where uα is
a fresh variable and r is a transitive role with r v∗T s.

(S4) Form some partitioning of the set {y | ∃r : r(y, x) ∈
body(ρ)}∪{x} into sets Vx and Vp, in such a way that
x ∈ Vx and Vx has no distinguished variables.

(S5) Select some M v ∃S.N ∈ Ξ(T ∗) such that
(a) {r | r(y, x) ∈ body(ρ) ∧ y ∈ Vp} ⊆ S,
(b) {A | A(z) ∈ body(ρ) ∧ z ∈ Vx} ⊆ N , and
(c) for each variable z ∈ Vx and atom r(z, x) in

body(ρ) there is a transitive sv∗T r such that
i. {s, s−} ⊆ S, or

ii. there is an axiomM ′v∃S′.N ′ ∈ Ξ(T ∗) such
that M ′ ⊆ N and {s, s−} ⊆ S′.

(S6) Drop each atom from ρ containing a variable from Vx.
(S7) Rename each y ∈ Vp of ρ by x.
(S8) Add the atoms {A(x) | A ∈M} to ρ.

We write ρ →∗T ρ′ if ρ′ can be obtained from ρ by finitely
many rewrite iterations. We let rewT (ρ) = {ρ′ | ρ→∗T ρ′}.
For a set P of rules, rewT (P) =

⋃
ρ∈P rewT (ρ).

In (S1) we guess the variable x and, for technical reasons,
in (S2) we invert all atoms of the form r(x, y). For all atoms
s(y, x) where s is not simple, there must exist a transitive
r v∗T s such that there is an r-path from π(y) to π(x). For
the atoms where this path has length at least 2, we use in (S3)
the role r and introduce an ‘intermediate’ variable u that can
be mapped to the parent p of π(x). Now we know that for
each atom r(y, x) the ‘neighbor’ variable y must mapped to
(a) the parent p of π(x), or (b) in case r is non-simple, pos-
sibly to π(x). In (S4) we guess a partition of the neighbor
variables into Vp and Vx, which correspond to cases (a) and
(b), respectively. In (S5) we select some axiom that would
cause the existence of π(x) when applied at p. Then we can
clip off x in (S6), merge all variables of Vp (and, for techni-
cal reasons, we rename them to x, which does not occur in
ρ anymore) in (S7), and add to ρ atoms for the concepts on
the left hand side of the selected axiom.

729

ρ

x1C

x2B

r1

x3

r1

x4

r2

select x2

x1C

x2B

r1

x3

r1

x4

r−2

Av ∃(r1 u r−1 u r
−
2).B

 clip off x2,
merge {x1, x3, x4},

rename to x2,
and add A(x2)

ρ′

x2 C,A

(a) Example 2: Query rewriting with simple roles

ρ

x1C

x2B

r1

x3

r1

x4

r2

select x2

x1C

x2B

r1

x3

r1

x4

r−2

trans(r1)

x1C

u

r1

x2B

r1

x3

r1

x4

r−2

Av ∃(r1 u r−1 u r
−
2).B

 clip off x2,
merge {u, x3, x4},

rename to x2,
and add A(x2)

ρ′′

x1 C

x2 A

r1

(b) Example 3: Query rewriting with transitive roles

Figure 1: Examples of query rewriting

Example 2. In our first example, illustrated in Figure 1a, all
roles are simple. Let ρ : q(x1)←C(x1), B(x2), r1(x1, x2),
r1(x3, x2), r2(x2, x4), and assumeAv∃(r1ur−1 ur

−
2).B ∈

Ξ(T ∗). In (S1) we select the non-distinguished variable x2.
Next, in (S2), we replace r2(x2, x4) by r−2 (x4, x2). Since all
roles are simple, we do nothing in (S3). In (S4) we choose
Vx2

= {x2} and Vp = {x1, x3, x4}, and in (S5), Av∃(r1 u
r−1 ur

−
2).B. Then we clip off x2 in (S6), merge all variables

in Vp and rename them to x2 in (S7), and add A(x2) in (S8),
to obtain ρ′ : q(x2)← C(x2), A(x2).

Example 3 (ctd). Now assume that trans(r1) ∈ T . As
shown in Figure 3, in (S3) we choose to replace r1(x1, x2)
with r1(x1, u) and r1(u, x2). In (S4) we choose Vx2 = {x2}
and Vp = {u, x3, x4}. Then we proceed similarly as above
to obtain ρ′′ : q(x1)← C(x1), r1(x1, x2), A(x2).

This rewriting also provides a reduction of query answer-
ing to reasoning in Datalog, provided that the completion
rules take transitivity into account.

Definition 7. For a Horn-SHIQ TBox T , cr(T) =
cr(T ∗) ∪ {r(x, z)←r(x, y), r(y, z) | r is transitive in T }.

Now we can show the following:

Theorem 4. Assume a consistent Horn-SHIQ ontology
O = (T ,A) and a conjunctive query q. Then ans(O, q) =⋃
q′∈rewT (q) ans(MM (A ∪ cr(T)), q′).

Proof. (Sketch) Using standard techniques, it is easy to
show ans(MM (A∪cr(T)), q)=ansT (MM (A∪cr(T ∗)), q)
for every ABox A and CQ q. By this and Theorem 3,
we only need to show ansT (IO, q) = ansT (J , rewT (q)),
where J = MM (A∪cr(T ∗)) and IO = chase(J ,Ξ(T ∗)).

To show ansT (IO, q) ⊇ ansT (J , rewT (q)), assume ~u ∈
ansT (J , rewT (q)). Then there is a query q′ ∈ rewT (q) and
a T -match πq′ for q′ in J such that ~u = πq′(~x). By the
construction of IO, we also have ~u ∈ ansT (IO, q′). If q′ 6=
q (otherwise we are done), there is n > 0 such that q0 →T
q1, · · · , qn−1 →T qn with q0 = q and qn = q′. Thus to
prove the claim it suffices to show that ~u ∈ ansT (IO, qi)
implies ~u ∈ ansT (IO, qi−1), where 0 < i ≤ n.

Assume that qi was obtained from qi−1 by a rewriting
step, where some variable x was chosen in (S1), some Vx
and Vp in (S4), and some axiom M v ∃S.N in (S5). Sup-
pose πqi is a T -match for qi in IO with ~u = πq′(~x), i.e.
~u ∈ ansT (IO, qi). Let d = πqi(x). Due to step (S8)
in the rewriting and the fact that IO is a model of O, we

have d ∈ (∃S.N)IO . Then there is d′ ∈ ∆IO such that
(d, d′) ∈ SIO and d′ ∈ NIO . One can show that the map-
ping πqi−1

defined as follows is a T -match for qi−1 in IO:
πqi−1(z) = d′ for all z ∈ Vx, πqi−1(u) = d for all u ∈ Vp,
and πqi−1(z) = πqi(z) for the remaining variables z.

To show ansT (IO, q)⊆ ansT (J , rewT (q)) we prescribe
the naming of fresh domain elements introduced when chas-
ing J w.r.t. Ξ(T ∗), and use an element e ·n for some integer
n for each successor of an element e. For d ∈ ∆J we let
|d| = 0, and for w · n ∈ ∆IO we let |w · n| = |w| + 1.
Assume a tuple ~u ∈ ansT (IO, q). By definition, there is
T -match πq for q in IO such that ~u = πq(~x). We have to
show that there exists q′ ∈ rewT (q) and a T -match πq′ for
q′ in J such that ~u = πq′(~x).

For a T -match π′ in IO, let deg(π′)=
∑
y∈rng(π′) |π′(y)|.

Then, given that q ∈ rewT (q), to prove the claim it suffices
to prove the following statement: if q1 ∈ rewT (q) has a T -
match πq1 for q1 in IO such that ~u = πq1(~x) and deg(πq1) >
0, then there exists q2 ∈ rewT (q) that has a T -match πq2 for
q2 in IO such that ~u = πq2(~x) and deg(πq2) < deg(πq1).

The query q2 is obtained by selecting for (S1) an x such
that πq1(x) 6∈ NI (which exists because deg(πq1) > 0) and
there is no variable x′ of q1 with πq1(x) a prefix of πq1(x′)
(that is, x is a leaf in the subforest of IO induced by the
image of πq1). Let dx = πq1(x), and let dp be the parent of
dx, i.e. dx = dp · n for some integer n. For Step (S3), we
choose to rewrite the atoms Γ = {s(y, x) ∈ q1 | πq1(y) 6=
dx ∧ πq1(y) 6= dp}. By definition of T -match, for each such
atom there is a transitive role rsv∗T s such that there is an rs-
path from πq1(y) to πq1(x); this rs can be used in the fresh
atoms. Let Vt be the set of fresh variables introduced in this
step. For Step (S4), let Vx = {z ∈ var(q1) | πq1(z) = dx}
and Vp = {z ∈ var(q1) | πq1(z) = dp} ∪ Vt. We know
from the construction of IO that dx was introduced by an
application of an axiom ax = M v ∃S.N ∈ Ξ(T ∗) such
that dp ∈ MIO ; we choose this axiom for Step (S5). It is
not hard to show that (S5.a–c) hold. Finally, a T -match πq2
for q2 in IO such that ~u = πq2(~x) and deg(πq2) < deg(πq1)
is obtained from πq1 by setting πq2(z) = πq1(z) for all z of
q2 with z 6= x, and πq2(x) = dp.

By the above, we can answer q over O = (T ,A) by
posing rewT (q) over the Datalog program A ∪ cr(T). The
method also applies to KBs K = (T ,A,P), where T is in
Horn-SHIQ and P is weakly DL-safe. The ground atomic
consequences of K can be collected by fixed-point compu-

730

tation: until no new consequences are derived, pose rules in
P as CQs over (T ,A) and put the obtained answers into A.
If we employ the rewriting in Definition 6, this computation
can be achieved using a plain Datalog program.

Theorem 5. For a ground atom α over a KBK = (T ,A,P)
where T is a Horn-SHIQ TBox and P is weakly DL-safe,
we have (T ,A,P) |= α iff cr(T) ∪ rewT (P) ∪ A |= α.

Proof. (Sketch) Let P ′ = cr(T) ∪ rewT (P). For the “if”
direction, the only interesting case is when (T ∗,A) is con-
sistent. In this case it suffices to show that the rules of P ′
applied on A derive only atoms that are consequences of
(T ,A,P). This is straightforward for all rules in cr(T),
since the rules are already logical consequences of T . For
the rules in ρ′ ∈ rewT (P) it is a consequence of Theorem 4.

To show the “only if” direction, again the only interesting
case is where cr(T)∪rewT (P)∪A is consistent. In this case,
one can consider the setA′ of all ground α such that cr(T)∪
rewT (P) ∪ A |= α, and show that I = chase(A′,Ξ(T ∗))
is a model of (T ,A,P) such that I 6|= α for all α such that
cr(T) ∪ rewT (P) ∪ A 6|= α.

This reduction yields a worst-case optimal algorithm.

Theorem 6. For a ground atom α over a KBK = (T ,A,P)
where T is a Horn-SHIQ TBox and P is weakly DL-safe,
checking (T ,A,P) |= α is EXPTIME-complete in general,
and PTIME-complete in data complexity.

Proof. (Sketch) By Theorem 5, checking (T ,A,P) |= α
is equivalent to deciding cr(T) ∪ rewT (P) ∪ A |= α. We
analyze the computational cost of the latter check.

We recall that Ξ(T ∗) can be computed in exponential time
in size of T and is independent fromA. The program rewrit-
ing rewT (P) is finite and computable in time exponential
in the size of T and P: rules in rewT (ρ), where ρ ∈ P ,
use only relation names and variables that occur in ρ and T
(fresh variables introduced in (S3) are eliminated in (S6) and
(S7)). Hence, the size of each rule resulting from a rewrite
step is of size polynomial in the size of T and P , and thus
the number of rules in rewT (P) is at most exponential in
the size of T and P . The size of rewT (P) is constant when
data complexity is considered. Furthermore, the grounding
of cr(T)∪ rewT (P)∪A is exponential in the size of K, but
polynomial for fixed T and P . By the complexity of Data-
log, it follows that the algorithm resulting from Theorem 5
is exponential in combined but polynomial in data complex-
ity. These results are worst-case optimal, and apply already
to plain conjunctive queries (Eiter et al. 2008b).

Both Ξ(T ∗) and rewT (P) can be of exponential size, but
this worst-case complexity is only exhibited by some ‘hard’
instances. Our experimental results in the next Section show
that both sets are of manageable size for many ontologies.

Implementation and Experiments
The results of the previous Section directly give an algo-
rithm for answering a CQ q over a given Horn-SHIQ ontol-
ogy O = (T ,A), which works as follows: (1) we eliminate
transitivity axioms in T to get T ∗; (2) we saturate T ∗ into

A Q6(x)←Device(x), assistsWith(x, y), ReadingDevice(y)
Q7(x)←Device(x), assistsWith(x, y), ReadingDevice(y),

assistsWith(y, z), SpeechAbility(z)
S Q6(x,z)←Investor(x), hasStock(x,y), Stock(y), Company(z), hasStock(z,y)

Q7(x, z, w)←Investor(x), hasStock(x, y), Stock(y), isListedIn(y, z),
StockExchangeList(z), Company(w), hasStock(w, y)

U Q6(x, y)←Professor(x), teacherOf(x, y), GraduateCourse(y)
Q7(x, z)←Faculty(y), Professor(z), Student(x), memberOf(x, y),

worksFor(z,y)
V Q6(x, y, z)←Person(x), hasRole(x, y), Leader(y), exists(y, z)

Q7(x,y,z,v)←Person(x), hasRole(x, y), Leader(y), exists(y, z),
TemporalInterval(z), related(x, v), Country(v)

Table 4: Additional queries in rewriting evaluation
Rules Time (ms)

ReqG Presto CLIPPER ReqG Presto CLIPPER

Q1 27 53 42 281 45 50
Q2 50 32 31 184 46 62
Q3 104 32 31 292 27 65

A Q4 224 43 36 523 32 71
Q5 624 37 36 1177 25 70
Q6 364 35 30 523 31 65
Q7 2548 43 32 7741 61 64
Q1 6 7 10 14 7 19
Q2 2 3 22 263 9 22
Q3 4 4 9 1717 10 21

S Q4 4 4 24 1611 9 23
Q5 8 5 10 18941 10 22
Q6 4 8 5 204 11 21
Q7 8 6 7 1733 11 17
Q1 15 16 15 13 8 73
Q2 10 3 10 16 10 58
Q3 72 28 26 77 12 63

V Q4 185 44 41 261 17 71
Q5 30 16 8 99 15 44
Q6 18 22 18 27 11 69
Q7 180 34 27 359 12 105
Q1 2 4 2 14 (1247) 12 (1252) 27 (1255)
Q2 1 2 45 201 (1247) 23 (1262) 36 (1637)
Q3 4 8 17 477 (2055) 26 (2172) 29 (1890)

U Q4 2 56 63 2431 (1260) 20 (1235) 28 (1735)
Q5 10 8 16 7216 (1267) 26 (1305) 36 (1372)
Q6 10 13 10 13 (1272) 14 (1260) 27 (1262)
Q7 960 24 19 1890 (1730) 15 (1310) 35 (1322)

Table 5: Downscaling query rewriting evaluation

Ξ(T ∗) using the calculus in Table 2; (3) we obtain rewT (ρ)
by exhaustively applying to q the rewriting step in Defini-
tion 6 using the axioms Ξ(T ∗); (4) we put together A, the
completion rules cr(T), and rewT (ρ) into a Datalog pro-
gram P; and (5) we evaluate the program P .

To evaluate the feasibility of this algorithm, we have im-
plemented a prototype system CLIPPER1 for answering CQs
containing only simple roles. To the best of our knowledge,
it is the first such system for full Horn-SHIQ (under the
standard semantics of first-order logic), and in expressive-
ness subsumes similar DL-Lite and EL reasoning engines.

CLIPPER is implemented in Java and uses OWLAPI 3.2.2
(Horridge and Bechhofer 2011) to manage ontologies. It
accepts an ontology O= (T ,A) and a query q in SPARQL
syntax as input. Initial preprocessing involves normalization
ofO and checking that T is Horn. Then it applies steps (1) –
(5) above (with some minor optimizations). For the Datalog
evaluation in step (5), it uses DLV-20101014 (Leone et al.
2006) or Clingo 3.0.3 (Gebser et al. 2011).

Experiments We tested our CLIPPER system on a Pentium
Core2 Duo 2.00GHZ with 2GB RAM under Ubuntu 10.04
and 512MB heap size for the Java VM. We conducted the
following experiments.

1http://www.kr.tuwien.ac.at/research/systems/clipper/

731

Q1(x)←worksFor(x, y), isAffiliatedOrganizationOf(y, z)
Q2(x,z)←LeisureStudent(x), takesCourse(x,y), isTaughtBy(y,z), SportsLover(z)

Q3(x, y)←enrollIn(x, y), hasDegreeFrom(x, y)
Q4(x, z)←Student(x), hasDegreeFrom(x, y), Professor(z), worksFor(z, y)

Q5(x)←Postdoc(x), worksFor(x, y), University(y), hasAlumnus(y, x)
Q6(x)←Person(x), like(x, y), Chair(z), isHeadOf(z, v), like(z, y)

Q7(x, y)←Postdoc(x), hasAlumnus(y, x)
Q8(x, y)←GraduateCourse(x), isTaughtBy(x, y), isHeadOf(y, z)

Q9(x)←PeopleWithManyHobbies(x), isMemberOf(x, y)
Q10(x)←SportsLover(x), isHeadOf(x, y), ResearchGroup(y)

Table 6: Queries over Horn-SHIQ ontology

Rules Rewriting (ms) Datalog (DLV) Time (ms)
Q1 2 68 80 / 320 / 560 / 830
Q2 3 63 90 / 330 / 560 / 830
Q3 9 96 90 / 320 / 570 / 810
Q4 172 143 230 / 830 / 1430 / 1580
Q5 16 91 90 / 330 / 570 / 820
Q6 255 177 250 / 890 / 1530 / 1800
Q7 8 89 80 / 320 / 570 / 820
Q8 175 146 230 / 830 / 1430 / 1580
Q9 175 145 230 / 820 / 1400 / 1600
Q10 2 64 80 / 330 / 570 / 830

Table 7: Experiment with UOBM Horn-SHIQ ontology

1. Downscaling test. We compared CLIPPER with other
query rewriting systems for DL-Lite, viz. REQUIEM (Perez-
Urbina et al. 2009) and PRESTO (Rosati and Almatelli 2010),
and found that it is competitive and scales down well on
DL-Lite ontologies. We used the ontologies ADOLENA
(A), STOCK-EXCHANGE (S), VICODI (V) , and UNIVER-
SITY (U), and queries (Q1–Q5) from the REQUIEM test suite,
which have been widely used for system tests. In addition,
we considered the queries in Table 4.

The number of rewritten queries and rewriting time are
shown in Table 5 (loading and preprocessing times are ex-
cluded). CLIPPER and PRESTO generated in most cases rule
sets of comparable size, and in short time; in a few cases
PRESTO generated significantly less rules than CLIPPER. RE-
QUIEM, in its G-version (which generates optimized rule
sets), generated in several cases significantly more rules.
This is largely explained by rule unfolding to produce CQs;
still in many cases, in particular for S and U except Q7, the
final result is small (but needed considerably more time).

For UNIVERSITY, we evaluated the rewritten queries over
4 different ABoxes with 67k to 320k assertions using DLV
(the other ontologies in the suite don’t have ABoxes). Inter-
estingly, in all cases the execution times for the three rewrit-
ings were very similar; the average runtime of each query on
the 4 ABoxes is shown in brackets.

2. Full Horn-SHIQ . To test CLIPPER on a full Horn--
SHIQ ontology, we modified the UOBM ontology (Ma
et al. 2006), which is in SHOIN (D), by dropping or
strengthening (in case of disjunctions) non-Horn-SHIQ
TBox axioms; the final ontology has 171 TBox axioms. We
used ABoxes Ai, 1≤ i≤ 4, with 20k, 80k, 140k and 200k
assertions. The test queries in Table 6 were tailored to re-
quire reasoning with Horn-SHIQ constructs unavailable in
DL-Lite and EL. Table 7 presents the number of rewrit-
ten queries, rewriting time, and DLV running time of Da-

talog programs. The results show that CLIPPER answered
all queries in reasonable time and scaled well (time printed
A1/ A2 / A3 /A4). The rewriting times for all the queries
are small and close. The high number of rules generated
for Q4, Q6, Q8, and Q9 is due to many different possibili-
ties to derive atoms in the query; e.g., for Professor(z) and
worksFor(z,y) in Q4. However, the evaluation still performs
well (it stays within a small factor).

Related Work and Conclusion
Since Calvanese et al. (2007) introduced query rewriting in
their seminal work on DL-Lite, many query rewriting tech-
niques have been developed and implemented, e.g. (Perez-
Urbina et al. 2009, Rosati and Almatelli 2010, Chortaras et
al. 2011, Gottlob et al. 2011), usually aiming at an optimized
rewriting size. Some of them also go beyond DL-Lite;
e.g. Perez-Urbina et al. cover ELHI, while Gottlob et al.
consider Datalog±. Most approaches rewrite a query into
a (union of) CQs; Rosati and Almatelli generate a non-
recursive Datalog program, while Perez-Urbina et al. pro-
duce a CQ for DL-Lite and a (recursive) Datalog program
for DLs of the EL family. Our approach rewrites a CQ into
a union of CQs, but generates (possible recursive) Datalog
rules to capture the TBox.

Our technique resembles Rosati’s (2007) for CQs in EL,
which incorporates the input CQ into the TBox before satu-
ration, after which the TBox is translated into Datalog. This
is best-case exponential, which we avoid (a rewrite step oc-
curs only if the TBox has an applicable existential axiom).

Rewriting approaches for more expressive DLs are less
common. A notable exception is Hustadt et al.’s (2007)
translation of SHIQ terminologies into disjunctive Data-
log, which is implemented in the KAON2 reasoner. It can
be used to answer queries over arbitrary ABoxes, but sup-
ports only instance queries. An extension to CQs (without
transitive roles) (Hustadt et al., 2004) is not implemented.
Ortiz et al. (2010) use a Datalog rewriting to establish com-
plexity bounds of standard reasoning in the Horn fragments
of SHOIQ and SROIQ, but it does not cover CQs.

To our knowledge, CQ answering for Horn-SHIQ and
beyond has not been implemented before. Algorithms for
full SHIQwere first given in (Glimm et al. 2008, Calvanese
et al. 2007), for Horn-SHIQ in (Eiter et al. 2008b), and for
Horn-SHOIQ in (Ortiz et al. 2011). They are of theoreti-
cal interest (to prove complexity results) but not suited for
implementation due to prohibitive sources of complexity.
Outlook We presented a rewriting-based algorithm for CQ
answering over Horn-SHIQ ontologies, possibly extended
with weakly DL-safe rules. Our results can be generalized to
the case without UNA using standard techniques: the current
algorithm works correctly for TBoxes without axioms of the
form Av 6 1 r.B, while for a full Horn-SHIQ TBox T
an axiomatization of the equality predicate can be used to
replace the constraints in cr(T).

Our prototype implementation shows potential for practi-
cal applications, and further optimizations will improve it.
Future versions of CLIPPER will support transitive roles in
queries, and KBs with sets of weakly DL-safe rules.

732

An interesting application of our method is reasoning
with DL-programs, which loosely couple rules and ontolo-
gies (Eiter et al. 2008a). The inline evaluation framework
translates ontologies into rules to avoid the overhead caused
by using two interacting reasoners (Heymans, Eiter, and
Xiao 2010; Eiter et al. 2012a). The techniques in this pa-
per can be faithfully integrated into it to efficiently evaluate
DL-programs involving Horn-SHIQ ontologies.

Acknowledgements. This work was supported by the
Austrian Science Fund (FWF) grants P20840 and T515.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2007. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cam-
bridge University Press, second edition.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. Datalog±:
a unified approach to ontologies and integrity constraints. In
ICDT ’09, 14–30. New York, NY, USA: ACM.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Calvanese, D.; Eiter, T.; and Ortiz, M. 2007. Answering
regular path queries in expressive description logics: An
automata-theoretic approach. In AAAI’07, 391–396.
Chortaras, A.; Trivela, D.; and Stamou, G. 2011. Opti-
mized query rewriting for OWL 2 QL. In CADE’11, 192–
206. Berlin, Heidelberg: Springer-Verlag.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008a. Combining answer set programming
with description logics for the Semantic Web. Artificial In-
telligence 172(12-13):1495–1539.
Eiter, T.; Gottlob, G.; Ortiz, M.; and Simkus, M. 2008b.
Query answering in the description logic Horn-SHIQ. In
JELIA’08, 166–179. Springer.
Eiter, T.; Lutz, C.; Ortiz, M.; and Simkus, M. 2009. Query
answering in description logics with transitive roles. In IJ-
CAI’09, 759–764.
Eiter, T.; Krennwallner, T.; Schneider, P.; and Xiao,
G. 2012a. Uniform Evaluation of Nonmonotonic DL-
Programs. In FoIKS’12, 1–22. Springer.
Eiter, T.; Ortiz, M.; Šimkus, M.; Tran, T.; and Xiao, G.
2012b. Query rewriting for Horn-SHIQ plus rules. Tech-
nical Report INFSYS RR-1843-12-04, TU Vienna. http:
//www.kr.tuwien.ac.at/research/reports/rr1204.pdf.
Eiter, T.; Ortiz, M.; and Simkus, M. 2012. Conjunctive
query answering in the description logic SH using knots. J.
Comput. Syst. Sci. 78(1):47–85.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The potsdam
answer set solving collection. AI Commun. 24(2):107–124.

Glimm, B.; Lutz, C.; Horrocks, I.; and Sattler, U. 2008.
Conjunctive query answering for the description logic
SHIQ. J. Artif. Intell. Res. (JAIR) 31:157–204.
Glimm, B.; Horrocks, I.; and Sattler, U. 2006. Conjunctive
query answering for description logics with transitive roles.
In DL’06. CEUR-WS.org.
Gottlob, G.; Orsi, G.; and Pieris, A. 2011. Ontological
queries: Rewriting and optimization. In ICDE’11, 2 –13.
Heymans, S.; Eiter, T.; and Xiao, G. 2010. Tractable rea-
soning with dl-programs over datalog-rewritable description
logics. In ECAI’10, 35–40. IOS Press.
Horridge, M., and Bechhofer, S. 2011. The OWL API: A
java API for OWL ontologies. Semantic Web 2(1):11–21.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. A decomposi-
tion rule for decision procedures by resolution-based calculi.
In LPAR’04, 21–35. Springer.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reasoning 39(3):351–384.
Kazakov, Y. 2009. Consequence-driven reasoning for Horn
SHIQ ontologies. In IJCAI’09, 2040–2045.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Complexity
boundaries for Horn description logics. In AAAI’07, 452–
457. AAAI Press.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning. ACM Trans. Com-
put. Log. 7(3):499–562.
Levy, A. Y., and Rousset, M.-C. 1998. Combining
Horn rules and description logics in CARIN. Artif. Intell.
104:165–209.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a complete OWL ontology benchmark. In
ESWC’06, 125–139. Springer.
Maier, D., and Mendelzon, A. 1979. Testing implications of
data dependencies. ACM Transactions on Database Systems
4:455–469.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2010. Worst-case
optimal reasoning for the Horn-DL fragments of OWL 1 and
2. In KR’10. AAAI Press.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query
answering in the Horn fragments of the description logics
SHOIQ and SROIQ. In IJCAI’11, 1039–1044.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009. A
comparison of query rewriting techniques for DL-Lite. In
DL’09. CEUR-WS.org.
Rosati, R., and Almatelli, A. 2010. Improving query an-
swering over DL-Lite ontologies. In KR’10.
Rosati, R. 2006. DL+log: Tight integration of description
logics and disjunctive datalog. In KR’06, 68–78.
Rosati, R. 2007. On conjunctive query answering in EL. In
DL’07. CEUR Electronic Workshop Proceedings.
Sattler, U. 2000. Description logics for the representation of
aggregated objects. In ECAI’09, 239–243. IOS Press.

733

