
Ontology-Based Data Access with Dynamic TBoxes in DL-Lite

Floriana Di Pinto, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

SAPIENZA Università di Roma - Via Ariosto 25, I-00185 Roma, Italy
lastname@dis.uniroma1.it

Abstract
In this paper we introduce the notion of mapping-based
knowledge base (MKB) to formalize the situation where both
the extensional and the intensional level of the ontology are
determined by suitable mappings to a set of (relational) data
sources. This allows for making the intensional level of the
ontology as dynamic as traditionally the extensional level
is. To do so, we resort to the meta-modeling capabilities of
higher-order Description Logics, which allow us to see con-
cepts and roles as individuals, and vice versa. The challenge
in this setting is to design tractable query answering algo-
rithms. Besides the definition of MKBs, our main result is
that answering instance queries posed to MKBs expressed
in Hi(DL-LiteR) can be done efficiently. In particular, we
define a query rewriting technique that produces first-order
(SQL) queries to be posed to the data sources.

Introduction
Ontology-based data access (OBDA) (Calvanese et al.
2007a) is a recent application of Description Logics (DLs)
that is gaining momentum. The idea behind OBDA is to use
a DL ontology as a means to access a set of data sources,
so as to mask the user from all application-dependent as-
pects of data, and to extract useful information from the
sources based on a conceptual representation of the domain,
expressed as a TBox in a suitable DL. In current approaches
to OBDA, the intensional level of the ontology (the TBox)
is fixed at design time, and the mapping assertions specify
how the data at the sources correspond to instances of the
concepts, roles, and attributes in the TBox. More precisely,
the various mapping assertions determine a sort of virtual
ABox, in which the individual objects are built out from
data, and the instance assertions are specified through the
relationships between the sources and the elements of the
ontology. Several OBDA projects have been carried out in
the last years (Savo et al. 2010), and OBDA systems have
been designed to support OBDA applications (Calvanese et
al. 2011).

All current works on OBDA share the idea, originally
stemmed in data integration and in data exchange (Ullman
2000; Halevy 2001; Lenzerini 2002; Kolaitis 2005), that
mappings are used to (virtually) retrieve the extensional in-
formation from the sources. The intensional or schema level
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

T-CarTypes

Code Model Brand Type
M1 1982 PONTIAC FIREBIRD GM Coupe
M2 1966 CADILLAC DEVILLE GM Sedan
M3 1973 FALCON XB GT COUPE Ford Coupe
M4 1967 MUSTANG SHELBY Ford Coupe
M5 1973 MUSTANG MACH 1 Ford Coupe

T-Cars
Number Plate Code Color Prod Country

111DEVIL M2 BLUE U.S.
INTERCEPTOR M3 BLACK AUSTRALIA

ELEANOR M5 YELLOW U.S.
KITT M1 BLACK U.S.

.

Figure 1: The database D

information, i.e., the ontology of the domain of interest, re-
mains fixed a priori, once and for all. In this paper, we
challenge this preconception, and propose to virtualize both
the extensional and the intensional information. Initial ideas
on generating intensional specifications (in particular, rela-
tional schemas) through mappings, has been studied in the
data exchange setting in (Papotti and Torlone 2009), where
both data and meta-data (typically stored in system tables in
relational dbms) are exchanged. In other words, we propose
a setting where also the ontology itself is virtually generated
through mappings. To do so, we look into two key aspects.

The first aspect is related to using the data sources to iden-
tify the concepts and roles that are relevant to the domain
of interest. Consider, for example, the database D shown
in Figure 1, storing data about different models and differ-
ent types of cars (table T-CarTypes), and various cars of
such types (table T-Cars) manufactured by motor compa-
nies. The key observation is that the database D stores in-
formation not only about the instances of concepts, but also
about the concepts themselves, and their relationships. For
example, table T-CarTypes tells us that there are several
concepts in our ontology (1973 FALCON XB GT, 1967
MUSTANG SHELBY, 1973 MUSTANG MACH 1, and so
on) that are subconcepts of the concept Car, and, implicitly,
tells us that they are mutually disjoint. Table T-Cars, on
the other hand, provides information about the instances of
the various concepts, as well as other properties about them.

The second aspect is related to the need of meta-modeling

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

719

constructs in the language used to specify the ontol-
ogy (Chen, Kifer, and Warren 1993; Pan and Horrocks 2006;
De Giacomo, Lenzerini, and Rosati 2011). Meta-modeling
allows one to treat concepts and properties as first-order cit-
izens, and to see them as individuals that may constitute the
instances of other concepts, called meta-concepts. In our
example, it is convenient to introduce in the ontology the
meta-concept Car-Type, and specializations of it such as
Coupe, Sedan,..., whose instances include the subconcepts
of cars stored in table T-CarTypes.

We deal with both such aspects here, focusing on the need
of designing tractable algorithms for query answering, typ-
ical of OBDA systems. Indeed, as argued in (Poggi et al.
2008), the data sources used in OBDA systems are likely to
be very large, hence OBDA systems should be based on DLs
that are tractable in data complexity. In particular, (Poggi et
al. 2008) advocates the use of the DL-Lite family, which al-
lows for First-Order Logic (FOL) rewritability of (unions of)
conjunctive queries. We remind the reader that in a DL en-
joying FOL rewritability, query answering can be divided in
two steps. In the first step, called rewriting, using the TBox
only, the query q is transformed into a new FOL query q′,
and in the second step q′ is evaluated over the ABox. The
correctness of the whole method relies on the fact that the
answers to q′ over the ABox coincide with the certain an-
swers to q over the whole ontology. The challenge in this
paper is to design tractable query answering algorithms even
in cases where the mappings relate data at the sources to both
the extensional and the intensional level of the ontology, and
meta-concepts and meta-roles are used in the queries.

In this paper, we present the following contributions.
(i) We introduce the notion of mapping-based knowledge

base (MKB), to formalize the situation where both the ex-
tensional and the intensional level of the ontology are de-
termined by suitable mapping assertions involving the data
sources, achieving a considerable level of flexibility. In do-
ing so, we make use of the notion of higher-order DL, pre-
sented in (De Giacomo, Lenzerini, and Rosati 2011), where
it is shown how, starting from a traditional DL L, one can
define its higher-order version Hi(L). Here, we apply this
idea, using the higher-order DL Hi(DL-LiteR).

(ii) We introduce an extension of unions of conjunctive
queries (UCQs) that makes use of the higher-order features
of Hi(DL-LiteR), and we devise an interesting class of such
queries that enjoys nice computational properties, the so-
called instance higher-order UCQs (IHUCQs) where we do
not allow subclass and subproperty assertions in the query,
though they are obviously allowed in the MKB.

(iii) We show that answering queries for IHUCQs posed
to MKBs expressed in Hi(DL-LiteR) can be done, through
FOL rewriting, efficiently (more precisely, in AC0) with re-
spect to the extensional level of the data sources, i.e., those
parts of the data sources which are not involved in the inten-
sional level of the ontology. Specifically, we describe an al-
gorithm that, given an IHUCQ q over a MKB, rewrites q into
a FOL query that is evaluated taking into account only the
mapping assertions of the MKB involving the extensional
level of the ontology. Hence, query answering can be dele-
gated to a DBMS, as in traditional OBDA systems.

Figure 2: Example of meta-modeling in the Cars ontology

Overall, we show that using current OBDA technologies,
and extending mappings so as that they now can talk about
classes and relationships as objects (requiring higher-order
features), one can realize the idea of virtualizing both the
extensional and the intensional information in a way that is
natural and even very effective. Indeed, our AC0 result can
be read as follows: the complexity of higher-order query an-
swering through mappings remains the same as in traditional
OBDA settings, when measured only with respect to the ex-
tensional level of the data sources.

Higher-order DL-LiteR
Following (De Giacomo, Lenzerini, and Rosati 2011), we
can characterize every traditional DL L by a set OP(L)
of operators, used to form concept and role expressions,
and a set of MP(L) of meta-predicates, used to form as-
sertions. Each operator and each meta-predicate have an
associated arity. If symbol S has arity n, then we write
S/n to denote such a symbol and its arity. For DL-LiteR,
we have: (i) OP(DL-LiteR) = {Inv/1, Exists/1}; (ii)
MP(DL-LiteR) = {InstC/2, InstR/3, IsaC/2, IsaR/2,
DisjC/2,DisjR/2}.

Let’s assume the existence of two disjoint, countably in-
finite alphabets: S, the set of names, and V , the set of vari-
ables. Intuitively, the names in S are the symbols denoting
the atomic elements of a Hi(DL-LiteR) knowledge base.
The building blocks of such a knowledge base are asser-
tions, which in turn are based on terms and atoms.

We inductively define the set of terms, denoted
by τDL-LiteR(S,V), over the alphabets S and V for
Hi(DL-LiteR) as follows:
• if e ∈ S ∪ V then e ∈ τDL-LiteR(S,V);
• if e ∈ τDL-LiteR(S,V), and e is not of the form Inv(e′)

(where e′ is any term), then Inv(e) ∈ τDL-LiteR(S,V);1
• if e ∈ τDL-LiteR(S,V) then Exists(e) ∈ τDL-LiteR(S,V).
Intuitively, a term denotes either an atomic element, the
inverse of an atomic element, or the projection of an
atomic element on either the first or the second compo-
nent. Ground terms, i.e., terms without variables, are
called expressions, and the set of expressions is denoted by
τDL-LiteR(S). A DL-LiteR-atom, or simply atom, over the
alphabets S and V for Hi(DL-LiteR) is a statement of the
form a(e1), a(e1, e2), a(e1, e2, e3) where a/1, a/2, a/3 ∈
MP(DL-LiteR), and e1, e2, e3 ∈ τDL-LiteR(S,V). If X is

1Differently from (De Giacomo, Lenzerini, and Rosati 2011),
we avoid the construction of terms of the form Inv(Inv(e)) which,
as roles, are equivalent to e. Under this assumption, we do not have
safe-range issues when dealing with queries, thus, differently form
(De Giacomo, Lenzerini, and Rosati 2011), we consider here non-
Boolean queries.

720

a subset of V , a is an atom, and all variables appearing in a
belong to X , then a is called an X-atom.

Ground DL-LiteR-atoms, i.e., DL-LiteR-atoms without
variables, are called DL-LiteR-assertions, or simply asser-
tions. Thus, an assertion is simply an application of a meta-
predicate to a set of expressions, which intuitively means
that an assertion is an axiom that predicates over a set of
individuals, concepts or roles.

A Hi(DL-LiteR) knowledge base (KB) over S is a finite
set of DL-LiteR-assertions over S. To agree with the usual
terminology of DLs, we use the term TBox to denote a set
of IsaC , IsaR, DisjC and DisjR assertions, and the term
ABox to denote a set of InstC and InstR assertions.

Example 1 The Hi(DL-LiteR) KB capturing the domain of
interest in Figure 2, is defined by the following assertions:
• IsaC (Coupe, CarType), IsaC (Sedan, CarType),
• InstC (s, Sedan), DisjC (Coupe, Sedan),
• InstC (Interceptor, 1973 FALCON XB GT COUPE),
• InstC (1973 FALCON XB GT COUPE, Coupe).2

Notice how the last assertion exploits the meta-modeling ca-
pabilities of Hi(DL-LiteR), i.e. treating the concept 1973
FALCON XB GT COUPE as an individual, instance of the
concept Coupe, rather than a concept.

The semantics of Hi(DL-LiteR) is based on the notion of in-
terpretation structure. An interpretation structure is a triple
Σ = 〈∆, Ic, Ir〉 where: (i) ∆ is a non-empty (possibly
countably infinite) set; (ii) Ic is a function that maps each
d ∈ ∆ into a subset of ∆; and (iii) Ir is a function that
maps each d ∈ ∆ into a subset of ∆ × ∆. In other words,
Σ treats every element of ∆ simultaneously as: (i) an indi-
vidual; (ii) a unary relation, i.e., a concept, through Ic; and
(iii) a binary relation, i.e., a role, through Ir. An interpreta-
tion for S (simply called an interpretation, when S is clear
from the context) over the interpretation structure Σ is a pair
I = 〈Σ, Io〉, where
• Σ = 〈∆, Ic, Ir〉 is an interpretation structure, and
• Io is a function that maps:

1. each element of S to a single object in ∆; and
2. each element op ∈ OP(DL-LiteR) to a function op :

∆ → ∆ that satisfies the conditions characterizing the
operator op. In particular, the conditions for the opera-
tors in OP(DL-LiteR) are as follows:
(a) for each d1∈∆, if d=InvIo(d1) then dIr=(dIr1)−1;
(b) for each d1 ∈ ∆, if d = Exists(d1) then dIc =

{d | ∃d′ s.t. 〈d, d′〉 ∈ dIr1 }.
We now turn our attention to the interpretation of terms in

Hi(DL-LiteR). To interpret non-ground terms, we need as-
signments over interpretations, where an assignment µ over
〈Σ, Io〉 is a function µ : V → ∆. Given an interpre-
tation I = 〈Σ, Io〉 and an assignment µ over I, the in-
terpretation of terms is specified by the function (·)Io,µ :
τDL-LiteR(S,V) → ∆ defined as follows: (i) if e ∈ S
then eIo,µ = eIo ; (ii) if e ∈ V then eIo,µ = µ(e); (iii)
op(e)Io,µ = opIo(eIo,µ).

2Observe that we can always write such assertions in the tra-
ditional DL-notation, e.g. Coupe v CarType, Sedan v CarType,
Sedan(s), Coupe v ¬Sedan, ...

Finally, we define the semantics of atoms, by defining the
notion of satisfaction of an atom with respect to an interpre-
tation I and an assignment µ over I as follows:
• I, µ |= InstC(e1, e2) if eIo,µ1 ∈ (eIo,µ2)Ic ;
• I, µ|=InstR(e1, e2, e3) if 〈eIo,µ1 , eIo,µ2 〉∈(eIo,µ3)Ir ;
• I, µ |= IsaC(e1, e2) if (eIo,µ1)Ic ⊆ (eIo,µ2)Ic ;
• I, µ |= IsaR(e1, e2) if (eIo,µ1)Ir ⊆ (eIo,µ2)Ir ;
• I, µ |= DisjC(e1, e2) if (eIo,µ1)Ic ∩ (eIo,µ2)Ic = ∅;
• I, µ |= DisjR(e1, e2) if (eIo,µ1)Ir ∩ (eIo,µ2)Ir = ∅.

A Hi(DL-LiteR) KB H is satisfied by I if all the asser-
tions in H are satisfied by I3. As usual, the interpretations
I satisfyingH are called the models ofH. A Hi(DL-LiteR)
KBH is satisfiable if it has at least one model.

Mapping-based knowledge bases
A Hi(DL-LiteR) KB is a finite set of (ground) assertions.
As typical in DLs, even in OBDA systems, the assertions
concerning the intensional knowledge (e.g., ISAs) are stated
once and for all at design time. This is a reasonable assump-
tion in many cases, such as when the ontology is managed by
an ad-hoc system, and is built from scratch for the specific
application. However, one can easily conceive applications
where, e.g., to achieve a much higher level of flexibility, it
is of interest to build on-the-fly the KB directly from a set
of data sources through suitable mappings that insist both on
extensional information (as usual in OBDA) and intensional
information. In this way, all the assertions (not only the ex-
tensional ones) of the KB are defined by specific mappings
to such data sources. The resulting notion will be called
mapping-based knowledge base (MKB).

We assume that the data sources are expressed in terms of
the relational data model. Note that this is a realistic assump-
tion, since many data federation tools are now available that
are able to wrap a set of heterogeneous sources and present
them as a single relational database.

When mapping relational data sources to a MKB (or even
a KB), one should take into account the impedance mis-
match between sources that store “data values”, and corre-
sponding objects elements in the MKB (KB) (Poggi et al.
2008). Although we could in principle follow the idea in
(Poggi et al. 2008) to address such an impedance mismatch
problem, for the sake of simplicity, we will ignore this prob-
lem, assuming that the relational data sources store directly
names S of the MKB. Note, however, that all the results pre-
sented here easily extend to the case where the impedance
mismatch is dealt with as in (Poggi et al. 2008).

Formally, Hi(DL-LiteR) mapping-based knowledge base
(MKB) is a pair K = 〈DB ,M〉 such that: (i) DB is a rela-
tional database; (ii)M is a mapping, i.e., a set of mapping
assertions, each one of the form Φ(~x) ; ψ, where Φ is an
arbitrary FOL query over DB of arity n > 0 with free vari-
ables ~x = 〈x1, . . . , xn〉, and ψ is an X-atom in DL-LiteR,
with X = {x1, . . . , xn}.

In order to define the semantics of a Hi(DL-LiteR) MKB
K = 〈DB ,M〉, we need to define when an interpretation

3We do not need to mention assignments here, since all asser-
tions inH are ground.

721

Figure 3: Representation of the Cars ontology

satisfies an assertion in M with respect to a database DB .
To this end, we make use of the notion of ground instance of
an atom, and the notion of answer to a query over DB . Let ψ
be an X-atom with X = {x1, . . . , xn}, and let ~v be a tuple
of arity n with values from DB . Then the ground instance
ψ[~x/~v] of ψ is the formula obtained by substituting every
occurrence of xi with vi (for i ∈ {1, .., n}) in ψ. If DB is
a relational database, and Φ is a query over DB , we write
ans(Φ,DB) to denote the set of answers to Φ over DB .

We say that an interpretation I satisfies the mapping as-
sertion Φ(~x) ; ψ with respect to the database DB , if for
every tuple of values ~v ∈ ans(Φ,DB), the ground atom
ψ[~x/~v] is satisfied by I. I is a model of K = 〈DB ,M〉 if I
satisfies every assertion inM with respect to DB .
Example 2 The pairK = 〈D,M〉 is a Hi(DL-LiteR) MKB,
where D is the database shown in the introduction (cf. Fig-
ure 1), andM is the following set of mapping assertions:
• M1: {m | T-CarTypes(a,m, b, c)}; IsaC(m, b)
• M2: {b | T-CarTypes(a,m, b, c)}; IsaC(b,Car)
• M3: {t | T-CarsTypes(a,m, b, t)}; IsaC(t,CarType)
• M4: {t1, t2 | T-CarTypes(a,b,c,t1) ∧
T-CarTypes(d, e, f, t2) ∧ t1 6= t2}; DisjC(t1, t2)

• M5: {m1,m2 | T-CarTypes(c1,m1,a,b) ∧
T-CarTypes(c2,m2, d, e) ∧ c1 6= c2}; DisjC(m1,m2)

• M6: true ; IsaC(Car,Exists(produced in))
• M7: true ; IsaC(ProdCountry,Exists(Inv(produced in)))
• M8: {x, p | T-Cars(x, a, b, p)}; InstR(x, p, produced in)
• M9: {p | T-Cars(a, b, c, p)}; InstC(p,ProdCountry)
• M10: {m, t | T-CarTypes(a,m,b,t)}; InstC(m, t)
• M11: {x, y | T-Cars(x, c1, a, b)∧T-CarTypes(c1, y, d, e)}

; InstC(x, y)
The intuition is that, for example, a 1973 MUSTANG
MACH 1 is a Ford (M1); a Ford is a Car (M2); a Coupe
is a CarType (M3); a Coupe is not a Sedan nor any other
type of car (M4)4; and that a 1967 MUSTANG SHELBY
is not a 1973 MUSTANG MACH 1 (M5). Moreover, map-
pings M6 - M7 build the static knowledge concerning the

4Notice that, in this language (differently from the less expres-
sive UML), it would be possible to define some suitable disjoint-
ness assertions that are specific to those pairs of CarTypes that are
pairwise disjoint (rather than stating a generic disjointness, involv-
ing all the subconcepts of CarTypes).

relation produced in, between the concepts Car and Prod-
Country; whereas M8-M9 populate the relation produced in
and the concept ProdCountry. Mapping M10, by exploit-
ing the meta-modeling capabilities of Hi(DL-LiteR), re-
lates the different car models to their specific type, e.g.
the 1973 FALCON XB GT COUPE as an instance of the
concept Coupe. Finally, M11 allows to correctly retrieve
the instances of different car models, e.g. the famous car
ELEANOR, of 1974 movie ”Gone in 60 seconds”, is an in-
stance of the concept 1973 MUSTANG MACH 1, whereas
”Mad Max” police car Interceptor is an instance of 1973
FALCON XB GT COUPE.

Observe how these mappings allow to dynamically
build the ontology in Figure 3, without knowing a priori
any information about the different types of cars and
the different models that are produced at that time by
the motor companies. Indeed, all the intensional and
extensional knowledge is retrieved at run-time by the
mappings in M, from the current instance of database
D. Suppose, for example, that a motor company decides
to produce new car models, thus conceptually extending
the hierarchy at the bottom of Figure 3. In order to deal
with these changes, there are two reasonable choices.
(i) Introduce the new car models in tuples of table T-
CarTypes, without altering the database schema (e.g.
〈M6, 1967 CADILLAC ELDORADO, GM, Coupe〉).
In this case, all the new information is automatically
detected at run-time by the mappings in M, and correctly
introduced in the ontology. (ii) Introduce the information in
new relational tables, thus altering the database schema. In
this case, the novel situation is captured by defining suitable
mapping assertions over the new tables.

Although the example does not show it, we notice that our
framework allows for using variables inside operators, in
the head of mapping assertions. This is useful, for exam-
ple, to extract knowledge from the database catalog: e.g.
FK(x, 2, y, 1) ; IsaC(Exists(Inv(x)), y) where FK is
the table storing the database foreign keys.

Queries
We start by introducing “query atoms”. Intuitively, a query
atom is a special kind of atom, constituted by a meta-
predicate applied to a set of arguments, where each argu-
ment is either an expression or a variable. More precisely,
we define the set of q-terms to be τDL-LiteR(S) ∪ V . Notice
we do not allow for non-ground terms, except for variables
themselves. We define a query atom as an atom constituted
by the application of a meta-predicate in MP(DL-LiteR) to
a set of q-terms, and we call it ground if no variable occurs
in it. A query atom whose meta-predicate is InstC or InstR
is called an instance-query atom.

A higher-order conjunctive query (HCQ) is an expression
of the form q(x1, . . . , xn) ← a1, . . . , am where q, called
the query predicate, is a symbol not in S ∪ V , n is the ar-
ity of the query, every ai is a (possibly non-ground) query
atom, and all variables x1, . . . , xn belong to V and occur
in some aj . The variables x1, . . . , xn are called the free
variables (or distinguished variables) of the query, while the

722

other variables occurring in a1, . . . , am are called existen-
tial variables. A higher-order union of conjunctive queries
(HUCQ) is a set of HCQs of the same arity with the same
query predicate. A HCQ (HUCQ) constituted by instance
atoms only is called an instance HCQ ,or IHCQ (IHUCQ) .

Let I be an interpretation and µ an assignment over I.
A Boolean HCQ q of the form q ← a1, . . . , an is satisfied
in I, µ if every query atom ai is satisfied in I, µ. Given a
Boolean HCQ q and a Hi(DL-LiteR) KB (or MKB) K, we
say that q is logically implied by K (denoted by K |= q)
if for each model I of K there exists an assignment µ such
that q is satisfied by I, µ. Given a non-Boolean HCQ q of the
form q(e1, . . . , en)← a1, . . . , am, a grounding substitution
of q is a substitution θ such that e1θ, . . . , enθ are ground
terms. We call e1θ, . . . , enθ a grounding tuple. The set of
certain answers to q inK, denoted by cert(q,K), is the set of
grounding tuples e1θ, . . . , enθ that make the Boolean query
qθ ← a1θ, . . . , anθ logically implied by K. These notions
extend immediately to HUCQs.

Example 3 Examples of HCQs that can be posed to K are:
1 Return all the instances of Car that are of type Coupe

and were produced in Australia: q(x) ← InstC(x, y),
InstC(y, Coupe), InstR(x,AUSTRALIA, produced in).

2 Return all the pairs of Coupes and Sedan that were produced in
the same country:
q(x, y)← InstR(x, z, produced in), InstR(y, z, produced in),
InstC(x, v), InstC(y, w), InstC(v, Coupe), InstC(w, Sedan).

3 Return all the concepts to which a given instance (e.g. Eleanor)
belongs to: q(x)← InstC(ELEANOR, x).

4 Return all the concepts whose instances are the concepts to
which Eleanor belongs to:
q(y)← InstC(ELEANOR, x), InstC(x, y).

Observe that all of them are IHCQs. Indeed, here we con-
centrate on instance queries only.

Query answering
We now study the problem of answering IHUCQs over
Hi(DL-LiteR) MKBs. Since our query answering technique
is based on query rewriting, we will first deal with the prob-
lem of computing a perfect reformulation of a IHUCQ over a
Hi(DL-LiteR) KB. Then, we will present a query answering
algorithm for MKBs based on the above perfect reformula-
tion technique. In the following, we assume that the MKB
is consistent. 5

We start with some auxiliary definitions. If K =
〈DB ,M〉 is a MKB, then we denote by MA the set
of mapping assertions from M whose head predicate
is either InstC or InstR. Furthermore, we denote by
MT the set M \ MA, i.e., the set of mapping asser-
tions from M whose head predicate belongs to the set
{IsaC , IsaR,DisjC ,DisjR}. We call a mapping M an
instance-mapping ifM = MA, i.e., if the meta-predicates
InstC and InstR are the only ones to appear in the right-
hand side of the mapping assertions inM.

Then, we say that:

5This does not constitute a limitation, since it is possible to
show that checking consistency of a MKB can also be done through
query answering, by means of techniques analogous to the ones de-
fined for DL-Lite.

• e′ occurs as a concept argument in the atom InstC(e, e′);
• e′′ occurs as a role argument in the atom InstR(e, e′, e′′);
• e,e′ occur as concept arguments in the atom IsaC(e, e′);
• e,e′ occur as role arguments in the atom IsaR(e, e′);
• e,e′ occur as concept arguments in the atom DisjC(e, e′);
• e,e′ occur as role arguments in the atom DisjR(e, e′).

A DL atom is an atom of the form N(e) or N(e1, e2),
where N is a name and e, e1, e2 are either variables
or names. An extended CQ (ECQ) is a conjunction
of DL atoms, InstC atoms and InstR atoms. An
extended UCQ (EUCQ) is a union of ECQs. Given
an atom α, Pred(α) denotes the term appearing in
predicate position in α (such a term may be either a
variable or an expression). Given a TBox T , we de-
fine Concepts(T) = {e,Exists(e),Exists(Inv(e)) |
e occurs as a concept argument in T } and de-
fine Roles(T) = {e, Inv(e) | e occurs as a
role argument in T }. Given a mapping M and a database
DB , we denote by Retrieve(M,DB) the Hi(DL-LiteR)
KBH defined as:

H = {ψ(~t) | Φ(~x) ; ψ ∈M and DB |= Φ(~t)}

Given an instance-mappingM and an ABox A, we say that
A is retrievable through M if there exists a database DB
such that A = Retrieve(M,DB).

Query rewriting. The basic idea of our rewriting tech-
nique is to reduce the perfect reformulation of an IHUCQ
over a Hi(DL-LiteR) TBox to the perfect reformulation
of a standard UCQ over a DL-LiteR TBox, which can be
done e.g. by the algorithm PerfectRef presented in (Cal-
vanese et al. 2007b). To do so, we have to first transform
a IHUCQ into a standard UCQ, actually an EUCQ. This is
done through a first partial grounding of the query, through
the function PMG below, which eliminates meta-variables
(i.e., variables occurring in predicate positions) from the
query, and then through the functions Normalize and τ pre-
sented below. Once computed the perfect reformulation of
the EUCQ, the EUCQ is transformed back into a IHUCQ,
by the functions Denormalize and τ− presented below.

Given two IHCQs q, q′ and a TBox T , we say that
q′ is a partial metagrounding of q with respect to T if
q′ = σ(q) where σ is a partial substitution of the meta-
variables of q with the expressions occurring in T such
that, for each meta-variable x of q, either σ(x) = x or:
(i) if x occurs in a concept position in q, then σ(x) ∈
Concepts(T); (ii) if x occurs in a role position in q,
then σ(x) ∈ Roles(T). Given an IHCQ q and a TBox
T , we define PMG(q, T) as the set of all partial meta-
groundings of q with respect to T , i.e., the IHUCQ Q =
{q′ | q′ is a partial metagrounding of q w.r.t. T }. Moreover,
given a IHUCQQ and a TBox T , we define PMG(Q, T) as
the IHUCQ

⋃
q∈Q PMG(q, T).

The above partial metagrounding PMG is a crucial aspect
of our rewriting technique. Indeed, it can be shown that,
even if in Hi(DL-LiteR) the set of expressions that can be
built out of a finite set of names occurring in the TBox is
infinite, it is actually sufficient to ground the meta-variables
of the query only on a finite set of expressions. Formally:

723

Lemma 4 Given a IHUCQQ and a TBox T , for every ABox
A, cert(Q, T ∪ A) = cert(PMG(Q, T), T ∪ A).

Proof (sketch). Suppose cert(Q, T ∪ A) 6=
cert(PMG(Q, T), T ∪ A). First, it is straightforward to
verify that cert(Q, T ∪ A) ⊃ cert(PMG(Q, T), T ∪ A).
Thus, there exists a tuple t such that t ∈ cert(Q, T ∪
A) − cert(PMG(Q, T), T ∪ A). This implies that there
exists a model I for 〈T ,A〉 such that I |= Q(t) and
I 6|= PMG(Q, T)(t). Let ∆ be the domain of I. We now
define the following interpretation I↓ over the same domain
∆. For every d ∈ ∆:
• dI

↓
0 = dI0 ;

• dI↓c = dIc if there exists e ∈ Concepts(T) such that
eI0 = d, otherwise dI

↓
c = ∅;

• dI↓r = dIr if there exists e ∈ Roles(T) such that eI0 = d,
otherwise dI

↓
r = ∅.

It is easy to see that I↓ is a model for 〈T ,A〉. But
now, it is also immediate to verify that I↓ |= Q(t) iff
I↓ |= PMG(Q,T)(t), and since by hypothesis I 6|=
PMG(Q,T)(t), then I↓ 6|= PMG(Q,T)(t) as well. There-
fore, I↓ 6|= Q(t), thus contradicting the hypothesis that
t ∈ cert(Q, T ∪ A). Consequently, the thesis follows.

Then, given an instance atom α, we define Normalize(α)
as follows:
• if α = InstC(e1, e2) and e2 has the form Exists(e′)

where e′ is an expression which is not of the form
Inv(e′′), then Normalize(α) = InstR(e1, , e

′);
• if α = InstC(e1, e2) and e2 has the form Exists(Inv(e′))

where e′ is any expression, then Normalize(α) =
InstR(, e1, e

′).
Given an IHCQ q ← α1, . . . , αn, Normalize(q) returns
the IHCQ q ← Normalize(α1), . . . ,Normalize(αn). Fi-
nally, given an IHUCQ Q, we define Normalize(Q) as⋃
q∈QNormalize(q).
Given an IHCQ q and an instance-mapping M,

Denormalize(q,M) is the IHUCQ Q defined inductively
as follows:
• q ∈ Q;
• if q′ ∈ Q and q′ contains an atom α of the form

InstR(e1, , e2), and either Exists(e2) occurs in M or
Exists(x) (where x is a variable) occurs inM, then the
query obtained from q′ by replacing α with the atom
InstC(e1,Exists(e2)) belongs to Q;
• if q′ ∈ Q and q′ contains an atom α of the form

InstR(, e1, e2), and either Exists(Inv(e2)) occurs inM
or Exists(Inv(x)) (where x is a variable) occurs in M,
then the query obtained from q′ by replacing α with the
atom InstC(e1,Exists(Inv(e2))) belongs to Q;

• if q′ ∈ Q and q′ contains an atom α of the form
InstR(e1, e2, e3) and either Inv(e2) occurs in M or
Inv(x) (where x is a variable) occurs in M, then the
query obtained from q′ by replacing α with the atom
InstR(e2, e1, Inv(e3))) belongs to Q.

Finally, given an IHUCQ Q and a mapping M, we define
Denormalize(Q,M) as

⋃
q∈QDenormalize(q,M).

Given an IHUCQ Q and a TBox T , we denote by
PerfectRef (Q, T) the EUCQ returned by the query rewrit-

ing algorithm for DL-LiteR shown in (Calvanese et al.
2007b).6 We now define the functions τ and τ− which trans-
late IHUCQs into EUCQs and vice versa. Given an IHCQ
q and a TBox T , τ(q, T) is the ECQ obtained from q as
follows: (i) for each atom of q of the form InstC(e1, e2),
if e2 ∈ Concepts(T) then replace the atom with the atom
e2(e1); (ii) for each atom of q of the form InstR(e1, e2, e3),
if e3 ∈ Roles(T) then replace the atom with the atom
e3(e1, e2). Then, given an IHUCQ Q, we define τ(Q, T) =
{τ(q, T) | q ∈ Q}.

Given a ECQ q and a TBox T , τ−(q, T) is the IHCQ
obtained from q as follows: (i) for each atom of q of the form
e2(e1), replace the atom with the atom InstC(e1, e2); (ii) for
each atom of q of the form e3(e1, e2), replace the atom with
the atom InstR(e1, e2, e3). Then, given an IHUCQ Q, we
define τ−(Q, T) = {τ−(q, T) | q ∈ Q}.

We are now ready to formally define our rewriting al-
gorithm, which takes as input a IHUCQ, a TBox and an
instance-mapping, and returns a new IHUCQ.
ALGORITHM RewriteIHUCQ(Q, T ,M)
INPUT: Boolean IHUCQ Q, DL-LiteR TBox T ,
instance-mappingM
OUTPUT: Boolean IHUCQ Q′

Q0 = PMG(Q, T);
Q1 = Normalize(Q0);
Q2 = τ(Q1, T);
Q3 = PerfectRef (Q2, T);
Q4 = τ−(Q3, T);
Q′ = Denormalize(Q4,M);
return Q′;

The IHUCQ returned by RewriteIHUCQ(Q, T ,M)
constitutes a perfect reformulation of the query Q with re-
spect to the TBox T and the mappingM, as formally stated
by the following theorem.

Theorem 5 Let T be a TBox, let M be an instance-
mapping and let Q be a IHUCQ. Then, for every ABox
A that is a retrievable through M, cert(Q, T ∪ A) =
cert(RewriteIHUCQ(Q, T ,M),A).

Proof (sketch). The proof easily follows from Lemma 4,
from correctness of the algorithm PerfectRef , and from the
fact that the functions Normalize, τ , τ− and Denormalize
just perform equivalent transformations of the query.

Query answering. Based on the above query rewriting
technique, we now present an algorithm for query answer-
ing over MKBs. Our idea is to first compute a DL-LiteR
TBox by evaluating the mapping assertions involving the
predicates IsaC , IsaR, DisjC , DisjR over the database of
the MKB; then, such a TBox is used to compute the perfect
reformulation of the input IHUCQ.

To complete query answering, we now have to consider
the mapping of the predicates InstC and InstR, and refor-
mulate the query thus obtained by replacing the above pred-
icates with the FOL queries of the corresponding mapping
assertions. In this way we obtain a FOL query expressed
over the database. This second rewriting step, usually called

6Actually, we consider a slight generalization of that algorithm,
allowing for the presence of a ternary relation (InstR) in the query.

724

unfolding, can be performed by the algorithm UnfoldDB
presented in (Poggi et al. 2008).7 In the following, given
a mappingM and a database DB , we denote by DBMT

the
database constituted by every relation R of DB such that R
occurs inMT . Moreover, we define DBMA

as the database
DB − DBMT (i.e., DBMA is the portion of DB which is
not involved by the mapping MT). We are now ready to
present our query answering algorithm.

ALGORITHM Answer(Q,K)
INPUT: IHUCQ Q, Hi(DL-LiteR) MKB K = 〈DB ,M〉
OUTPUT: cert(Q,K)
T = Retrieve(MT ,DBMT);
Q′ = RewriteIHUCQ(Q, T ,MA);
Q′′ = UnfoldDB(Q′,MA);
return IntEval(Q′′,DBMA)

The algorithm starts by retrieving the TBox from the DB
through the mappingMT . Then, it computes the perfect re-
formulation of the query with respect to the retrieved TBox,
and next computes the unfolding of such a query with re-
spect to the mapping MA. Finally, it evaluates the query
over the database. The following property can be proved by
slightly extending the proof of correctness of the algorithm
UnfoldDB shown in (Poggi et al. 2008), and allows us to
prove correctness of the algorithm Answer .

Lemma 6 LetM be an instance-mapping, and letQ be a IHUCQ.
Then, for every database DB ,
cert(Q, 〈M,DB〉) = IntEval(UnfoldDB(Q,M),DBMA).

Theorem 7 Let K=〈DB ,M〉 be a Hi(DL-LiteR) MKB, let
Q be a IHUCQ, and let U be the set of tuples returned by
Answer(Q,K). Then, cert(Q,K) = U .

Finally, from the algorithm Answer we are able to derive
the following complexity results for query answering over
Hi(DL-LiteR) MKBs.

Theorem 8 Let K=〈DB ,M〉 be a Hi(DL-LiteR) MKB, let
Q be a IHUCQ and let ~t be a tuple of expressions. Deciding
whether K |= Q(~t) is in AC0 with respect to the size of
DBMA

, is in PTIME w.r.t. the size ofK, and is NP-complete
w.r.t. the size of K ∪Q(t).

Conclusions
We have investigated the possibility of generating a knowl-
edge base on the fly, while computing instance queries, from
data stored in data sources through asserted mappings. A
key point to obtain such a degree of flexibility is relying on
higher-order description logics which blur the distinction be-
tween classes/roles at the intensional level and individuals at
the extensional level.

This paper is only scratching the surfaces of the immense
possibilities that this approach opens. For example, we may
allow for the coexistence of multiple TBoxes within the
same data sources, and allow the user to select which TBox

7Here, we assume that the algorithm UnfoldDB takes as input a
EUCQ and an instance-mapping. This corresponds to actually con-
sidering a straightforward extension of the algorithm presented in
(Poggi et al. 2008) in order to deal with the presence of the ternary
predicate InstR.

to load when querying the system, possibly depending on
the query, much in the spirit of (Parsons and Wand 2000).
The user can in principle even compose on the fly the TBox
to use when answering a query. Obviously notions such as
authorization views acquire an intriguing flavor in this set-
ting (hiding intensional as well as extensional knowledge),
as well as consistency, since we may even allow for con-
tradicting assertions to coexist as long as they are not used
together when performing query answering.

Acknowledgments We thank the anonymous reviewers for
their comments and Lior Limonad for interesting discussions. We
acknowledge the support of EU Project FP7-ICT ACSI (257593).

References
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; and Rosati, R. 2007a. Ontology-based database
access. In Proc. of SEBD 2007, 324–331.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007b. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The Mastro system for ontology-based
data access. Semantic Web J. 2(1):43–53.
Chen, W.; Kifer, M.; and Warren, D. S. 1993. HILOG: A
foundation for higher-order logic programming. J. of Logic
Programming 15(3):187–230.
De Giacomo, G.; Lenzerini, M.; and Rosati, R. 2011.
Higher-order description logics for domain metamodeling.
In Proc. of AAAI 2011.
Halevy, A. Y. 2001. Answering queries using views: A
survey. VLDB Journal 10(4):270–294.
Kolaitis, P. G. 2005. Schema mappings, data exchange, and
metadata management. In Proc. of PODS 2005, 61–75.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of PODS 2002, 233–246.
Pan, J. Z., and Horrocks, I. 2006. OWL FA: a metamodeling
extension of OWL DL. In Proc. of WWW 2006, 1065–1066.
Papotti, P., and Torlone, R. 2009. Schema exchange:
Generic mappings for transforming data and metadata. Data
and Knowledge Engineering 68(7):665–682.
Parsons, J., and Wand, Y. 2000. Emancipating instances
from the tyranny of classes in information modeling. ACM
Trans. on Database Systems 25(2):228–268.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics X:133–173.
Savo, D. F.; Lembo, D.; Lenzerini, M.; Poggi, A.;
Rodrı́guez-Muro, M.; Romagnoli, V.; Ruzzi, M.; and Stella,
G. 2010. MASTRO at work: Experiences on ontology-based
data access. In Proc. of DL 2010.
Ullman, J. D. 2000. Information integration using logical
views. Theor. Comp. Sci. 239(2):189–210.

725

