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Abstract

In this paper, we investigate belief revision in possibilis-
tic logic, which is a weighted logic proposed to deal
with incomplete and uncertain information. Existing
revision operators in possibilistic logic are restricted in
the sense that the input information can only be a for-
mula instead of a possibilistic knowledge base which
is a set of weighted formulas. To break this restric-
tion, we consider weighted prime implicants of a pos-
sibilistic knowledge base and use them to define novel
revision operators in possibilistic logic. Intuitively, a
weighted prime implicant of a possibilistic knowledge
base is a logically weakest possibilistic term (i.e., a set
of weighted literals) that can entail the knowledge base.
We first show that the existing definition of a weighted
prime implicant is problematic and need a modification.
To define a revision operator using weighted prime im-
plicants, we face two problems. The first problem is
that we need to define the notion of a conflict set be-
tween two weighted prime implicants of two possibilis-
tic knowledge bases to achieve minimal change. The
second problem is that we need to define the disjunc-
tion of possibilistic terms. We solve these problems
and define two conflict-based revision operators in pos-
sibilistic logic. We then adapt the well-known postu-
lates for revision proposed by Katsuno and Mendelzon
and show that our revision operators satisfy four of the
basic adapted postulates and satisfy two others in some
special cases.

Introduction
Belief revision plays an important role in knowledge

maintenance. When a rational agent receives a new piece of
information about the domain of interest that contradicts her
original beliefs, she may have to drop some old beliefs to ac-
commodate the new information. In their pioneer work, Al-
chourrón, Gärdenfors, and Makinson (AGM for short) pro-
pose a set of postulates for characterizing a rational belief
revision operator (see (Gardenfors 1988)). Since that, belief
revision receives a lot of attention from several interrelated
fields, such as Artificial Intelligence, Databases and the Se-
mantic Web. AGM’s work is discussed in an abstract level.
In (Katsuno and Mendelzon 1992), Katsuno and Mendelzon
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reformulate AGM postulates for revision in propositional
logic and use them to evaluate existing revision operators.

It is well-known that possibilistic logic, which is a
weighted logic proposed to deal with incomplete and uncer-
tain information, is closely related to belief revision (Dubois
and Prade 1991). A possibilistic knowledge base is a fi-
nite set of weighted formulas, where the weight of a for-
mula is interpreted as the necessity degree of the formula.
Semantically, possibilistic logic is defined by a possibility
distribution, which is a mapping from the set of all inter-
pretations to the interval [0,1]. Belief revision operators in
possibilistic logic are often semantically defined by possi-
bility distributions associated with the possibilistic knowl-
edge bases. Given a possibility distribution and a newly re-
ceived formula φ (or (φ, a)), the semantic revision operators
result in a new possibility distribution that is transformed
from the original possibility distribution and the formula.
Some syntactic revision operators have also been proposed
(Benferhat et al. 1993; Delgrande, Dubois, and Lang 2006;
Qi 2008). However, the input information is restricted to a
propositional formula. As far as we know, there is no re-
vision operator in possibilistic logic that allows the newly
received information to be a general possibilistic knowledge
base.

In this paper, we take a different semantic characteriza-
tion of possibilistic logic, called weighted prime implicants
of a possibilistic knowledge base and use it to define new
revision operators. Intuitively, a weighted prime implicant
of a possibilistic knowledge base is a most compact possi-
bilistic term (i.e., a set of weighted literals) that can entail
the knowledge base. We show that the existing definition of
a weighted prime implicant is not suitable to define revision
operators in possibilistic logic and propose a new definition.
Our revision operators are generalizations of the well-known
Dalal revision operator, which has been defined by either a
distance between two interpretations (Dalal 1988) or a dis-
tance between two prime implicants (Marchi, Bittencourt,
and Perrussel 2010). To define a revision operator using
weighted prime implicants, we face two problems. First,
we need to define the notion of a conflict set between two
weighted prime implicants of two possibilistic knowledge
bases. Second, we need to define the disjunction of pos-
sibilistic terms. We solve these problems and define two
conflict-based revision operators in possibilistic logic. We
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then adapt the well-known postulates for revision proposed
by Katsuno and Mendelzon and show that our revision oper-
ators satisfy four of the basic adapted postulates and satisfy
two others in some special cases.

The rest of this paper is organized as follows. We first
briefly introduce possibilistic logic. We then define the no-
tion of disjunction of possibilistic terms and present a new
definition of weighted prime implicants. After that, we de-
fine our revision operators and discuss their logical proper-
ties. Before we conclude this paper, we give a discussion of
related work.

Preliminaries
Propositional logic

We consider a propositional language LPS defined from
a finite set of propositional variables (also called atoms) PS
and the usual connectives. Formulas are denoted by Greek
letters φ, ψ, ... The classical consequence relation is denoted
as `. An interpretation is a total function from PS to {0, 1}.
Ω denotes the set of all interpretations. The definition of
an interpretation can be extended to formulas in a standard
way. An interpretation is a model of a formula if it assigns
truth value 1 to the formula. A knowledge base K is a finite
set of propositional formulas. It is sometimes identified as
the conjunction of its elements. An interpretation is a model
of a knowledge base if it satisfies all the formulas in it. K
is consistent if and only if it has a model. Two knowledge
bases K1 and K2 are equivalent, denoted K1≡K2, if and
only if they have the same set of models.

A literal is either an atom or the negation of an atom.
A clause C is a disjunction of literals: C = l1∨...∨ln
and its dual clause, or term D, is a conjunction of liter-
als: D = l1∧...∧ln. Sometimes, we represent a term as a
set of literals. A term D is an implicant of formula φ iff
D`φ and D does not contain two complementary literals.
A prime implicant of knowledge base K is an implicant D
of K such that for every other implicant D′ of K, D 6`D′
((Quine 1959)).

Possibilistic logic
We introduce some basic notions of possibilistic logic

(more details can be found in (Dubois, Lang, and Prade
1994)). The semantics of possibilistic logic is based on the
notion of a possibility distribution π : Ω → [0, 1]. The pos-
sibility degree π(ω) represents the degree of compatibility
(resp. satisfaction) of the interpretation ω with the avail-
able beliefs about the real world. A possibility distribution
is said to be normal if ∃ω0∈Ω, such that π(ω0) = 1. From a
possibility distribution π, two measures can be determined:
the possibility degree of formula φ, Ππ(φ) = max{π(ω) :
ω ∈ Ω, ω |= φ} and the necessity degree of formula φ,
Nπ(φ) = 1−Ππ(¬φ).

At the syntactic level, a possibilistic formula, is repre-
sented by a pair (φ, a), where φ is a propositional for-
mula and a is an element of the real interval [0, 1], which
means that the necessity degree of φ is at least equal to a, i.e.
N(φ) ≥ a. A possibilistic literal is a pair (l, a), where l is a
literal and a a weight in [0,1] and a possibilistic term is a set

of possibilistic literals. In this paper, we assume that there do
not exist two pairs (l, a) and (l, b) such that a 6= b (a > 0 and
b > 0) in a possibilistic term. In possibilistic logic, uncer-
tain or prioritized pieces of information can be represented
by a possibilistic knowledge base which is a finite set of pos-
sibilistic formulas of the formB = {(φi, ai) : i = 1, ..., n}.
We use B to denote all the possibilistic knowledge bases
built over LPS . The classical base associated with B, de-
noted B∗, is defined as B∗ = {φi|(φi, ai) ∈ B}. A possi-
bilistic knowledge baseB is consistent if and only if its clas-
sical base B∗ is consistent. Given a possibilistic knowledge
baseB, a unique possibility distribution, denoted πB , can be
obtained by the principle of minimum specificity (Dubois,
Lang, and Prade 1994). For all ω ∈ Ω,

πB(ω) =

{
1 if ∀(φi, ai) ∈ B,ω |= φi,
1−max{ai|ω 6|= φi, (φi, ai) ∈ B} otherwise.

(1)
The a-cut (resp. strict a-cut) of a possibilistic knowl-

edge base B is B≥a = {φi∈B∗|(φi, bi)∈B and bi≥a}
(resp. B>a = {φi∈B∗|(φi, bi)∈B and bi>a}). The
inconsistency degree of B is: Inc(B) = max{ai :
B≥ai is inconsistent} with Max(∅) = 0. That is, the
inconsistency degree of B is the largest weight ai such that
the ai-cut of B is inconsistent. Two possibilistic knowledge
bases B and B′ are said to be equivalent, denoted B ≡s B′,
iff ∀ a ∈ (0, 1], B≥a≡B′≥a.

There are two entailment relations in possibilistic logic.

Definition 1 Let B be a possibilistic knowledge base. A
possibilistic formula (φ, a) is a weak possibilistic conse-
quence of B, denoted by B ` (φ, a), if a > Inc(B) and
B≥a`φ. A possibilistic formula (φ, a) is a possibilistic con-
sequence of B, denoted B `π (φ, a), if (i) B≥a is consis-
tent; (ii) B≥a ` φ; (iii) ∀b>a, B≥b 6` φ. The entailment
relation ` (resp. `π) can be extended to two possibilistic
knowledge bases as follows: B ` B′ (resp. B `π B′) if
B ` (φ, a) (resp. B `π (φ, a)) for all (φ, a) ∈ B′.

It is clear that if B `π (φ, a), then B`(φ, a) but the
converse does not hold in general.

Disjunction of Possibilistic Terms and
Weighted Prime Implicants

In this section, we first define the notion of disjunction of
possibilistic terms. We show that our definition of a disjunc-
tion satisfies some desirable properties, thus is suitable for
defining revision operators in possibilistic logic. We then
reinvestigate the definition of weighted prime implicants in
possibilistic logic. We show that the existing definition is
not reasonable and propose a new definition.

Disjunction of possibilistic terms
We first define the disjunction of two possibilistic terms.

Given two possibilistic terms D1 = {(l1, a1), ..., (ln, an)}
and D2 = {(l′1, b1), ..., (l′m, bm)}, following the definition
of disjunction of two terms in propositional logic, we should
take the disjunction of li and l′j , where li ∈ D1 and l′j ∈ D2.
However, the question is, which aggregation function should
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we use to aggregate the weights of li and l′j? One may ar-
gue that we should use the maximum since li ∨ l′j can be
inferred by both D1 and D2. However, this definition is not
desirable. For example, if we use the maximum to aggre-
gate ai and bj which are weights of li and l′j respectively,
then (li ∨ l′j ,max(ai, bj)) (assume ai, bj > 0) will be in-
cluded in the disjunction of D1 and D2. But it cannot be
inferred by both (li, ai) and (l′j , bj) unless ai = bj . Thus, it
seems to be reasonable to use the minimum to aggregate the
weights of weighted literals in different possibilistic terms.
So the definition of disjunction, denoted as ∨, is given as
D1∨D2 = {(li∨l′j ,min(ai, bj))|(li, ai) ∈ D1, (l

′
j , bj) ∈

D2}.
It is easy to check that ∨ is associative and commutative.

Thus the disjunction of more than two possibilistic terms can
be easily defined.

We show an important property of disjunction ∨. It says
that a possibilistic formula is inferred from the disjunction
of a set of possibilistic terms if and only if it is inferred from
each of them w.r.t. the weak possibilistic entailment.

Lemma 1 Given n possibilistic terms D1, D2, ..., Dn, we
have (D1 ∨ ... ∨ Dn)≥a = (D1)≥a ∨ ... ∨ (Dn)≥a for all
a ∈ [0, 1].

Proposition 1 Given n possibilistic terms D1, D2, ..., Dn

that do not contain any conflicting literals, for any possi-
bilistic formula (φ, a), we have

D1 ∨ ... ∨Dn ` (φ, a) iff Di ` (φ, a) for all i.

By Lemma 1 and Proposition 1, we can show the follow-
ing proposition.

Proposition 2 Given n possibilistic terms D1, D2, ..., Dn

that do not contain any conflicting literals, for any possi-
bilistic formula (φ, a), we have
D1 ∨ ... ∨Dn `π (φ, a) iff Di ` (φ, a) for all i and there

exists j such that Dj `π (φ, a).

Propositions 1 and 2 ensure that the disjunction of pos-
sibilistic terms has the same inferential power as the set of
possibilistic terms (w.r.t two entailment relations in possi-
bilistic logic). Thus, it is desirable to use ∨ to construct
a possibilistic knowledge base from a set of possibilistic
terms.

A new definition of weighted prime implicants
We first introduce the notion of weighted prime implicants

of a possibilistic knowledge base given in (Qi, Liu, and Bell
2010). Let B = {(φ1, a1), ..., (φn, an)} be a possibilistic
knowledge base where φi is a clause1. A weighted implicant
of B is a possibilistic term D = {(ψ1, b1), ..., (ψk, bk)},
such that D `π B, where ψi are literals such that no two
complementary literals exist. LetD andD′ be two weighted
implicants ofB, D is said to be subsumed byD′, denoted as
D ≺s D′, iff D 6=D′, D′∗⊆D∗ and for all (ψi, ai)∈D, there
exists (ψi, bi)∈D′ with bi≤ai (bi is 0 if ψi ∈ D∗ but ψi 6∈

1A possibilistic formula of the form (φ1 ∧ ... ∧ φn, a) can be
equivalently decomposed into a set of formulas (φ1, a),...,(φn, a)
due to the min-decomposability of necessity measures.

D′
∗). In other words, D is subsumed by D′ iff D 6= D′, and

every literal appearing in D′ must appear in D with higher
or same necessity degree.

Definition 2 (Qi, Liu, and Bell 2010) Let B =
{(φ1, a1), ..., (φn, an)} be a possibilistic knowledge base
where φi are clauses. A weighted prime implicant (WPI) of
B is a weighted implicant ofB such that there does exist an-
other weighted implicant D′ of B such that D is subsumed
by D′.

This definition looks reasonable and it reduces to the defi-
nition of prime implicants in the propositional case (when all
weights of formulas are 1). However, it has some drawbacks
as it does not satisfy the following two desirable properties:

Property 1: for any possibilistic knowledge base, there is
at least one WPI of it.

Property 2: for any possibilistic knowledge base B and
any formula φ, B∗ ` φ iff ∨

Di∈WPI(B)
D∗i ` φ.

To see why Property 1 is violated, let us consider B =
{(p ∨ q, 0.8), (p, 0.7), (q, 0.7)}. To infer (p ∨ q, 0.8), any
WPI D under Definition 2 should contain either (p, 0.8)
or (q, 0.8). If it contains (p, 0.8), then we do not have
D `π (p, 0.7). If it contains (q, 0.8), we do not have
D `π (q, 0.7). Thus, there is no WPI for B. This exam-
ple also shows that Property 2 is violated.

The following example shows another problem of Defini-
tion 2.

Example 1 Let B = {(q ∨ r, 0.9), (q, 0.8)}. We can check
that D = {(r, 0.9), (q, 0.8)} is a WPI of B under Definition
2. However, D′ = {(q, 0.9)} is not a weighted implicant
of B under Definition 2 because D′ 6`π (q, 0.8). Thus, the
only WPI of B is D, which is logically stronger than B.
Intuitively, D′ should also be a WPI of B and we can show
that B ≡s D ∨D′.

In Example 1,D′ should be a WPI ofB, but it is excluded
by the definition of weighted implicants as the possibilistic
inference is used.

We give another definition of WPIs based on the weak
possibilistic inference.

Definition 3 A weak weighted implicant of a possibilis-
tic knowledge base B is a possibilistic term D =
{(ψ1, b1), ..., (ψk, bk)}, such that D ` B, where ψi are lit-
erals such that no two complementary literals exist.

To define WPIs based on weak weighted implicants, we
can still use Definition 2, and we will use the name WPI
for the new definition if no confusion is caused. This new
definition works well for Example 1 because D′ is now a
WPI of B under the new definition. In the following, we
use WPI(B) and WI(B) to denote the set of all WPIs of
B and the set of all weak weighted implicants of B respec-
tively. Since there are only finite weights in a possibilis-
tic knowledge base, we can check that there are only finite
many WPIs of a possibilistic knowledge base. For any pos-
sibilistic knowledge base B, we can easily find a WPI D of
it by the following steps. First, D is initialized as an empty
set. Second, for each (φ, a), suppose φ = l1 ∨ ... ∨ lk, then

802



we randomly select one li and add (li, a) toD. Third, we re-
move redundant weighted literals from D to make it a WPI.
Thus, our new definition of WPIs satisfies Property 1.

We need to point out that there are knowledge bases that
cannot be captured by WPIs.

Example 2 Let B = {(q ∨ r, 0.9), (¬r, 0.8)}. Any WPI
D of B should include (¬r, 0.8), thus q must appear in it.
Since D can infer (q ∨ r, 0.9), it must contain (q, 0.9). Thus
D `π (q, 0.9) and D is the only WPI of B. However, we
can check that B `π (q, 0.8).

As we can see from this example, WPIs may overestimate
the weight of a formula when they are used to make infer-
ence. However, we are able to show that our new definition
of WPIs satisfies Property 2, thus they will not infer new
formulas.

Proposition 3 B∗ ` φ iff ∨
Di∈WPI(B)

D∗i ` φ.

Definition 4 Given a possibilistic knowledge baseB, we say
B is WPI-definable if B ≡s ∨

Di∈WPI(B)
Di.

That is, a possibilistic knowledge base B is WPI-
definable if it is equivalent to the disjunction of its WPIs.
The following is a corollary of Proposition 2. It gives a nec-
essary and sufficient condition for WPI-definability.

Corollary 1 A possibilistic knowledge base B is WPI-
definable iff the following statement holds: for any possi-
bilistic formula (φ, a), B `π (φ, a) iff D ` (φ, a) for all
D ∈WPI(B) and there exists D ∈WPI(B), D `π (φ, a).

There are many possibilistic knowledge bases that are
WPI-definable. We give two simple examples: (1) any pos-
sibilistic knowledge base consisting of a single possibilis-
tic formula is WPI-definable; (2) any possibilistic knowl-
edge base which does not contain complementary literals
is WPI-definable. Of course, there are more complicated
WPI-definable possibilistic knowledge bases. For those pos-
sibilistic knowledge bases B that are not WPI-definable, we
say that another possibilistic knowledge base B′ is a lower
WPI-definable approximation of B if B′ is WPI-definable
and B′ ` B. Then WPI(B) can be viewed as the greatest
lower WPI-definable approximation of B according to the
following proposition.

Proposition 4 Given a possibilistic knowledge base B, we
have (1) ∨

Di∈WPI(B)
Di ` B and (2) for any lower WPI-

definable approximation B′ of B, B′ ` ∨
Di∈WPI(B)

Di.

Conflict-based Revision Operators in
Possibilistic Logic

In belief revision, a basic requirement is that the newly
received information (which can be either a formula or a
knowledge base) should be inferred by the revised knowl-
edge base. In this section, we consider the weak possibilis-
tic entailment when defining our revision operators. That
is, given two possibilistic knowledge bases B1 and B2, the
revised possibilistic knowledge base B1 ◦ B2 by the revi-
sion operator ◦ should infer every possibilistic formula in

B2 w.r.t. the weak possibilistic entailment relation. We first
give two revision operators in possibilistic logic. We then
adapt KM postulates for revision to possibilistic logic and
show that our revision operators satisfy all of them. In this
paper, we assume that all the possibilistic knowledge bases
in B share a common scale.

Revision operators
We first adapt a notion used in (Marchi, Bittencourt, and

Perrussel 2010).

Definition 5 Let Γ : B × B 7→ B be a function defined as
follows: let B and B′ be two possibilistic knowledge bases,
we have

Γ(B,B′) = {f(D1, D2)|D1 ∈WPI(B) and
D2 ∈WPI(B′)},

where f(D1, D2) = r(D2 ∪ {(l, a) ∈ D1|lc 6∈ D∗2}) with r
a function that removes redundant possibilistic literals from
a possibilistic term, i.e., r(D) = {(l, a)|(l, a) ∈ D, a =
max{ai|(l, ai) ∈ D}}. Informally, for any two weighted
literals (l, a) and (l, b), if a > b, then r removes (l, b) as it
is redundant. lc is the complement of literal l.

The function f is used to combine two possibilistic terms
D1 and D2 by giving preference to D2, that is, any possi-
bilistic literal in D1 that is in conflict with a possibilistic lit-
eral in D2 will be removed after combination. The intuition
behind it is that any belief in B′ should be accepted after
revision, thus any possibilistic term of B′ is preferred to any
possibilistic term inB. Given a possibilistic knowledge base
B, we define Γ(B) =

⋃
B′∈B Γ(B,B′).

Example 3 Suppose there are four atoms p, q, r and s, where

• p represents “red light is on”
• q represents “green light is off”
• r represents “press the button”
• s represents “yellow light is on”

Suppose we have a possibilistic knowledge base B =
{(¬q → r, 0.8), (p → ¬r, 0.7), (¬s → ¬r, 0.6)} that con-
sists of three uncertain rules. Later on, we get another pos-
sibilistic knowledge base which contains some uncertain
facts, i.e., we have B′ = {(¬q, 0.9), (p, 0.8), (¬s, 0.7)},
and we want to revise B by incorporating B′. We have
WPI(B) = {D1, D2, D3, D4}, where
D1 = {(q, 0.8), (¬p, 0.7), (s, 0.6)},
D2 = {(q, 0.8), (¬p, 0.7), (¬r, 0.6)},
D3 = {(q, 0.8), (¬r, 0.7)} and
D4 = {(r, 0.8), (¬p, 0.7), (s, 0.6)}.
It is easy to check that B is WPI-definable.

We have WPI(B′) = B′ so it is also WPI-
definable. Finally, we have Γ(B,B′) =
{f(D1, B

′), f(D2, B
′), f(D3, B

′), f(D4, B
′)}, where

f(D1, B
′) = {(¬q, 0.9), (p, 0.8), (¬s, 0.7)},

f(D2, B
′) = {(¬q, 0.9), (p, 0.8), (¬s, 0.7), (¬r, 0.6)},

f(D3, B
′) = {(¬q, 0.9), (p, 0.8), (¬r, 0.7), (¬s, 0.7)},

f(D4, B
′) = {(¬q, 0.9), (r, 0.8), (p, 0.8), (¬s, 0.7)}.
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Our revision operators are inspired from the revision op-
erator defined by prime implicants given in (Marchi, Bitten-
court, and Perrussel 2010). The basic idea is that we first
define a preference relation over Γ(B), then define the re-
sult of revision by the set of minimal possibilistic terms in
Γ(B,B′) w.r.t. the preference relation. In the following,
we give two such preference relations: one is defined by the
quantity of conflict between two WPIs of two possibilistic
knowledge bases given in (Qi, Liu, and Bell 2010), and the
other is defined by the lexicographic ordering.

Suppose B is a possibilistic knowledge base and D =
f(D1, D2) is in Γ(B), where D1 ∈ WPI(B) and D2 ∈
WPI(B′) for some possibilistic knowledge base B′. The
quantity of conflict between D1 and D2 is defined as
qCon(D1, D2) =

∑
(l,a)∈D1 and (lc,b)∈D2

min(a, b) (Qi,
Liu, and Bell 2010). Our first preference relation �Bsum
over Γ(B) (we omit the superscript when it is clear from
the context) is defined as follows: given D = f(D1, D2)
and D′ = f(D′1, D

′
2) in Γ(B),

D �sum D′ iff qCon(D1, D2) ≤ qCon(D′1, D
′
2).

That is, D is preferred to D′ iff the quantity of conflict
between D1 and D2 is less than or equal to the quantity of
conflict between D′1 and D′2.

For any D = f(D1, D2) in Γ(B), we use SD to denote
the set of conflicting weighted literals, i.e.,
SD = {(l, c) : (l, a) ∈ D1, (l

c, b) ∈ D2, c = min(a, b)}.
We define a preference relation �Blex over Γ(B) (we omit

the superscript when it is clear from the context) as follows:
for any D = f(D1, D2) and D′ = f(D′1, D

′
2) in Γ(B),

suppose c1 > c2 > ... > cn are all distinct weights appear-
ing in D ∪ D′, then D1 ≺lex D2, iff |{l|(l, ci) ∈ SD}| <
|{l′|(l′, ci) ∈ SD′}| for all i or there exists ci such that
|{l|(l, ci) ∈ SD}| < |{l′|(l′, ci) ∈ SD′}| and |{l|(l, cj) ∈
SD}| = |{l′|(l′, cj) ∈ SD′}| for any j < i. D1 �lex D2 iff
D1 ≺lex D2 or |{l|(l, ci) ∈ SD}| = |{l′|(l′, ci) ∈ SD′}| for
all i. Let � be either �sum or �lex, we define D ≺ D′ iff
D � D′ but D′ 6� D.

We are now ready to define our revision operators.
Definition 6 A sum-based revision operator ◦sum : B×B 7→
B is defined as follows:

B ◦sum B′ = ∨(min(Γ(B,B′),�sum)).

Similarly, we can define a lex-based revision operator ◦lex
as follows:

B ◦lex B′ = ∨(min(Γ(B,B′),�lex)).

Example 4 (Continue Example 3) We compute the quantity
of conflict between Di and B′ as follows: qCon(D1, B

′) =
2.1, qCon(D2, B

′) = 1.5, qCon(D3, B
′) = 0.8 and

qCon(D4, B
′) = 1.3. So B ◦sum B′ = f(D3, B

′) =
{(¬q, 0.9), (p, 0.8), (¬r, 0.7), (¬s, 0.7)}. that is, (q ∨
r, 0.8) are kept but other formulas are dropped. In this
case, we believe that we should not press the button.
We then have Sf(D1,B′) = {(q, 0.8), (p, 0.7), (s, 0.6)},
Sf(D2,B′) = {(q, 0.8), (p, 0.7)}, Sf(D3,B′) = {(q, 0.8)}
and Sf(D4,B′′) = {(p, 0.7), (s, 0.6)}. Thus, B ◦lex B′ =
f(D4, B

′) = {(¬q, 0.9), (r, 0.8), (p, 0.8), (¬s, 0.7)}, that
is, (¬p ∨ ¬r, 0.7) and (s ∨ ¬r, 0.6) are kept but (q ∨ r, 0.8)

is dropped. In this case, we believe that we should press the
button.

In Example 4, different possibilistic knowledge bases are
obtained by different revision operators. We cannot say that
one revision operator is better than the other but rather say
that they are applicable for different settings. The former is
perhaps more meaningful when weights attached with for-
mulas are given quantitative meaning, whilst the latter is
more meaningful when weights attached with formulas are
given qualitative meaning.

Logic properties
Suppose B1, B2, B3, B′1 and B′2 are possibilistic knowl-

edge bases, we adapt the KM postulates for revision as fol-
lows.
(RP1) B1 ◦B2 ` B2

(RP2) IfB1∪B2 is consistent then (B1 ◦B2)∗≡(B1∪B2)∗

(RP3) If B2 is consistent then B1 ◦B2 is also consistent
(RP4) IfB1 ≡s B2 andB′1 ≡s B′2 thenB1◦B2 ≡s B′1◦B′2
(RP5) If (B1 ◦B2)∪B3 is WPI-definable then (B1 ◦B2)∪
B3 ` B1 ◦ (B2 ∪B3)
(RP6) If (B1 ◦B2)∪B3 is consistent thenB1 ◦ (B2∪B3) `
(B1 ◦B2) ∪B3

Before we verify the logical properties of our revision op-
erators, we show a lemma.

Lemma 2 Suppose B ∪ B′ is consistent. For any D ∈
WPI(B∪B′), there existD1 ∈WPI(B) andD2 ∈WPI(B′)
such that D = r(D1 ∪D2).

Proposition 5 Our revision operators ◦sum and ◦lex satisfy
(RP1)-(RP4). But they may not satisfy (RP5) and (RP6).

Proof. We only show that ◦sum satisfies (RP1)-(RP6) as
properties of ◦lex can be checked similarly.

(RP1), (RP3) and (RP4) can be easily shown. We con-
sider (RP2). We only need to show that WPI(B1 ∪ B2) =
min(Γ(B,B′),�sum) when B1 ∪ B2 is consistent. Sup-
pose D ∈ min(Γ(B,B′),�sum). So D = f(D1, D2)
where D1 ∈ WPI(B) and D2 ∈ WPI(B′). We prove
D ∈ WI(B) by absurdity. Suppose D 6∈ WI(B). Since
B ∪ B′ is consistent, WPI(B ∪ B′) is not empty. Sup-
pose D′ ∈ WPI(B ∪ B′). According to Lemma 2, D′ ∈
Γ(B,B′). Since D′ ∈ WI(B) and D 6∈ WI(B), we have
D′ ≺sum D, contradiction. Therefore, D ∈ WI(B1 ∪ B2).
We show D ∈ WPI(B1 ∪ B2) by absurdity. Suppose
D 6∈WPI(B1 ∪B2) , then there exists D′ ∈WPI(B1 ∪B2)
such that D′ ≺sum D’ However, according to Lemma
2, D′ ∈ Γ(B,B′), a contradiction. Next, suppose D ∈
WPI(B1 ∪ B2), according to Lemma 2, D ∈ Γ(B,B′).
Since D ∈ WI(B), D ∈ min(Γ(B,B′),�sum). So
(B ◦sum B′)∗ ≡ ∨

Di∈WPI(B∪B′)
D∗i . By Proposition 3, we

have (B1 ◦B2)∗≡(B1 ∪B2)∗.
We give a counterexample to show that (RP5) may

not hold. Suppose B1 = {(q ∨ r, 0.8), (p ∨
¬r, 0.7)}, B2 = {((¬p ∧ r) ∨ (¬q ∧ ¬p), 0.6)}
and B3 = {(¬q, 0.8)}, we have WPI(B1) =
{D1, D2, D3}, where D1 = {(q, 0.8), (p, 0.7)}, D2 =
{(q, 0.8), (¬r, 0.7)} and D3 = {(r, 0.8), (p, 0.7)}, and
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WPI(B2) = {{(¬p, 0.6), (r, 0.6)}, {(¬q, 0.6), (¬p, 0.6)}}.
Thus (B1 ◦sum B2) ∪ B3 = {(¬q, 0.8), (¬p, 0.6)} (it is
WPI-definable). On the other hand, B1 ◦sum (B2 ∪ B3) =
{(¬p, 0.6), (¬q, 0.8), (r, 0.8)}. So (B1 ◦sum B2) ∪ B3 6`
B1 ◦sum (B2 ∪B3), (RP5) does not hold.

For (RP6), suppose B1 = {(p, 0.8), (q, 0.6)}, B2 =
{(¬p ∨ r, 0.6), (¬p, 0.4)} and B3 = {(¬p ∨ ¬q, 0.6)}, then
(B1 ◦sum B2) ∪ B3 = {(r, 0.6), (q, 0.6), (¬p, 0.6)}. On
the other hand, B1 ◦sum (B2 ∪B3) = {(¬p, 0.6), (q, 0.6)}.
SinceB1 ◦sum (B2∪B3) 6` (B1 ◦sumB2)∪B3, (RP6) does
not hold.

The reason why (RP5) and (RP6) are falsified is that when
we combine a WPI D of B1 ◦B2 (assume D = f(D1, D2),
where D1 ∈ WPI(B1) and D2 ∈ WPI(B2)) and a WPI
D3 of B3, then qCon(D1, r(D2 ∪ D3)) may be greater
than qCon(D1, D2) even if D ∪ D3 is consistent. Thus,
f(D1, r(D2∪D3)) may be not inmin�B1

(Γ(B1, B2∪B3)).
There are still some cases where (RP5) and (RP6) can be

satisfied by our revision operators.

Proposition 6 Our revision operators ◦sum and ◦lex satisfy
(RP5) and (RP6) when any weight appearing inB2 is greater
than or equal to all weights appearing in B3.

Proof. We only consider (RP5) as (RP6) can be shown sim-
ilarly. Given D ∈ WPI((B1 ◦sum B2) ∪ B3), by Lemma
2, there exist D′ ∈ WPI(B1 ◦sum B2) and D3 ∈ WPI(B3)
such that D = r(D′ ∪ D3). By Proposition 2, we can as-
sume D′ = f(D1, D2) is in min(Γ(B,B′),�sum), where
D1 ∈ WPI(B1) and D2 ∈ WPI(B2). We can check that
D = f(D1, r(D2 ∪ D3)). Thus, D ∈ Γ(B1, B2 ∪ B3).
Suppose D 6∈ min�B1

(Γ(B1, B2 ∪ B3)), then there ex-
ists D′′ ∈ min�B1

(Γ(B1, B2 ∪ B3)) such that D′′ ≺sum
D. Assume D′′ = f(D′1, r(D

′
2 ∪ D′3)). Since D′ ∈

min(Γ(B,B′),�sum), qCon(D1, D2) ≤ qCon(D′1, D
′
2).

Since D′ ∪ D3 is consistent and any weight of liter-
als in D2 is great than or equal to all weights in D3,
qCon(D1, D2) = qCon(D1, D2 ∪D3) thus qCon(D1, D2 ∪
D3) ≤ qCon(D′1, D

′
2 ∪D′3). So D �sum D′′, this is a con-

tradiction. Thus, D ∈ min�B1
(Γ(B1, B2∪B3)). It follows

that (RP5) holds.

We compare our revision operators and the two revision
operators given in (Benferhat et al. 2002) when the new in-
formation is a formula. Let B be a possibilistic knowledge
base and φ be a formula. Suppose a = Inc(B∪{(φ)}). The
first revision operator in (Benferhat et al. 2002) is defined as
B ◦1 (φ, 1) = {(ψ, b) : (ψ, b) ∈ B and b > a} ∪ {(φ, 1)},
and the second revision operator in (Benferhat et al. 2002)
is defined as B ◦2 (φ, 1) = {(ψ, f(b)) : (ψ, b) ∈ B and b >
a} ∪ {(φ, 1)}, where f(b) = b−a

1−a .

Proposition 7 Given a possibilistic knowledge base B and a
formula φ, we have (1) B ◦lex {(φ, 1)} ` B ◦1 (φ, 1) and (2)
(B ◦lex {(φ, 1)})∗ ` (B ◦2 (φ, 1))∗.

Proposition 7 does not hold if we replace ◦lex by ◦sum.
Consider Example 3 again, suppose φ = ¬q ∧ p ∧ ¬s.
Since Inc(B ∪ {(φ, 1)}) = 0.7, we have B ◦1 (φ, 1) =
{(φ, 1), (q ∨ r, 0.8)}. However, B ◦sum {(φ, 1)} =

{(¬q, 1), (p, 1), (¬s, 1), (¬r, 0.7)}. Thus, we do not have
B ◦lex {(φ, 1)} ` B ◦1 (φ, 1).

Related Work
There have been some works on belief revision in possi-

bilistic logic. In (Dubois and Prade 1991), the authors pro-
pose a syntactic revision operator in possibilistic logic that
is restricted to revise possibilistic knowledge bases that are
linearly ordered, i.e., different formulas are attached with
different weights, and the new information is a sure formula
of the form (φ, 1). There are other more general syntactic
revision operators that select some maximal consistent sub-
sets and take their disjunction as the result of revision (ref.
(Benferhat et al. 1993; Delgrande, Dubois, and Lang 2006;
Qi 2008)). These revision operators are syntax-dependent
and they are not applicable to revision with uncertain input.

Semantic revision operators in possibilistic logic are often
defined by conditioning in possibility theory (ref. (Dubois
and Prade 1992; 1997; Benferhat et al. 2002; 2010; Benfer-
hat, Tabia, and Sedki 2011)). That is, given a possibilis-
tic knowledge base, the result of semantic revision is often
a new possibility distribution that is transformed from the
possibility distribution associated with the knowledge base
and the newly received formula (either a sure formula or
an arbitrary possibilistic formula) by a conditioning. These
works are closely related to belief revision operators in Ordi-
nal Conditional Function framework, such as Adjustment in
(Williams 1994) and Maxi-Adjustment in (Williams 1996).
As we have shown, when the newly received information
is a sure formula, our revision operator ◦lex can preserve
more information than the semantic revision operators de-
fined in (Benferhat et al. 2002). In (Benferhat et al. 2002),
uncertain input information of the form (φ, a) is considered.
Unlike the syntactic approach, an uncertain input (φ, a) is
interpreted as N(φ) = a, i.e., the necessity degree of φ
is exactly equal to a. The revision operators are then de-
fined by some kind of conditioning, i.e., product-based con-
ditioning or sum-based conditioning. The syntactic coun-
terpart of the semantic revision is also proposed. Even if
the incoming formula φ is consistent with the original possi-
bilistic knowledge base B, we still need to drop some in-
formation from B if B is inconsistent with ¬φ. In con-
trast, in our work, (φ, a) is considered as a possibilistic for-
mula, i.e., (φ, a) is interpreted as N(φ) ≥ a, and our re-
vision operators are reduced to classical revision operators
in the flat case. Our revision operators are also different
from the revision operators given in (Benferhat et al. 2010;
Benferhat, Tabia, and Sedki 2011) where the input informa-
tion is a possibility distribution over the elements of a parti-
tion of Ω.

This work is different from belief revision or update with
probabilities (such as the work given in (Grünwald and
Halpern 2003) (van Benthem, Gerbrandy, and Kooi 2009))
in several aspects. First, our work is based on possibilistic
logic, which is different from probabilistic logic according
to (Dubois and Prade 2001). Second, our revision operators
are generalizations of existing revision operators in proposi-
tional logic, whilst belief revision in the face of probabilities
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takes a different mechanism from belief revision in proposi-
tional logic.

Our revision operators may be considered as a kind of
“prioritized merging” operators, i.e., two knowledge bases
with different reliability are merged. In this sense, it is
related to the work on prioritized merging given in (Del-
grande, Dubois, and Lang 2006). However, in (Delgrande,
Dubois, and Lang 2006), the knowledge bases to be merged
are propositional knowledge bases. The work presented in
(Benferhat et al. 1999) proposes a prioritized merging oper-
ator in possibilistic logic, but it drops the commensurability
assumption.

In summary, our revision operators are the first ones that
allow the input information to be a general possibilistic
knowledge base and are at the same time syntax-independent
(in the sense it satisfies (RP4)).

Conclusion and Future Work
In this paper, we considered the problem of revising a

possibilistic knowledge base by another one. We first de-
fined the disjunction of possibilistic terms and presented a
new definition of weighted prime implicants of a possibilis-
tic knowledge base. We then defined two conflict-based re-
vision operators based on these two notions. After that, we
adapted the six KM postulates and show that our revision
operators satisfy four of the basic ones but may not sat-
isfy other two. We also showed that in some special cases,
our revision operators satisfy all of the adapted postulates.
We showed that one of our revision operators, i.e., ◦lex, is
more powerful than the revision operators in (Benferhat et
al. 2002) in terms of minimal change when the input infor-
mation is a sure formula.

As a future work, we will develop an algorithm to com-
pute all weighted prime implicants of a possibilistic knowl-
edge base. Based on this algorithm, we may be able to pro-
vide a procedure to check if a possibilistic knowledge base
is WPI-definable. As another future work, we will apply
weighted prime implicants to define update operators and
merging operators in possibilistic logic.
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