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Abstract

We analyze symmetric protocols to rationally coordinate on
an asymmetric, efficient allocation in an infinitely repeated
N -agent, C-resource allocation problems. (Bhaskar 2000)
proposed one way to achieve this in 2-agent, 1-resource al-
location games: Agents start by symmetrically randomizing
their actions, and as soon as they each choose different ac-
tions, they start to follow a potentially asymmetric “conven-
tion” that prescribes their actions from then on. We extend
the concept of convention to the general case of infinitely re-
peated resource allocation games with N agents and C re-
sources. We show that for any convention, there exists a sym-
metric subgame perfect equilibrium which implements it. We
present two conventions: bourgeois, where agents stick to the
first allocation; and market, where agents pay for the use of
resources, and observe a global coordination signal which al-
lows them to alternate between different allocations. We de-
fine price of anonymity of a convention as the ratio between
the maximum social payoff of any (asymmetric) strategy pro-
file and the expected social payoff of the convention. We
show that while the price of anonymity of the bourgeois con-
vention is infinite, the market convention decreases this price
by reducing the conflict between the agents.

1 Introduction
In many situations, agents have to coordinate their use of
some resource. One wireless channel can only be used by
one device, one parking slot may only be occupied by one
vehicle, etc. The problem is that often, the agents have
identical preferences: Everyone prefers to access rather than
yield. Similarly, everyone prefers a parking slot closest to
the building entrance. However, if multiple agents try to
use one resource simultaneously, they collide and everyone
loses.

Consider a simple example: two agents who want to ac-
cess a single resource. We can describe the problem as a
game. Both agents have two actions: yield (Y ) and access
(A). If agent α yields, it gets a payoff of 0. When agent
α accesses the resource while the other agent yields, it gets
a payoff of 1. But if both agents access the resource at the
same time, they both incur a cost γ < 0.

The normal form of such a game looks as follows:
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Y A

Y 0, 0 0, 1
A 1, 0 γ, γ

This is a symmetric game, but the two efficient Nash equi-
libria (NE) are asymmetric: either one agent yields and the
other one accesses the resource, or vice versa. The only sym-
metric rational outcome is the mixed NE where both agents
access the resource with probability Pr(A) := 1

|γ|+1 . How-
ever, this mixed equilibrium is not efficient, because the ex-
pected payoff of both agents get is 0.

Asymmetric equilibria of symmetric games are undesir-
able for two reasons: First, they are not fair. In our example,
only one agent can access the resource. Second, coordinat-
ing on an asymmetric equilibrium is difficult. Imagine that
the agents are all identical and anonymous, i.e. they can-
not observe neither their own identity, neither the identity of
any other agent. We cannot prescribe a different strategy for
each of the agents.

In our previous work (Cigler and Faltings 2011), we ad-
dressed the fairness issue. We considered a special case of
a resource allocation problem. We proposed to use a global
coordination signal and multiagent learning to reach a sym-
metric, fair and efficient wireless channel allocation ((Wang
et al. 2011) later implemented this approach in an actual
wireless network and achieved throughput 3x higher than
standard ALOHA protocols). The advantage is that the co-
ordination signal is not specific to the game. It does not have
to tell the agents which action to take. As an example, the
agents may just observe noise on some frequency. The dis-
advantage of our previous approach though was that it was
not rational for the agents to adopt this algorithm – an agent
who decided to always access the resource could force ev-
eryone else out and achieve the highest payoff.

In this paper, we consider the rationality issue. We pro-
pose a distributed algorithm to find an allocation of a set
of resources which is not only symmetric and fair, but also
rational. We draw inspiration from the works of (Bhaskar
2000) and (Kuzmics, Palfrey, and Rogers 2010) on symmet-
ric equilibria for symmetric repeated games.

Assume that agents play an infinitely repeated game, and
they discount future payoffs with a common discount factor
0 < δ < 1. A strategy for an agent is a mapping from any
history of the play to a probability distribution over the ac-
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tions. Our goal is to find a symmetric subgame perfect equi-
librium. A subgame perfect equilibrium is a strategy profile
(vector of strategies for every agent) which is a NE in any
history, including those that cannot occur on the equilibrium
path.

The problem is that the agents start with a common his-
tory. In order to ever use different actions, they need to ran-
domize; in order to randomize, they need to be indifferent
between a set of actions.

We can split the game in two stages: Symmetric play,
when all the agents use the same actions, asymmetric play
from then on. We call the first round of the game where
agents differ an asynchrony.

After reaching asynchrony, agents can proceed in differ-
ent ways, depending on which action they took in the asyn-
chrony round. We call the strategy profile that the players
adopt after an asynchrony a convention. The agents who
have successfully accessed a resource alone in that round
are “winners”, and all the other agents are “losers”. The
convention can prescribe a different strategy for the winners
and for the losers.

As an example, for the 2-agent, 1-resource allocation
game, (Bhaskar 2000) describes the following two conven-
tions:

Bourgeois Agents keep using the action they played in the
last round;

Egalitarian Agents play the action of their opponent from
the last round.

Some form of convention is necessary to achieve and
maintain coordination even in games where agents don’t
have conflicting preferences ((Crawford and Haller 1990),
(Goyal and Janssen 1996)). We will assume that a conven-
tion is rational, i.e. every agent is playing their best response
actions.

The social payoff depends on how fast the agents reach
asynchrony. When there is a big difference between the win-
ner and loser payoff, the losers will “fight back” harder, so
they will play their most preferred action with higher proba-
bility. In the egalitarian convention, the payoffs to the loser
are (given high enough δ) the same as the winner. Therefore,
the agents will be indifferent between being a winner and a
loser and they will reach asynchrony faster.

How much social payoff do we lose by requiring the
agents to be identical and anonymous, and requiring them
to play only symmetrical strategies? For a given convention,
we can calculate the social payoff E the agents get if we im-
plement it as a symmetric SPE. That way, we can define its
price of anonymity. It is the ratio between E and the high-
est expected social payoff of any (potentially asymmetric)
strategy profile.

Definition 1. Let σ = (σ1, σ2, . . . , σN ) be a symmetric
strategy vector for the resource allocation game ofN agents
and C resources. We define the price of anonymity of strat-
egy vector σ as follows:

R(σ) :=
maxE(τ)

E(σ)

where E(σ) is the social expected payoff (sum of individ-
ual expected payoffs) when agents adopt strategy σ, and
maxE(τ) is the maximum social payoff of any strategy vec-
tor, symmetric or asymmetric.

For a given resource allocation game, we can also define
its price of anonymity as

R := inf R(σ)

where we minimize over all symmetric strategy profiles for
the given game.

Our main contributions are the following:
• We show that in the infinitely repeated resource allocation

game with discounting of N agents and C resources, for
any convention, there exists a symmetric subgame perfect
equilibrium that reaches this convention.

• We give a closed form expression to calculate the sub-
game perfect equilibrium for the bourgeois convention,
and show that for a small number of resourcesC, this con-
vention leads to zero expected payoff. This means that the
price of anonymity of the bourgeois convention is∞.

• We present the market convention. It is based on the
idea that agents can observe a common coordination sig-
nal, and they can reach a different resource allocation for
each signal. We show that compared to the bourgeois
convention, it improves the expected payoff. Its price of
anonymity is therefore finite.
This paper is structured as follows: In Section 2 we

present our resource allocation game. We show that for any
convention there exists a symmetric subgame perfect equi-
librium which implements this convention. In Section 3 we
present two concrete examples of a convention: bourgeois
and market conventions and discuss their properties. Finally,
Section 4 concludes.

2 Resource Allocation Game
Definition 2. A resource allocation game GN,C is a game
of N agents. Each agent i can access one of C resources.
It chooses its action ai from Ai = {Y,A1, A2, . . . , AC},
where action ai = Y means to yield, and action ai = Ac
means to access resource c. Because all resources are iden-
tical, we can define a special meta-action ai = A. To take
action A means to choose to access, and then to choose the
resource uniformly at random.

The payoff function for agent i is defined as follows:

ui(a1, . . . , ai, . . . , aN ) := 0 if ai = Y (1)

ui(a1, . . . , ai, . . . , aN ) :=

{
1 if ai 6= Y,

∀j 6= i, aj 6= ai
γ < 0 otherwise

(2)

This game has a set of pure strategy NEs where C agents
each access a resource ci and N − C agents do not. There
is also a symmetric mixed strategy NE in which each agent
decides to access some resource with probability

Pr(ai > 0) := min

{
C ·

(
1− N−1

√
|γ|

1 + |γ|

)
, 1

}
(3)
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and then chooses the resource to access uniformly at ran-
dom. Note that for high enough values of C, all agents will
choose to access some resource.

As mentioned before, the pure strategy NEs are efficient,
but neither symmetric nor fair. For a small number of re-
sources C, the mixed strategy NE leads to an expected pay-
off of 0. Therefore, it is not socially efficient.

To improve the efficiency, we will follow the approach of
Bhaskar and Kuzmics et al. (see Section 1). We consider an
infinitely repeated version of the resource allocation game
GN,C . We assume that the agents discount their future pay-
offs with a discount factor 0 < δ < 1. Agents have infor-
mation about which resources have been occupied in the last
round, but they cannot observe who occupied them.

When N identical agents use symmetric strategies to play
the repeated game, in order to reach an asymmetric outcome
of a single shot game they need to distinguish themselves.
One way to do this is as follows: Whenever an agent is the
only one to access a resource, he becomes the “winner”. The
other agents (those who yielded or collided) are “losers”. We
call this event asynchrony.

The problem is that there can only be as many win-
ners as there are resources. We won’t distinguish between
the losers. Another way to distinguish them is as follows:
We assume that the agents can observe in each round of
the game a global coordination signal, which is an integer
k ∈ {1, 2, . . . ,K}, chosen uniformly at random. This sig-
nal is the same for all the agents. They can condition their
strategy on this signal. For different coordination signals,
there can be different sets of winners and losers.

Definition 3. A strategy σ of an agent α is a function from
the coordination signal to a probability distribution over ac-
tions,

σ : {1, 2, . . . ,K} → ∆({A, Y }) (4)

A deterministic strategy selects for each signal either A, or
Y .

Definition 4. Let r be a round of the infinitely repeated
game GN,C . We say round r is an asynchrony, if there exists
an agent α who:

1. Accesses some resource alone in round r,
2. and has not accessed any resource alone in previous

rounds.

We call all such agents winners. All the other agents who
have not accessed any resource alone so far are losers.

Definition 5. A signal-based convention (or simply conven-
tion) ξ in a game GN,C is a set of (mixed) strategies that
the agents adopt after an asynchrony round. The strategies
for the winners and for the losers are potentially different.
Suppose there are nw winners. The convention leads to an
expected payoff wξ(nw) for the winners, and lξ(nw) for the
losers.

Figure 1 gives an example of a game play of N = 4
agents, C = 2 resources and K = 2 signals. If in round t,
the agents observe a signal kt, the convention adopted by the
agents in this example prescribes that if an agent accesses a
resource alone in round t, it becomes its “winner” and will

Round 1 2 3 4 5 6 7 8
Signal 1 2 2 2 1 2 1 2

Agent 1 1 0 2 0 1 0 1 0
Agent 2 1 0 1 1 1 1 0 1
Agent 3 2 1 0 0 2 0 2 0
Agent 4 0 1 2 2 1 2 0 2

Figure 1: Example of a game play for N = 4 agents,
C = 2 and K = 2. The asynchrony rounds are 1, 3, 4
and 7 (denoted in bold face). Once an agent accesses a re-
source alone, it will keep accessing that resource every time
the same signal is observed. The winners are denoted with
gray background (different shades for different signals). The
first round when an agent accesses a resource alone (and be-
comes the winner) is denoted with bold face. In the rest of
the game, agent 1 will keep accessing resource 1 when the
signal is 1. Agent 2 will access the resource 1 when signal
is 2. Agent 3 will access the resource 2 when the signal is 1.
Finally, agent 4 will access the resource 2 when the signal is
2. This way, the agents are no longer anonymous and have
identified their roles with the signal and the resource they
access.

access the same resource in every round t′ > t in which the
signal kt′ = kt.

Definition 6. Let ξ be a convention for game GN,C . Let σ
be a deterministic strategy of an agent α. Assume that for
each signal k ∈ {1, . . . ,K}, every other agent takes action
A with probability pk. Let ~p = (p1, p2, . . . , pK) be a vector
of these probabilities. We define expected payoff functions
EA and EY when agent α takes actions A and Y :

EA(~p, σ, k) :=
C∑
c=1

[Pr(α wins & nw = c|A)wξ(c)

+ Pr(α loses & nw = c|A)(γ + lξ(c))] + Pr(nw = 0|A)

·

γ +
δ

K

EA(~p, σ, k) +
K∑
l=1
l 6=k

Eσ(l)(~p, σ, l)




(5)

EY (~p, σ, k) :=
C∑
c=1

Pr(nw = c|Y ) · lξ(c)

+ Pr(nw = 0|Y )
δ

K

EY (~p, σ, k) +

K∑
l=1
l 6=k

Eσ(l)(~p, σ, l)


(6)

Lemma 1. For any strategy σ and signal k, the functions
EA and EY are continuous in ~p ∈ 〈0, 1〉K .

Proof. The probabilities Pr(nw = c|A) and Pr(nw = c|Y )
are continuous. The functionsEA andEY are sums of prod-
ucts of continuous functions, so they must be themselves
continuous.
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Lemma 2. Functions EA and EY are well-defined for any
σ, k and ~p ∈ 〈0, 1〉K .

Proof. For fixed ~p, σ, γ and δ the functions EA, EY de-
fine each a system of K linear equations. We can write this
system as A ~Eσ = b, where ~Eσ is a vector of correspond-
ing payoff functions Eσ(k), and b ∈ RK . The matrix A is
defined as

A := I− δ

K
(Pr(nw = 0|σ(1)), . . . ,Pr(nw = 0|σ(K)))·1T

(7)
where I is a K × K unit matrix and 1T a K-dimensional
row vector of all 1.

This system of equations has a unique solution if the ma-
trix A is non-singular. This is equivalent to saying that
det(A) 6= 0.

The matrix A is diagonally dominant, that is aii >∑K
j=1,j 6=i |aij |. This is because 0 < δ < 1, and all the

probabilities Pr(nw = c|σ(k)) ≤ 1. It is known that diago-
nally dominant matrices are non-singular ((Taussky 1949)).
Therefore, a unique solution ~Eσ of the system exists and the
functions EA, EY are well-defined.

Suppose that given the probability vector ~p, there is a de-
terministic best-response strategy for agent α σ~p.
Theorem 1. If the functions EA(~p, σ~p, k) and EY (~p, σ~p, k)
are well-defined and continuous in any pk, there exists a
probability vector ~p∗ = (p∗1, p

∗
2, . . . , p

∗
K) such that when for

signal k, every agent accesses a resource with probability
p∗k, agents play a symmetric subgame perfect equilibrium of
the infinitely repeated resource allocation game.

Proof. Fix γ, δ, σ and ~p for all l ∈ {1, . . . ,K}, l 6= k.
Let pk = 0. If EY ≥ EA, everyone is best off playing Y

and it is a symmetric best-response.
If not, then let pk = 1. If in this case EA ≥ EY , ev-

eryone is best off playing A and again this is a symmetric
best-response.

Finally, if both EY < EA for pk = 0, and EY > EA
for pk = 1, then from the fact that both functions are well-
defined and continuous for 0 ≤ pk ≤ 1, they must intersect
for some 0 < p∗k < 1. For such p∗k, the agents are indifferent
between actions A and Y . Therefore, it is a symmetric best-
response when all agents play A with probability p∗k.

We now know that for any coordination signal k, there ex-
ists a symmetric best-response given any set strategies σ(l)
for other coordination signals l 6= k. Therefore, there must
exist a probability vector ~p∗ such that for all coordination
signals it is a symmetric best-response to access with these
probabilities. This ~p∗ defines a symmetric subgame perfect
equilibrium of the infinitely repeated game.

2.1 Calculating the Equilibrium
While the symmetric subgame perfect equilibrium is guar-
anteed to exist, in order to actually play it, the agents need
to be able to calculate it. It is not always possible to obtain
the closed form of the probability of accessing a resource.
Therefore, we will show how to calculate the equilibrium
strategy numerically.

Let ~p be a probability vector, σ a strategy and k a sig-
nal. Let ~p0 := (p1, p2, . . . , pk = 0, . . . , pK), i.e. vector ~p
with pk set to 0. Let ~p1 := (p1, p2, . . . , pk = 1, . . . , pK).
From Theorem 1 we know that either EY (~p0, σ, k) >
EA(~p0, σ, k), or EA(~p1, σ, k) > EY (~p1, σ, k) or the two
functions intersect for some 0 ≤ pk ≤ 1. Furthermore,
we know that EA(~p0, σ, k) = wξ(c) since the probabil-
ity of successfully claiming a resource is 1 when every-
one else yields, and also EY (~p0, σ, k) = 0. Therefore,
EY (~p0, σ, k) > EA(~p0, σ, k) iff wξ(c) > 0.

W.l.o.g, we will assume that wξ(c) > 0. Algorithm 1
shows then how to calculate the probability vector.

Algorithm 1 Calculating the equilibrium probabilities

for Each subset S ⊆ {1, 2, . . . ,K} do
Let Σ be a system of equations
∀i /∈ S, Σ contains two equations for E(~p, σ, i). One
corresponding to EA(~p, σ, i), one to EY (~p, σ, i).
∀j ∈ S, we set pj := 1. Σ contains only one equation
for E(~p, σ, j), corresponding to EA(~p, σ, j).
So Σ is a system of 2K − |S| equations with 2K − |S|
variables.
Solve numerically the system of equations Σ.

if there exists a solution to Σ for which ∀i /∈ S, 0 ≤
pi ≤ 1 then

We have found a solution
break;

end if
end for

3 Conventions
In the previous section, we have shown that we can find a
symmetric way to reach any convention, provided the agents
access the resources with a certain probability. We have also
shown how to calculate the resource access probability in
every stage of the game. In this section, we would like to
show specific examples of the conventions that agents can
adopt, and discuss their properties.

3.1 Bourgeois Convention
The bourgeois convention is the simplest one. Once an agent
has accessed a resource successfully for the first time, he
will keep accessing it forever. We say that the agent has
claimed the resource. We don’t need any coordination signal
to implement it, so we assume that K = 1.

For N agents and C resources, we will describe the de-
cision problem from the point of view of agent α. Let c be
the number of resources that have not been claimed yet, and
n := N −C+ c the number of agents who have not claimed
a resource yet. We define E(c, τ−α) as the expected payoff
of the best response strategy for agent α given the strategies
τ−α of all the opponents.
Lemma 3. For any τ−α and ∀c ≥ 1, E(c, τ−α) ≥ 0.

Proof. No matter what is the strategy of the opponents, if
agent α chooses to always yield, its payoff will be 0.
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Lemma 4. If the opponents’ strategies τ−α are such that
the agent α is indifferent in every round between yielding
and accessing, E(c, τ−α) = 0 for all c ≥ 1.

Proof. If the agent α is indifferent between actions Y and
A in every round, that means that it is indifferent between a
strategy that prescribes Y in every round and any other strat-
egy. The (expected) payoff of the strategy which prescribes
always Y is 0. Therefore, the expected payoff of any other
strategy must be 0 as well.

For the purpose of our problem, all the unclaimed re-
sources are identical. Therefore the only parameter of the
agent strategy is the probability with which it decides to ac-
cess – the resource itself is then chosen uniformly at random.
Lemma 4 shows a necessary condition for agent α to be in-
different. The following lemma shows a sufficient condition:

Lemma 5. Assume at round r there are c unclaimed re-
sources. Then there exists a unique 0 ≤ p∗ ≤ c such that
if all opponents who haven’t claimed any resource yet play

A with probability p∗c = c

(
1− n−1

√
|γ|

|γ|+ 1
1−δ

)
, agent α is

indifferent between yielding and accessing.

Proof. From Lemma 4 we know that when agent α is indif-
ferent, it must be that E(c, τ−α) = 0 for all c ≥ 1.

The expected profit to agent α from playing A and then
following best-response strategy (with zero payoff) is

EA(c, τ−α) =
(

1− p

c

)n−1
· 1

1− δ
+

[
1−

(
1− p

c

)n−1]
·γ

(8)
Here p is the probability with which the opponents access.

We want EA(c, τ−α) = EY (c, τ−α) = 0. This holds if p∗c is
defined as in the theorem above.

FunctionEA is decreasing in p on the interval [0, c], while
function EY is constantly 0. Therefore, the intersection is
unique on an interval [0, c].

Lemma 6. Assume that all the opponents who haven’t
claimed any resource access a resource with probability
p < p∗c . Then it is best-response for agent α to access.

Proof. The probability that agent α claims successfully a
resource after playing A is

Pr(claim some resource|A) :=
(

1− p

c

)n−1
(9)

This probability increases as p decreases. Therefore the
expected profit of accessing is increasing, whereas the profit
of yielding stays 0.

Theorem 2. Define an agent’s strategy τ as follows: If
there are c unclaimed resources, play A with probability
pc := min (1, p∗c) (where p∗c is defined in Lemma 5). Then a
joint strategy profile ~τ = (τ1, τ2, . . . , τN ) where ∀c, τc = τ
is a subgame perfect equilibrium of the infinitely repeated
resource allocation game.

Proof. If p∗c < 1, any agent is indifferent between playing
Y and playingA, therefore will happily follow strategy τ . If
1 = pc < p∗c , it is best response for any agent to play A, just
as the strategy τ prescribes.

Theorem 3. For all c ∈ N, if pc = p∗c , E(c, ~τ−α) = 0.

Proof. We will proceed by induction.
For c = 0, the expected payoff is trivially E(0, ~τ−α) = 0,

because there are no free resources.
Let ∀j < c,E(j, ~τ−α) = 0 and pc = p∗c . If agent α plays

Y , the expected payoff is clearly 0 (it will be 0 now and 0 in
the future from the induction hypothesis). If agent α plays
A, the expected payoff is

EA(c, ~τ−α) :=
(

1− pc
c

)n−1
· 1

1− δ

+

[
1−

(
1− pc

c

)n−1]
· γ + δ

c∑
j=0

qcjE(j)

(10)

Because of the way the p∗c is defined, and from the induc-
tion hypothesis E(j, ~τ−α) = 0 for j < c, we get

EA(c, ~τ−α) := δqccE(c, ~τ−α)

= δqcc max{EA(c, ~τ−α), EY (c, ~τ−α)} (11)

Since δqcc < 1, it must be that EA(c, ~τ−α) = 0.

Theorem 4. If pc < p∗c , E(c, ~τ−α) > 0.

Proof. From Lemma 6 we know that when pc < p∗c , it is a
best response to access, so E(c, ~τ−α) = EA(c, ~τ−α). From
Lemma 3 we know that for all j, E(j) ≥ 0. If pc < p∗c ,
from the definition of EA(c, ~τ−α) (Equation 10) we see that
E(c, ~τ−α) > 0.

Theorem 4 shows that if we have enough resources so that
p∗c ≥ 1, the expected payoff for the agents, even when they
access all the time, will be positive.

Let us now look at the price of anonymity for the bour-
geois convention (as defined in Definition 1). The highest
social payoff any strategy profile τ can achieve in an N -
agent, C-resource allocation game (N ≥ C) is

maxE(τ) :=
C

1− δ
. (12)

This is achieved when in every round, every resource is ac-
cessed by exactly one agent. Such strategy profile is obvi-
ously asymmetric.

If each agent knew which part of the bourgeois conven-
tion to play at the beginning of the game, this convention
would be socially efficient. However, when the agents are
anonymous, they have to learn which part of the convention
they should play through randomization. For the bourgeois
convention (when C is small), this randomization wipes out
all the efficiency gains. Therefore, its price of anonymity is
infinite.
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Figure 2: Market convention: Price of anonymity for γ =
−0.5 and varying δ.

Figure 3: Market convention: Price of anonymity for δ =
0.9 and varying γ.

3.2 Market Convention
We saw that the bourgeois convention leads to zero expected
payoff for a small number of resources. We would like to
improve the expected payoff here.

We assume the following:

• Agents can observe K ≥ 1 coordination signals.

• Agents have a decreasing marginal utility when they ac-
cess a resource more often.

• They pay a fixed price per each successful access, to the
point that each agent prefers to access a resource only for
one signal out of K. In practice, this could be imple-
mented by a central authority which observes the conver-
gence rate of the agents, and dynamically increases or de-
creases the price to achieve convergence.

Such assumptions define what we call “market” conven-
tion, in which the winners only access their claimed resource
for the signals they observed when they first claimed it.

We know that we can implement this convention for C ≥
1 resources using symmetric play (see Section 2). We can

ex-post fair efficient rational
C&F’11 (X)1 X no

Bourgeois no no X
Egalitarian2 X X X

Market X ? X

Table 1: Properties of conventions

also use Algorithm 1 to calculate the access probabilities.
Here we will look specifically at the expected payoff of the
market convention in the case of N agents and 1 resource.

When each agent only accesses the resource for one sig-
nal, we need K = N signals to make sure everyone gets to
access once.

In the N -agent, 1-resource case, imagine there are still n
agents playing and (N−n) agents who have already claimed
the resource for some signal. Imagine that the n agents ob-
serve one of the n signals for which no resource has been
claimed.

Assume that all agents access the resource with probabil-
ity pn. The expected payoff of accessing a resource for agent
α is

EA(pn, n) := (1− pn)n−1 ·
(

1 +
δ

N
· 1

1− δ

)
+
[
1− (1− pn)n−1

]
·
[
γ +

δn

N − δ(N − n)
EA(pn, n)

]
(13)

The expected payoff of yielding for agent α is

EY (pn, n) := (n− 1)pn(1− pn)n−2E(n− 1)

+
[
1− (n− 1)pn(1− pn)n−2

] δn

N − δ(N − n)
EY (pn, n)

(14)

When pn = 1, accessing a resource will always lead to a
collision, so the payoff will be negative. When pn = 0, ac-
cessing a resource will always claim it, so the payoff will be
positive. So in the equilibrium, the agents should be indif-
ferent between accessing and yielding. Therefore, we want
to find p∗n such that EA(p∗n, n) = EY (p∗n, n) = E(n).

Finding a closed form expression for p∗n is difficult, but
we can use Algorithm 1 to calculate this probability, as well
as the expected payoff E(n), numerically.

Figures 2 and 3 show the price of anonymity of the market
convention (as defined in Definition 1) of the market con-
vention for varying discount factor δ, and varying cost of
collision γ, respectively. From Section 3.1, we saw that the
price of anonymity for C = 1 is ∞. On the contrary, for
the market convention this price is in both cases finite and
relatively small.

3.3 Convention Properties
We compare the properties of the following conventions:
C&F’11, a channel allocation algorithm presented in (Cigler

1Fair asymptotically, as N →∞.
2Only for 2-agents, 1-resource games.
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and Faltings 2011); bourgeois, presented in Section 3; egal-
itarian, presented in Section 1; and market, presented in this
work.

We compare the conventions according to the following
properties:

Ex-post fairness Is the expected payoff to all agents the
same even after asynchrony?

Efficiency Does the convention maximize social welfare
among all possible conventions?

Rationality Is it an equilibrium for the agents to adopt the
convention?

Table 1 summarizes the properties of the conventions.
The C&F’11 convention is only approximately ex-post fair.
The fairness is improving as the number of coordination sig-
nals increases, but some agents might have a worse payoff
than others. On the other hand, it is efficient, at least with
no discounting (δ = 1). However, it is not rational. The
bourgeois convention is neither fair nor efficient, in fact the
expected payoff to the agents is 0 (for a small number of
resources). It is rational though, since the agents are indif-
ferent between being a winner and a loser. The egalitarian
convention is fair, efficient and rational. However, it only
works for games of 2 agents and 1 resource. Finally, the
market convention is fair and rational. It is clearly more ef-
ficient than the bourgeois convention. Nevertheless, finding
the most efficient convention remains an open problem.

4 Conclusions
In this paper, we considered the problem of equilibrium se-
lection in the infinitely repeated resource allocation game
with discounting of N agents and C resources. We assumed
that the agents are identical, and that they use symmetric
strategies. We based our work on the idea of (Bhaskar 2000):
we let the agents play a symmetric mixed strategy, after
which they adopt a certain convention. We show that for any
convention, there exists a symmetric subgame perfect equi-
librium that implements it. We presented two such conven-
tions for the repeated resource allocation game: bourgeois
and market convention. We defined the price of anonymity
as the ratio between the expected social payoff of the best
asymmetric strategy profile and the expected social payoff
of a given symmetric strategy profile. We showed that while
the price of anonymity for the bourgeois convention is in-
finite (at least for small number of resources), the price of
anonymity of the market convention is finite and relatively
small.

In the future work, we would like to investigate whether
there exist more efficient conventions than the market con-
vention (i.e. conventions with smaller price of anonymity).
In general, finding an optimal convention is an NP-hard
problem (Balan, Richards, and Luke 2011), but for a
more restricted set of infinitely repeated resource allocation
games, we might be able to find the optimal convention, sim-
ilar to the Thue-Morse sequence (Richman 2001) used by
(Kuzmics, Palfrey, and Rogers 2010) in the Nash demand
game.

Acknowledgements
We are particularly thankful to David Parkes for giving the
first author the unique opportunity to spend a few weeks
in his lab at Harvard. David’s openness and unparalleled
knowledge is what really helped to originate this work. We
would also like to thank Kate Larson for reading the draft of
this paper and helping make the theoretical analysis much
more readable.

References
Balan, G.; Richards, D.; and Luke, S. 2011. Long-term fair-
ness with bounded worst-case losses. Autonomous Agents
and Multi-Agent Systems 22(1):43–63.
Bhaskar, V. 2000. Egalitarianism and efficiency in re-
peated symmetric games. Games and Economic Behavior
32(2):247–262.
Cigler, L., and Faltings, B. 2011. Reaching correlated equi-
libria through multi-agent learning. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 509–516. International Foundation for
Autonomous Agents and Multiagent Systems.
Crawford, V. P., and Haller, H. 1990. Learning how to coop-
erate: Optimal play in repeated coordination games. Econo-
metrica 58(3):571–595.
Goyal, S., and Janssen, M. 1996. Can we rationally learn to
coordinate? Theory and Decision 40(1):29–49.
Kuzmics, C.; Palfrey, T.; and Rogers, B. 2010. Symmetric
players in repeated games: Theory and evidence.
Richman, R. 2001. Recursive binary sequences of differ-
ences. Complex Systems 13(4):381–392.
Taussky, O. 1949. A recurring theorem on determinants.
The American Mathematical Monthly 56(10):672–676.
Wang, L.; Wu, K.; Hamdi, M.; and Ni, L. M. 2011. At-
tachment learning for multi-channel allocation in distributed
OFDMA networks. Parallel and Distributed Systems, Inter-
national Conference on 0:520–527.

1332




