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Abstract
Designing revenue-optimal auctions for various settings is
perhaps the most important, yet sometimes most elusive,
problem in mechanism design. Spiteful bidders have been
intensely studied recently, especially because spite occurs in
many applications in multiagent system and electronic com-
merce. We derive the optimal auction for such bidders (as
well as bidders that are altruistic).
It is a generalization of Myerson’s (1981) auction. It chooses
an allocation that maximizes agents’ virtual valuations, but
for a generalized definition of virtual valuation. The payment
rule is less intuitive. For one, it takes each bidder’s own re-
port into consideration when determining his payment. More-
over, bidders pay even if the seller keeps the item; a simi-
lar phenomenon has been shown in other settings with neg-
ative externalities (Jehiel, Moldovanu, and Stacchetti 1996;
Deng and Pekeč 2011). On the other hand, a novel aspect of
our auction is that it sometimes subsidizes losers when the
item is sold to some other bidder.
We also derive a revenue equivalence theorem for this setting.
Using it, we generate a short proof of (a slight generalization
of) the previously known result that, in two-bidder settings
with independently uniformly drawn valuations, second-price
auctions yield greater expected revenue than first-price auc-
tions. Finally, we present a template for comparing the ex-
pected revenues of any two auction mechanisms that have the
same allocation rule (for the valuations distributions at hand).

Introduction
Auctions are a key class of methods for resource and task
allocation in multiagent systems. One of the most important
problems in auction theory, and mechanism design at large,
is to design revenue-maximizing (aka. optimal) auctions.
The optimal auction design problem is, for the seller, to de-
sign an auction mechanism that maximizes her expected rev-
enue, given the information about bidders’ valuation distri-
butions but not the actual values.

There has been a significant amount of research on this
topic, most of which has been within the standard single-
parameter quasi-linear settings (cf. (Nisan et al. 2007, Chap-
ter 9)). Landmark results include Myerson’s (1981) auction
for the standard one-item setting as well as its extension to
multiple identical units of an item (Maskin and Riley 1989).
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Since those landmark results, several optimal auctions in
other special settings have been put forward. To name a
few, there is Levin’s auction for complements (Levin 1997),
multi-item auctions for settings where the bidders’ valua-
tions can take on either of only two values (Armstrong 2000;
Avery and Hendershott 2000), a 1-item auction for finan-
cially constrained bidders (Pai and Vohra 2008), sponsored
search auctions (Iyengar and Kumar 2006), multi-item auc-
tion with single-minded agents (Ledyard 2007), a procure-
ment auction where both costs and capacities are private in-
formation (Iyengar and Kumar 2008), an optimal auction
where each bidder’s private information (i.e., type) is two-
dimensional where one dimension describes valuation and
the other describes externality (Deng and Pekeč 2011), and
an optimal auction where the externality that a bidder expe-
riences is determined by the payments of others (but not by
the allocation to others) (Lu 2012).

In this paper, we investigate the optimal auction design
problem in the setting with spiteful bidders (and altruis-
tic bidders where the spite factor, defined later, is nega-
tive). Loosely speaking, spite is a type of negative exter-
nality an agent imposes on others when he wins. Early on,
auctions with negative externalities were studied in the con-
text of nuclear weapons (Jehiel, Moldovanu, and Stacchetti
1996)1. Spite and similar negative externalities have drawn
significant interest recently, especially in AI and sponsored
search literature (Morgan, Steiglitz, and Reis 2003; Brandt,
Sandholm, and Shoham 2007; Zhou and Lukose 2007;
Sharma and Sandholm 2010; Krysta et al. 2010; Constantin
et al. 2011; Deng and Pekeč 2011; Conitzer and Sandholm
2012). Symmetrical equilibria have been calculated in auc-
tion settings with spite for first- and second-price auctions,
and revenue comparisons have been derived (Morgan, Stei-
glitz, and Reis 2003; Brandt, Sandholm, and Shoham 2007;
Sharma and Sandholm 2010). A type of vindictive bid-
ding strategy (a strategy that decreases other agents’ utili-
ties while maintains one’s own utility) has been empirically
observed in sponsored search auctions (Zhou and Lukose
2007). Bidding languages that allow one to express cer-

1Ukraine had old-fashioned nuclear weapons for sale. The USA
and Russia, who were not interested in the weapons themselves,
were worried about the danger caused by some other country ob-
taining the weapons. Consequently, both countries paid significant
amounts to Ukraine not to sell any of the weapons.
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tain kinds of externalities have been designed for sponsored
search (Parkes and Sandholm 2005; Constantin et al. 2011).
Expressive bidding languages and winner determination
have been studied for general settings (Krysta et al. 2010;
Conitzer and Sandholm 2012; 2011).

The most closely related prior research is the analysis
of single-item auctions with spiteful bidders (Morgan, Stei-
glitz, and Reis 2003; Brandt, Sandholm, and Shoham 2007),
where each agent cares about the others’ utility (which de-
pends on the others’ allocation and payments). We use the
same model of spite as that prior work. To our knowledge,
the optimal auction in this model was unknown. The prior
papers studied first- and second-price auctions, but neither
of them is optimal. One aspect that makes our analysis more
involved is that to derive an optimal auction, we need to con-
sider the possibility that it might be randomized. (As we will
show, randomization turns out not to be necessary.) Further-
more, it is not even clear in this setting whether the losing
bidders should pay, get paid, or neither.

Adapting Myerson’s approach (Myerson 1981), we give
complete characterizations of incentive compatible individ-
ually rational auctions, as well as optimal auctions for this
setting. The optimal auction, which is a generalization of
Myerson’s auction to the spiteful setting, takes the following
form. It chooses an allocation that maximizes agents’ virtual
valuations—for a revised definition of virtual valuation—
similar to the allocation rule of Myerson’s auction. The pay-
ment rule, though including Myerson’s payment rule as a
special case, is less intuitive. For one, it takes each bidder’s
own report into consideration when determining his pay-
ment. Moreover, when the seller keeps the item, bidders usu-
ally pay positive amounts for nothing, a phenomenon that
rarely occurs in commonly seen auctions. This is similar to
the conclusion drawn from a different model of negative ex-
ternalities that the seller should extract positive rents from
losing bidders (Jehiel, Moldovanu, and Stacchetti 1996).
Our auction sometimes subsidizes losers when the item is
sold to some other bidder—a phenomenon which, to our
knowledge, has not been observed in prior work.

We also derive a version of the revenue equivalence theo-
rem for this setting. Using this theorem, we are able to easily
compare the revenue of first- and second-price auctions, that
is, we obtain a shorter analysis of previously known results
(and generalize them slightly).

The setting
We consider a setting where the seller has an indivisible item
for sale. Her valuation of the item is normalized to 0. There
is a set N of n bidders. Each bidder i has a private valuation
ti for the item. Only agent i knows his valuation. All the
others, including the seller, view ti as a random variable that
is drawn from a distribution function Fi(ti) on a closed in-
terval [ai, bi]. Fi admits a density function fi that is positive
everywhere on [ai, bi]. We also use the standard assumption
that ti and tj are independently distributed, for any i 6= j.
We denote the joint type by t = t1 × t2 × . . . × tn and the
joint type distribution by F = F1 × F2 × . . .× Fn.

All of our analysis also applies to the setting where the
seller has k identical units for sale and each bidder has unit

demand. We will point out the differences of the two set-
tings whenever necessary. From now on, for simplicity of
presentation, we will word everything in the single-unit set-
ting unless explicitly stated otherwise.

By the revelation principle (Myerson 1981), we can, with-
out loss of generality, focus on the set of direct revelation
mechanisms. Each bidder is asked simply to report his val-
uation in [ai, bi]. We call the reported valuation a bid. Upon
receiving a bid from each bidder, the auction determines the
probabilities pi with which each agent i wins the item, and
the payments xi that the bidders have to make.

The setting described in this section so far is the standard
independent private value (IPV) setting. The key deviation
point from the standard setting is the utility functions of the
bidders, which will now be spiteful. The utility of agent i is

ui(t) = tipi(t)− xi(t)− α
∑
j 6=i

(tjpj(t)− xj(t)).

The first two terms define the standard quasi-linear util-
ity. The third term reflects the externality others impose on
agent i when they get the item. In other words, an agent’s
utility is his utility in the standard sense minus the welfare
of the other agents times a constant. The constant, α, coined
spite factor, is symmetric among all the agents. Note that
α can be either positive (corresponding to spite) or negative
(corresponding to altruism).

Our model is a generalization of prior analyses of auctions
with spiteful bidders (Morgan, Steiglitz, and Reis 2003;
Brandt, Sandholm, and Shoham 2007) because the prior
work studied deterministic auctions (where pi can only be
either 1 or 0) while we allow randomization. This is neces-
sary because we cannot preclude ahead of time the possibil-
ity that the optimal auction might need to use randomization.

Due to spite, our setting differs from the standard “single-
parameter” environment (cf. (Nisan et al. 2007, Chapter 9)),
where the utility is quasi-linear. Our setting also differs from
the standard combinatorial auction setting, where external-
ity is absent. Our setting also differs from prior research on
externalities in how we model externality. Our externality
(specifically, spite) depends on the utilities and payments of
others, while Jehiel et. al. (1996) and Deng and Pekec (2011)
considered externality to be a number that only depends on
the name of the agent who gets the item (no matter how
much that agent pays).

When the spite factor α = 0 or the number of bidders n =
1, the setting reduces to the standard IPV setting. To review
Myerson’s solution to the optimal auction design problem,
we first define the virtual valuation function in the standard
way as t̃i = ti− 1−Fi(ti)

fi(ti)
. The allocation rule of the Myerson

auction is then to maximize the sum of virtual valuations
of all agents (including the seller), that is, the virtual social
welfare. The payment rule is for the winning bidder, if any
(the seller may have the highest virtual valuation, in which
case no bidder wins), to pay the amount of the lowest bid
with which he would have won.

If all bidders have the same valuation distribution function
(Fi = Fj for all i, j), the virtual valuation function is bidder
independent. Assuming t̃i is increasing in ti (i.e., the stan-
dard regularity condition), the bidder with highest virtual
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valuation is the one with highest actual valuation. Therefore,
Myerson’s auction reduces to the second-price auction, but
with a reserve price (represented by the fact that the seller’s
virtual valuation might be higher than any bidder’s).

Following Myerson’s approach, we give a detailed anal-
ysis of the seller’s problem. In the next section, we define
the seller’s problem. In the following section, we character-
ize the incentive compatible individually rational auctions.
In the section after that, we derive the seller’s revenue for-
mula as a function of only the allocation rule and the utility
of each bidder when he happens to have his lowest possible
valuation. (As a side effect,we obtain a revenue equivalence
theorem for our spiteful bidders.) In the section after that,
we present the optimal auction. In the section after that, we
provide a more compact way of conducting revenue compar-
isons of auctions than what was available in prior work.

The seller’s problem
Informally, the seller’s problem is to maximizing her ex-
pected revenue, subject to incentive compatibility (IC) and
individual rationality (IR) constraints in Bayes Nash equilib-
rium. In addition, we also need the resource (RS) constraint,
stating that there is only one object for sale.

We first need to write down agent i’s (ex interim) utility
when i bids truthfully:

Ui(ti) =

∫
t−i

tipi(t)− xi(t)− α
∑
j 6=i

(tjpj(t)− xj(t))dF−i(t−i).

His utility, when i bids si instead of his true type ti, is:

U
′
i(si) =

∫
t−i

tipi(si, t−i)− xi(si, t−i)−

α
∑
j 6=i

(tjpj(si, t−i)− xj(si, t−i))dF−i(t−i).

Incentive compatibility states that reporting one’s true
type is no worse for that bidder than reporting any other type,
assuming others also report truthfully.

Definition 1 Incentive compatibility (IC)
An auction is incentive compatible in Bayesian Nash equi-
librium if Ui(ti) ≥ U ′i(si) for all i, ti and si.

The next constraints we will discuss are individual ratio-
nality (IR) constraints (aka participation constraints). As al-
ways, IR here states that each agent should be at least as well
off by participating as he would be by not participating.

However, unlike in the usual (spiteless) model, an agent
in our model will not simply get 0 utility if he does not par-
ticipate: for example, if α > 0, he will get negative utility
when the other bidders in aggregate get positive utility (be-
cause some other bidder gets the item and/or some other bid-
der gets paid).2 Thus, IR requires the seller to promise each

2This is similar in the nuclear weapons sale example, where a
non-participant can face dire consequences if a rival of his gets the
weapons—unless the non-participant can somehow make himself
immune to the bad consequence, such as by moving to Mars, with-
out changing his utility.

participant expected utility greater than that value. To max-
imize revenue, the seller needs to construct the worst pos-
sible bidder-specific realistic threat with which to threaten
each potential non-participant. This will minimize a bid-
der’s utility from non-participation and therefore maximize
how much the seller can extract in the auction while still
keeping the auction IR.3 The seller accomplishes this by,
for each bidder i in turn, threatening to maximize (mini-
mize if α < 0) the aggregate value to the other bidders∫
t−i

∑
j 6=i(tjp

′
j(t) − x′j(t))dF−i(t−i) (thus damaging i as

much as possible according to i’s utility function Ui(ti)
above) if i does not participate. Here, p′ and x′ are the al-
location and payment rule of the “second-stage” mechanism
where the players are N \ {i}.

The “second-stage” mechanism would still need to be
Bayes Nash IC for the remaining agents. However, it would
not have to be IR for them because they already will have
agreed to participate up front, and the mechanism will not
ask them to reconsider participation before the “second
stage”. Note that the “second stage” will never actually be
reached on the path of play because all agents are incen-
tivized to participate in the first place.

Now, we introduce the following shorthand notation:
g(t−i) =

∑
j 6=i(tjp

′
j(t) − x′j(t)). With that, we are ready

to define the IR constraints.
Definition 2 Individual rationality (IR)
An auction is individually rational in Bayesian Nash equi-
librium if Ui(ti) ≥ −α

∫
t−i

g(t−i)dF (t−i) for all i and ti.

The value of g(t−i) depends on the power of the seller. If
there are no restrictions and α > 0, the seller can threaten
to pay the remaining agents infinite amounts, thus setting
g(t−i) to infinity. In that setting, the optimal revenue is triv-
ially infinite. (Figueroa and Skreta (2009) discuss a spiteless
auction setting with two bidders where the seller has two
options: 1) to burn the item if even one bidder does not par-
ticipate (this is also the assumption made by Lu (2012)), or
2) give the item to the participating bidder in that scenario.
Clearly neither of these threats is credible because the auc-
tioneer would be better off by re-auctioning.)

Another example would be a seller who has to be bud-
get balanced, that is, she cannot make a positive payment
to the agents in aggregate. Now the seller’s threat to a po-
tential non-participant i is that if i does not participate, the
seller will run a mechanism that tries to maximize the sum
of the utilities of the remaining agents

∫
t−i

∑
j 6=i(tjp

′
j(t)−

x′j(t))dF−i(t−i) subject to budget balance.4

3Here, the equilibrium payoff is the equilibrium payoff when all
other bidders commit to participate. Because (Bayes) Nash equi-
librium is used as the solution concept, we only have to guaran-
tee that no agent alone is motivated to not participate. Simultane-
ous non-participation by multiple bidders need not be considered.
That would be a coalitional solution concept, and would give rise
to interesting additional questions. For example, it would put ad-
ditional constraints on how the seller can threaten potential non-
participants. She could not threaten bidder A with giving the item
to A’s arch rival and threaten bidder B with giving the item to B’s
arch rival if those arch rivals are not the same party.

4A different situation arises if agent i has asymmetric spite to-
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For the purposes of this paper, we are agnostic about
how the seller is constrained. We simply take the function
g as given, and assume that it is common knowledge. The
seller always has the option of keeping the item, which sets
g(t−i) = 0 for all i and t−i. So, without loss of generality,
we have g(t−i) ≥ 0 if α ≥ 0 and g(t−i) ≤ 0 if α < 0.

Finally, the auction has a resource feasibility constraint.
Definition 3 Resource feasibility (RF)∑
i pi(t) ≤ 1 and 0 ≤ pi(t) ≤ 1 for all t and i.

For the setting where there are k identical unit for sale and
each bidder demands only one unit, the first part of the RF
constraint is changed to

∑
i pi(t) ≤ k.

The seller’s problem is to maximize her expected pay-
ment, subject to the three kinds of constraints above.
Definition 4 Seller’s Problem

max
p,x

R =

∫
t∈T

∑
i

xi(t)dF (t),

subject to the IC, IR constraints as well as the RF constraint.

Analysis: constraints simplification lemma
We first define the ex interim allocation rule, that is, the con-
ditional probability that agent i gets the item, in expectation
over all possible other agents’ types, given his own type:

Qi(ti) =

∫
t−i

pi(t)dF (t−i)

Lemma 1 The IC and IR constraints hold if and only if the
following conditions are met for all i.

1. The ex interim probability that an agent gets the item is
weakly increasing in his realized valuation.
Formally, Qi(ti) is weakly increasing in ti.

2. The ex interim probability is the derivative of the ex in-
terim utility function.
Formally, Ui(ti) = Ui(ai) +

∫ ti
ai
Qi(si)dsi.

3. A bidder that happens to have his lowest possible type is
incentivized to participate.
Formally, Ui(ai) ≥ −α

∫
t−i

g(t−i)dF (t−i).

Proof: The proof is similar—but not identical since the util-
ity functions now include spite—to that of Lemma 2 of My-
erson (1981). We omit this proof due to limited space.

Analysis: objective simplification lemma
In this section, we write the objective function as a function
of the allocation rule and the utility of a bidder that happens
to have his lowest type. We will later use this formula to
derive the optimal auction.

Recall that our spiteful utility functions are as follows:
ui(t) = tipi(t)− xi(t)− α

∑
j 6=i

(tjpj(t)− xj(t)). (1)

ward other agents. Say he dislikes A more than he dislikes B. Now
the seller can threaten that if i does not participate, she will hurt i
infinitely much by having B pay an infinite amount to A. Because
the seller can make infinitely painful threats, she can extract an in-
finite amount of revenue in an IR auction.

For both sides of Equation (1), integrate over all possible
joint types and sum over all agents. The left hand side is∑

i

∫
t

ui(t)dF (t) =
∑
i

∫ bi

ai

Ui(ti)dF (ti)

=
∑
i

∫ bi

ai

(Ui(ai) +

∫ ti

ai

Qi(si)dsi)dF (ti)

=
∑
i

Ui(ai) +
∑
i

∫
t

(1− Fi(ti)pi(t)ft−i(t−i)
dt

The right hand side is∑
i

(

∫
t

(tipi(t)− α
∑
j 6=i

tjpj(t))dF (t)−
∫
t

(xi(t)− α
∑
j 6=i

xj(t))dF (t))

=

∫
t

∑
i

(tipi(t)− α
∑
j 6=i

tjpj(t))−
∑
i

(xi(t)− α
∑
j 6=i

xj(t))dF (t)

=

∫
t

∑
i

(1− α(n− 1))tipi(t)−
∑
i

(1− α(n− 1))xi(t)dF (t)

= (1− α(n− 1))(

∫
t

∑
i

(tipi(t)− xi(t))dF (t)

= (1− α(n− 1))(

∫
t

∑
i

tipi(t)dF (t)− R)

For shorthand we define C = 1
1−α(n−1) . In the derivation

of the optimal auction, we only need to consider the case
1 − α(n − 1) > 0, which implies C > 0. For the case
1 − α(n − 1) ≤ 0, the optimal auction is trivial: it is not
hard to verify that the auction that charges everyone a huge
amount M while keeping the item satisfies IC, IR, and RF.5

With C defined, the expected revenue

R =

∫
t

∑
i

(
ti −

C(1− Fi(ti))
fi(ti)

)
pi(t)dF (t)−C

∑
i

Ui(ai)

Via the derivation above, the seller’s problem is now to
maximize the formula above, subject to the resource feasi-
bility constraint RF and the constraints of Lemma 1:

Lemma 2 The optimal auction problem is equivalent to

max
p,x

R =

∫
t

∑
i

(
ti −

C(1− Fi(ti))
fi(ti)

)
pi(t)dF (t)

− C
∑
i

Ui(ai) (2)

subject to RF and Constraints 1-3 of Lemma 1.

When α = 0 or n = 1, that is, in the two cases without
spite, we have C = 1. In those cases, the program above re-
duces to Myerson’s solution of the optimal single item auc-
tion. In general, however, we have C 6= 1 and the problem
is different than Myerson’s.

Lemma 2 immediately implies a version of the revenue
equivalence theorem for our setting:

5The IC and RF properties are straightforward. Next we verify
IR. A bidder’s utility reduces to −(1 − α(n − 1))M , which is 0
when 1−α(n−1) = 0 and very large when 1−α(n−1) < 0. The
latter case is obviously IR, but the former case warrants a bit more
discussion because in the setting with spite, IR is not necessarily
satisfied by having utility greater than 0, as discussed above. In the
case where the bidder’s utility is 0, we have α = 1

n−1
> 0; so IR

is satisfied because −α
∫
t−i

g(t−i)dF (t−i) ≤ 0.
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Theorem 1 (Revenue equivalence for spiteful bidders)
The seller’s expected revenue from any incentive compatible
and individually rational auction mechanism is completely
determined by the allocation function p and the numbers
Ui(ai), i.e., each bidder’s utility if he happens to have his
lowest possible valuation. In particular:

• If two IC auctions have the same allocation rule and same
Ui(ai) for all i, then they yield the same expected revenue.
• If two auctions have the same allocation rule and one auc-

tion yields greater −C
∑
i Ui(ai) than the other, then the

former yields higher expected revenue.

When bidders’ valuations are symmetrically distributed
(Fi = Fj for all i, j), the IC constraints can be replaced
by the existence of a symmetric, increasing equilibrium and
the same proof and conclusion hold. We will use this fact
and the second bullet of Theorem 1 later to compare revenue
of different auctions, including ones that do not incentivize
bidders to report their valuations truthfully.

Analysis: the optimal auction
We are now ready to derive the optimal auction for spite-
ful bidders. We first set the payment rule that minimizes the
utilities of the lowest types (i.e, the second term of Equa-
tion (2)) and then choose an allocation rule that maximizes
the first term of Equation (2).

The payment rule
The payment rule is more complicated than Myerson’s.

Consider Equation (2). The first term does not depend on
the payment rule x but only the allocation rule. In the follow-
ing, we find a payment rule where Constraint 3 in Lemma 1
binds, i.e, for all i, Ui(ai) = 0, which is the best possible
value for the second term in Equation (2).

By Constraints 2 and 3 in Lemma 1, we have

Ui(ai) = Ui(ti)−
∫ ti

ai

Qi(si)dsi

=

∫
t−i

(tipi(t)− xi(t)− α
∑
j 6=i

(tjpj(t)− xj(t))

−
∫ ti

a

pi(si, t−i)dsi)dF−i(t−i) ≥ −α
∫
t−i

g(t−i)dF (t−i).

Thus, to minimize Ui(ai), we simply let

xi(t) = tipi(t)− α
∑
j 6=i

(tjpj(t)− xj(t))

−
∫ ti

ai

pi(si, t−i)dsi + αg(t−i) (3)

Considering Equation (3) for all i, we have n linear
equations of xi’s. Denote Pi(t) =

∫ ti
ai
pi(si, t−i)dsi and

Di(t−i) = 1
1+α (αg(t−i) + Cα2

∑
i g(t−i)), solving this

equation system we obtain

xi(t) = tipi(t)−
1

1 + α
(Pi(t) + Cα

∑
i

Pi(t)) +Di(t−i) (4)

Again, when α = 0 or n = 1, i.e., the two cases with-
out spite, and g(t−i) = 0, Equation 4 reduces to Myerson’s
payment rule xi(t) = tipi(t)− Pi(t).

To sum up, if we choose x according to Equation 4, we
have satisfied Constraints 2 and 3 in Lemma 1 and the lowest
type of each bidder always gets zero utility. Therefore, when
choosing an allocation rule, the remaining constraints to be
satisfied are Constraint 1 from Lemma 1 and Constraint RF.

The allocation rule
As is common practice, we consider the regular case. For the
irregular case, we can follow Myerson’s ironing technique to
obtain the corresponding solution. In the setting with spite,
the regularity condition will be as follows:
Definition 5 (Regularity condition with spite)
A problem is regular if t̃i(ti) is strictly increasing in ti.

t̃i(ti) = ti −
C(1− Fi(ti))

fi(ti)

We call t̃i(ti) the virtual value of agent i when his true
valuation is ti. When C is positive, the regularity condition
above is implied by a stronger condition called monotone
hazard rate, which state that the so-called hazard rate func-
tion fi(ti)

1−Fi(ti)
is monotonically increasing in ti. Commonly

seen distributions, such as the normal, uniform and exponen-
tial distributions, all satisfy this condition.

If we could ignore Constraint 1, we could simply choose
the allocation rule that maximizes the virtual welfare of all
the agents (the seller has a virtual valuation of 0). That is,

p = argmaxp′
∑
i

max{t̃i(ti), 0}p′i(t). (5)

One immediate corollary is that the seller can never bene-
fit from randomization. That is, pi can be in {0, 1} without
reducing revenue. Also, in the symmetric setting where all
the Fi’s are the same across bidders, the bidders all have
the same virtual value function. Therefore, the winner in the
symmetric case is the bidder with the largest actual valuation
(or no one if each bidder has a negative virtual valuation).6

We now show that, Constraint 1 is indeed satisfied,
thereby completing the proof that all the constraints are sat-
isfied. If ti < t′i, then by regularity we have t̃i < t̃′i, which
implies that a previous winner (i.e, pi(ti) = 1) under the
report of ti will still be a winner (i.e, pi(t′i) = 1). This ob-
servation then implies that Qi(ti) ≤ Qi(t

′
i), for all i, which

is exactly Constraint 1.

The optimal auction: the explicit payment rule
We finish the derivation of the optimal auction by substitut-
ing the allocation rule (derived in the previous subsection)
into the version of the payment rule that depended on the
allocation rule (Equation 4 derived in the subsection before
last). This will yield an explicit payment rule.

There are three cases to consider:
6If there are k identical units for sale and each bidder demands

at most one unit, according to Equation 5 an agent gets a unit if
and only if he has a positive virtual valuation that is among the k
largest ones.
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• Case I: Bidder i wins the item. Here, pi(t) = 1 and
pj(t) = 0 for all j 6= i, so Equation 4 becomes

xi(t) = ti −
1 + Cα

1 + α
(ti − t0i ) +Di(t−i), (6)

where t0i is the lowest type that i could have reported in
order to win. For α > 0, xi(t) is a positive number that
does depends on i’s own bid, unlike in Myerson’s auction!
For the sanity check cases α = 0 or n = 1 (with
Di(t−i) = 0 for both), Equation (6) reduces to xi(t) =
ti0 . This is Myerson’s payment rule: the winner pays t0i .
• Case II: Seller keeps the item. When no bidder wins

(pi(t) = 0 for all i), it follows immediately from Equa-
tion 4 that

xi(t) = Di(t−i). (7)
Clearly,Di(t−i) is non-negative when α ≥ 0. (Di(t−i) =
0 if and only if α = 0 or g(t−i) = 0 for all i and t.).
So, bidders usually pay positive amounts. This is simi-
lar to the conclusion drawn in different models of nega-
tive externalities (Jehiel, Moldovanu, and Stacchetti 1996;
Deng and Pekeč 2011) that the seller should charge the
bidders even if no bidder gets the item.

• Case III: Bidder i loses and some other bidder wins.
Here, pi(t) = 0 and pj(t) = 1 for some j 6= i, so Equa-
tion (4) reduces to

xi(t) = −
Cα

1 + α
(tj − t0j ) +Di(t−i) (8)

where t0j is the lowest type that j could have reported in
order to win. Di(t−i) ≥ 0 when α ≥ 0. Here xi(t) can
be positive or negative.
An interesting special case is Di(t−i) = 0. Then Equa-
tion 8 is negative for all α > 0.7 In other words, when
a bidder i loses to another bidder, i has to be subsidized
by the seller. One extreme case is where i has his lowest
possible valuation (ti = ai), so i loses almost surely. In
that case he would get a subsidy almost surely.
To summarize, we have the following theorem.

Theorem 2 The optimal auction uses (5) as the allocation
rule. If bidder i wins, his payment is determined by (6). If
i loses to another bidder, his payment is determined by (8).
If the seller keeps the item, the bidders’ payments are deter-
mined by (7).

The payments in the k-unit unit-demand case can also be
simplified from Equation (4) by substituting in the explicit
allocation rule (agent i gets a unit (pi(t) = 1) if and only
if t̃i(ti) is among the k largest positive virtual values). The
calculation, which is similar to the 1-unit case, is omitted
due to limited space.

Revenue comparison of different auctions
In prior work, symmetric equilibria have been derived for
first- and second-price auctions with spite (Morgan, Stei-
glitz, and Reis 2003; Brandt, Sandholm, and Shoham 2007;

7In very special case it can also be zero, namely tj − t0j = 0
(i.e., the winning bidder j happens to have a valuation that exactly
equals his lowest report needed to win).

Sharma and Sandholm 2010). All three of those papers re-
strict attention to deterministic mechanisms (pi ∈ {0, 1}),
while we relax this to capture randomized ones as well. So
our setting includes Morgan et al.’s and Brandt et al.’s set-
tings as special cases. Morgan et. al. calculated symmet-
ric equilibria for first- and second-price auctions, and apply
them to conclude that when 0 < α < 1, the second-price
auction yields more expected revenue than the first-price
auction. Brandt et. al. extended those results to a slightly
more general setting.8

In this section we will show how the theory derived in
this paper can be used to prove those results (and general-
izations thereof) in a simpler way, and to compare expected
revenues of other auction mechanisms under spite. For two-
bidder auctions where the bidders’ valuations are drawn
independently uniformly on [0, 1], Morgan et. al. showed
that in the first-price auction, the symmetrical equilibrium
strategy is bFP (ti) = 1+α

2+α ti, while in the second-price
auction, the symmetric equilibrium strategy is bSP (ti) =
1+α
1+2α ti +

α
1+2α .

Therefore, the utility of a bidder that has his lowest possi-
ble type in the first-price auction is

Ui(ai) =

∫ 1

0

−α
(
sj −

1 + α

2 + α
sj

)
dsj = −

α

2(2 + α)
(9)

and in the second-price auction it is

Ui(ai) =

∫ 1

0

−α
(
sj −

α

1 + 2α

)
dsj = −

α

2(1 + 2α)
(10)

It is straightforward to verify that Ui(ai) is no less than
i’s utility when he does not participate, so both auctions sat-
isfy the IR constraints. The value of Equation (10) is strictly
less than that of Equation (9). When 0 < α < 1, we have
C = 1

1−α > 0, so the term −C
∑
i Ui(ai) is strictly larger

in the second-price auction. Since both auction have a sym-
metric, increasing equilibrium, they have the same alloca-
tion rule in this symmetric setting (i.e., efficient allocation).
Therefore, by Theorem 1, the second-price auction yields
higher expected revenue than the first-price auction.

With this methodology, we can also generalize the prior
results to the following settings of spite.

• When α = 0, both auctions yield equal expected revenue.

• When α > 1, we have C < 0, so Equation (10)
is strictly greater than Equation (9). We still have that
−C

∑
i Ui(ai) is strictly greater in the second-price auc-

tion. Therefore, we can conclude that the second-price
auction yields higher revenue than the first-price auction.

• When −0.5 < α < 0 or α < −2, the first-price auction
yields higher revenue.

• When −2 ≤ α ≤ −0.5, either bFP or bSP is non-
increasing in ti. In this case, neither Morgan et al.’s equi-
librium analysis nor our Theorem 1 apply.

To sum up this section, we have the following theorem.

8Sharma and Sandholm (2010) derived equilibria for the setting
with asymmetric spite factors.
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Theorem 3 Consider two-bidder auctions where the bid-
ders’ valuations are drawn independently uniformly on
[0, 1]. When the spite factor α ≥ 0, the second-price auc-
tion yields no less expected revenue than the first-price auc-
tion. When α < 0, the first-price auction yields no less ex-
pected revenue than the second-price auction, as long as an
increasing symmetric equilibrium exists for both auctions.

Furthermore, for general valuation distributions, revenues
of any two auctions with the same allocation rule can be
compared as follows using Theorem 1.

1. Compute a symmetric and increasing equilibrium of each
auction.

2. Prove that they have the same allocation rule.
3. Compute −C

∑
i Ui(ai) for both auctions. The larger

value implies larger expected revenue.

Conclusions and future research
We considered the optimal auction design problem among
spiteful (or altruistic) bidders. In this setting, individual
rationality constraints are non-trivial and depend on the
seller’s ability to hurt non-participants—who have spite to-
ward the participants that will enjoy the allocation.

The optimal auction is a generalization of Myer-
son’s (1981) auction: it chooses an allocation that maxi-
mizes agents’ virtual valuations, but for a generalized def-
inition of virtual valuation. The payment rule is much less
obvious. For one, it takes each bidder’s own report into
consideration when determining his payment. Moreover,
bidders pay even if the seller keeps the item; a similar
phenomenon has been shown in other settings with nega-
tive externalities (Jehiel, Moldovanu, and Stacchetti 1996;
Deng and Pekeč 2011). On the other hand, a novel aspect of
our auction is that it sometimes subsidizes losers when the
item is sold to some other bidder.

We also derived a revenue equivalence theorem for this
setting. Using it, we came up with a short proof of (a slight
generalization of) the previously known result that, in two-
bidder settings with independently uniformly drawn valua-
tions, second-price auctions yield greater expected revenue
than first-price auctions. Finally, we presented a template for
comparing the expected revenues of any two auction mech-
anisms that have the same allocation rule (for the valuations
distributions at hand).

There are several interesting directions for future re-
search. For one, it is of both practical and theoretical inter-
ests to compare the revenue of the VCG and GSP auctions
for sponsored search in the setting with spite. Furthermore,
it would be interesting to study settings where a bidder’s ex-
ternality is determined by others’ payments only (i.e., inde-
pendent of others’ valuations), but unlike in Lu (2012), with
different threats than auction cancelation.

References
Armstrong, M. 2000. Optimal multi-object auctions. Review of
Economic Studies 67(3):455–81.
Avery, C. N., and Hendershott, T. 2000. Bundling and optimal auc-
tions of multiple products. Review of Economic Studies 67(3):483–
97.

Brandt, F.; Sandholm, T.; and Shoham, Y. 2007. Spiteful bidding
in sealed-bid auctions. In Proceedings of the International Joint
Conference on Artifical intelligence (IJCAI), 1207–1214.
Conitzer, V., and Sandholm, T. 2011. Expressive markets for do-
nating to charities. Artificial Intelligence 175:1251–1271.
Conitzer, V., and Sandholm, T. 2012. Computing optimal out-
comes under an expressive representation of settings with external-
ities. Journal of Computer and System Sciences 78:2–14. Special
issue on Knowledge Representation and Reasoning. Early version
in AAAI-05.
Constantin, F.; Rao, M.; Huang, C.-C.; and Parkes, D. C. 2011. On
Expressing Value Externalities in Position Auctions. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI).
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