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Abstract

Equilibrium computation with continuous games is cur-
rently a challenging open task in artificial intelligence.
In this paper, we design an iterative algorithm that
finds an ε–approximate Markov perfect equilibrium
with two–player zero–sum continuous stochastic games
with switching controller. When the game is polynomial
(i.e., utility and state transitions are polynomial func-
tions), our algorithm converges to ε = 0 by exploiting
semidefinite programming. When the game is not poly-
nomial, the algorithm exploits polynomial approxima-
tions and converges to an ε value whose upper bound
is a function of the maximum approximation error with
infinity norm. To our knowledge, this is the first algo-
rithm for equilibrium approximation with arbitrary util-
ity and transition functions providing theoretical guar-
antees. The algorithm is also empirically evaluated.

Introduction
The computation of game–theoretic solutions is a central
task in artificial intelligence (Shoham and Leyton-Brown
2010). Game theory provides the most elegant game models
and solution concepts, but it leaves the problem to compute a
solution open (Fudenberg and Tirole 1991). A game is a pair:
a mechanism (specifying the rules) and the strategies (spec-
ifying the agents’ behavior). The central solution concept is
the Nash equilibrium (NE). Every finite game is guaranteed
to have at least one NE in mixed strategies, but its compu-
tation is PPAD–complete even with just two agents (Chen,
Deng, and Teng 2009). Instead, with two agents and zero–
sum utilities the problem is in P.

A challenging game class is composed by continuous
games (Karlin 1951), in which the actions of the agents are
real values. These games are very common in practical sce-
narios (e.g., auctions, bargaining, dynamic games). Differ-
ently from finite games, continuous games may not admit
NEs, e.g., due to discontinuity of the utility functions (Rosen
1987). With compact and convex action spaces and contin-
uous utility functions, a slight variation of the Kakutani’s
fixed point theorem assures the existence of at least one
NE in mixed strategies (Glicksberg 1952). Adding the hy-
pothesis of concave utility functions, continuous games al-
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ways admit equilibria in pure strategies, utility functions be-
ing equivalent to the convexification of a finite set of ac-
tions (Rosen 1987). However, in general settings, NEs are in
mixed strategies and their study is hard. A very special class
is that of separable games where each agent’s payoff is a
finite sum of products of functions in each player’s strategy
separately (e.g. as polynomials). It is known that every sep-
arable game admits an NE finitely supported. This has been
shown with zero–sum games in (Dresher, Melvin and Shap-
ley 1950), and recently with general–sum games in (Stein,
Ozdaglar, and Parrilo 2008). Instead, when games are not
separable, NEs may be not finitely supported (Karlin 1959).

Few computational results are known for continuous
games. For the special case of two agents, zero–sum, poly-
nomial utility functions, the computation of an NE can be
formulated (Parrilo 2006) as a pair (primal/dual) of semidef-
inite programming problems (SDP), that can be efficiently
solved by convex programming algorithms (Blekherman,
Parrilo, and Thomas 2012). With general separable utility
functions, non–linear programming tools should be used,
without any guarantee of finding the optimal solution and
with algorithms that hardly scale (to the best of our knowl-
edge, no work in the literature has dealt with this problem).
With arbitrary (non–separable) utility functions, some works
deal with the problem of approximate a pure strategy equi-
librium by exploiting local search and Monte Carlo methods
with normal–form games (Vorobeychik and Wellman 2008)
and extensive–form games (Gatti and Restelli 2011), but no
work deals with the problem of finding mixed strategy NEs.

In this paper, we focus on continuous stochastic games
with switching control. The literature only provides results
for finite stochastic games with switching control (Vrieze et
al. 1983) and for polynomial continuous stochastic games
with single controller (Shah and Parrilo 2007). Our original
contributions include the following.

• We provide an iterative SDP based algorithm that con-
verges to a Markov perfect equilibrium (MPE) — the ap-
propriate solution concept for stochastic games — when
both the reward and the state transitions are polynomial
functions and returns an ε–approximate MPE (ε–MPE)
with ε ≤ ε, where ε is given as input.

• We use our algorithm to approximate solutions of non–
polynomial games: approximating the reward and state
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transitions given as input with polynomials, solving
the approximated game, and providing theoretical upper
bounds on the quality of the solutions as functions of the
approximation error with infinity norm.

• We experimentally evaluate the performance of our algo-
rithm in terms of iterations and compute time.

Game model and solution concepts

A two–player zero–sum stochastic game G, introduced
in (Shapley 1953), is a tuple (N,S,X, P,R, γ), where: S is
a finite set of states (s ∈ S denotes a generic state), N is the
set of agents (i ∈ N denotes a generic agent), X is the set
of actions (Xi,s ⊆ X denotes the set of actions available to
agent i at state s, and xi ∈ Xi,s a generic action of agent i),
P is a set of maps ps,s′ : ×i∈NXi,s → [0, 1] assigning the
probability to move from state s to state s′ given the actions
of all the agents, R is a set of maps rs : ×i∈NXi,s → R
assigning each action profile a reward, γ ∈ (0, 1) is the tem-
poral discount factor. Without loss of generality, we assume
that agent 1 is the max agent. We denote with us, where
s ∈ S, the utility function of agent 1, while −us is the
utility function of agent 2. By Bellman equation, us is de-
fined as us(x1,x2) = rs(x1,s, x2,s)+

∑
s′ ps,s′(x1,s, x2,s) ·

us′(x1,x2), where xi is the vector of actions of agent i
over all the states and xi,s is the specific action of agent i
at state s.

A continuous stochastic game is a stochastic game
(N,S,X, P,R, γ) where action spacesXi,s are limited sub-
spaces (usually compact) of the Euclidean space and maps
ps,s′ and rs are generic functions. We focus on continuous
stochastic games with switching controller, in which at each
state s functions ps,s′ depend either on x1 ∈ X1,s or on
x2 ∈ X2,s. The agent i who drives the transition at state s is
said the controller of such state and it is denoted by cs. No-
tice that different states can be controlled by different agents.
We partition the state space S as S = S1 ∪ S2 where Si
is the set of states where cs = i. When the game is poly-
nomial, we have: ps,s′(xcs) =

∑m
k=0 ps,s′,k · (xcs)

k and
rs(x1, x2) =

∑m
k=0

∑m
j=0 rs,k,j · (x1)k · (x2)j , where m

is the maximum degree of all the polynomials and ps,s′,k,
rs,k,j ∈ R are coefficients.

A strategy profile (σ1,σ2) specifies the strategy σi,s of
each agent i at each state s as a probability measure over the
space of actions Xi,s. An MPE is a strategy profile (σ∗1,σ

∗
2)

where each strategy is conditioned only on the local state
of the agent, and such that no agent can improve her util-
ity us (or −us) in any state s by changing her strategy. With
zero–sum games, an MPE corresponds to maxmin/minmax
strategies. In this paper, we resort also to the ε–MPE con-
cept, defined as: a strategy profile (σ1,σ2) is an ε–MPE if
no agent can improve her utility us (or −us) in some state s
more than ε by changing her strategy. Obviously, an ε–MPE
with ε = 0 is an MPE. Furthermore, while an MPE may
not exist with continuous games, it is always possible to find
ε–MPEs for some ε.

Algorithm 1 Iterative Nash approximation
1: assign ûs = 0 for every s ∈ S
2: repeat
3: [û,σS1

2 ] = solve PS1(û)
4: [ ,σS1

1 ] = solve DS1(û)
5: [û,σS2

1 ] = solve PS2(û)
6: [ ,σS2

2 ] = solve DS2(û)
7: assign σ1 = (σS1

1 ,σS2
1 ) and σ2 = (σS1

2 ,σS2
2 )

8: calculate u with (σ1,σ2)

9: u∗1 = solve BR1 with σ2 = (σS1
2 ,σS2

2 )

10: u∗2 = solve BR2 with σ1 = (σS1
1 ,σS2

1 )
11: until max{‖u∗1 − u‖∞, ‖u− u∗2‖∞} > ε

Equilibrium computation with polynomial
games

Here, we describe the algorithm converging to an MPE with
polynomial games. For the sake of clarity, we initially de-
scribe the algorithm omitting details on the SDPs the algo-
rithm uses. Details are provided later.

Algorithm
The procedure is summarized in Algorithm 1. The algorithm
uses auxiliary utilities û. As shown below, these utilities
converge to the utilities at the equilibrium, denoted by u∗.

Initially, (Steps 1 and 2) the algorithm initializes ûs = 0
for every s ∈ S. Then, the algorithm repeats Steps 3–11
until an ε–MPE has been found where ε is given as input.

At first, the algorithm finds the optimal strategies in the
states S1 controlled by agent 1 when the utilities of the states
s ∈ S2 are fixed to ûs, and assigns the returned optimal
utility values of states s ∈ S1 to ûs. This is accomplished
into two steps: in Step 3, the optimal strategy of agent 2 is
computed by solving an SDP called PS1, while in Step 4, the
optimal strategy of agent 1 is computed by solving an SDP
called DS1. PS1 is the primal problem, while DS1 is the dual
problem. (As we will discuss in the following section, strong
duality holds for these two problems.) The problem PS1:

(PS1) min
∑
s∈S1

us

Ex2∼σ2,s
[rs(x1, x2)] + γ

∑
s′∈S1

us′ · ∀s ∈ S1, (1)

·ps,s′ (x1) + γ
∑
s′∈S2

ûs′ · ps,s′ (x1) ≤ us x1 ∈ X1,s

σ2,s is a probability measure onX2,s ∀s ∈ S1 (2)

where E[·] denotes the expectation of ‘·’. Notice that (1)
contains infinitely many constraints, one for each value of
x1 ∈ X1,s. PS1 returns the optimal strategy σS1

2,s and the op-
timal utilities us in states s ∈ S1 given that utilities of states
S2 are fixed and equal to ûs. Utilities us are assigned to ûs
for s ∈ S1. Similarly, the dual problem DS1 is:

(DS1) max

∑
s∈S2

zs − γ ·
∑
s′∈S1

Ex2∼σ2,s [ps,s′ (x2) · ûs′ ]
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∑
s∈S2

Ex2∼σ2,s [1s=s′ − γps,s′ (x2)] = 1 ∀s ∈ S2

−zs − Ex2∼σ2,s [rs(x1, x2)] ≥ 0 ∀s ∈ S2, x1 ∈ X1,s

σ2,s is a probability measure onX2,s ∀s ∈ S2

where zs are auxiliary variables, and 1s=s′ is equal to 1
when s = s′ and 0 otherwise. As above, DS1 contains infi-
nite constraints one for each value of x2 ∈ X2,s. DS1 returns
the optimal strategy σS1

1,s in states S1.
Then, in Steps 5 and 6, the algorithm repeats Steps 3 and 4

for the states S2 by solving two SDPs, called PS2 and DS2

and omitted here being similar to PS1 and DS1, respectively.
These programs return the optimal strategies σS2

1,s, σ
S2
2,s and

the optimal utilities us in states S2 given ûs at s ∈ S1. Util-
ities us are assigned to ûs for s ∈ S2.

In the next steps, the current solution is considered as an
ε–MPE and the value of ε is estimated as follows: given the
joint strategy at the current iteration, the algorithm computes
the utilities and compares them w.r.t. the utilities provided
by each agent’s best response. The utilities provided by the
current solution (σ1,σ2) with σ1 = (σS1

1 ,σS2
1 ) and σ2 =

(σS1
2 ,σS2

2 ) can be easily obtained by solving the following
linear system (Step 8):

E x1 ∼ σ1,s
x2 ∼ σ2,s

[
rs(x1, x2) + γ

∑
s′∈S us′ · ps,s′ (x1)

]
= us ∀s ∈ S1

E x1 ∼ σ1,s
x2 ∼ σ2,s

[
rs(x1, x2) + γ

∑
s′∈S us′ · ps,s′ (x2)

]
= us ∀s ∈ S2

The problem of computing agent i’s best response given σ−i
is a continuous MDP with polynomial reward and transition
functions (and therefore it admits an optimal pure strategy).
This problem can be formulated, as shown later, as an SDP.
Thus, we have two SDPs, called BR1 and BR2 for agent 1
and agent 2, respectively. BR1 (Step 9) is formulated as:

(BR1) min
∑
s∈S us

Ex2∼σ2,s [rs(x1, x2)] + γ
∑
s′∈S us′ · ∀s ∈ S1, (3)

·ps,s′ (x1) ≤ us x1 ∈ X1,s

Ex2∼σ2,s

[
rs(x1, x2) + γ

∑
s′∈S us′ · ∀s ∈ S2, (4)

·ps,s′ (x2)
]
≤ us x1 ∈ X1,s

BR2 (Step 9) is defined similarly and then omitted. Call u∗1
the vector of utilities returned by BR1 and u∗2 the vector
of utilities returned by BR2. Call u the vector of utilities
us. The ε value of the current strategy profile (σ1,σ2) is
maxi{‖u∗i − u‖∞}, that is, the maximum loss of all the
agents over all the states. The algorithm terminates if ε ≤ ε.

We can state the following theorem.
Theorem 1. Given polynomial reward and transition func-
tions, Algorithm 1 returns an ε–MPE.

Proof. The proposed algorithm needs non–negative re-
ward functions. This assumption can be easily satisfied
(without changing the equilibrium strategies) by adding a
constant to the reward functions, so that all the rewards get
strictly positive. We observe that the solution of the prob-
lems PS1 and PS2 are monotonically increasing in ûs. That

is, given û′s and û′′s such that û′s ≤ û′′s ≤ u∗s , where u∗s are
the utilities at the equilibrium, for every s ∈ S and called u′s
the solution of PSi when the input is û′s and u′′s the solution
of PSi when the input is û′′s , we have that u′s ≤ u′′s ≤ u∗s . As
a result, when reward functions are non–negative, starting
from ûs = 0 for every s ∈ S we have a sequence of ûs that
is monotonically increasing as long ûis 6= u∗s . Therefore, the
algorithm converges to an MPE. The algorithm stops when
no agent, given the strategy of the opponent, can gain more
than ε. Therefore, the algorithm returns an ε–MPE. �

Differently from finite switching–control games (Vrieze
et al. 1983), when games are continuous there is no guaran-
tee that the algorithm converges by a finite number of steps.
At each iteration, it is possible to check whether or not there
is an MPE with the current support, i.e., the set of actions
played with non–zero probability in (σ1,σ2). (When games
are finite, this problem can be formulated as a linear pro-
gramming problem; it can be easily shown that with con-
tinuous polynomial games such problem can be formulated
as an SDP.) Since with finite games the number of supports
is finite, it is possible to guarantee the termination by finite
time. The same approach cannot be used with continuous
games, the number of supports being infinite.

Semidefinite programming formulation
We show how PS1 can be formulated as an SDP (the formu-
lations of DS1, PS2, and DS2 are similar and therefore they
will be omitted here). At first, we rewrite constraint (1) by
considering that rs and ps,s′ are polynomial functions and
by expanding the expected value operator E[·]:

us −
m∑
k=0

m∑
j=0

rs,k,j · (x1)
k ·
(∫

X2,s

σ2,s(x2) · (x2)
j
dx2

)

− γ
∑
s′∈S

u
′
s ·

m∑
k=0

ps,s′,k · (x1)
k ≥ 0 ∀s ∈ S1, x1 ∈ X1,s

We can substitute
∫
X2,s

σ2,s(x2)·(x2)jdx2 with the moment
µ2,s,j of the j–th order of σ2,s, obtaining:

us −
m∑
k=0

m∑
j=0

rs,k,j · (x1)
k · µ2,s,j

− γ
∑
s′∈S

us′ ·
m∑
k=0

ps,s′,k · (x1)
k ≥ 0 ∀s ∈ S1, x1 ∈ X1,s

Call µ2,s the vector of µ2,s,j with j ∈ {0, . . . ,m} (higher
order moments are not constrained). PS1 is:

(PS1) min
∑
s∈S1

us

us −
∑m
k=0

∑m
j=0 rs,k,j · (x1)k· ∀s ∈ S1

·µ2,s,j − γ
∑
s′∈S us′ ·

·
∑m
k=0 ps,s′,k · (x1)k ∈ P+(x1 ∈ X1,s)

µ2,s ∈ M(X2,s) ∀s ∈ S1

where P+(x1 ∈ X1,s) is the space of univariate polyno-
mials in x1 that are non–negative on X1,s and M(X1,s)
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is the space of the moment vectors of well defined proba-
bility measures on X1,s. Both these constraints (i.e., non–
negativeness of univariate polynomials and correspondence
of moment vectors to well defined probability measures) can
be coded as semidefinite programming constraints. Call:

u = [u1 u2 . . . u|S|]
T

[x]m = [(x)
0

(x)
1

(x)
2
. . . (x)

m
]
T

R
T
s · [x]m =

m∑
k=0

rs,k · (x)
k

u
T · PT1,s · [x]m =

∑
s′∈S1

us′ ·
m∑
k=0

ps,s′,k · (x)
k

û
T · P̂T1,s · [x]m =

∑
s′∈S2

ûs′ ·
m∑
k=0

p̂s,s′,k · (x)
k

CallH the following operator returning an Hankel matrix:

H :



a1

a2

a3

...
a2n−1


−→


a1 a2 . . . an

a2 a3 . . . an+1

...
...

. . .
...

an an+1 . . . a2n−1



andH∗ the following adjoint operator:

H∗ :


a1,1 a1,2 . . . a1,n

a1,2 a2,2 . . . a2,n

...
...

. . .
...

a1,n a2,n . . . an,n

 −→


a1,1

2a1,2

a2,2 + 2a1,3

...
an,n



Define the following matrices as:

L1 =

[
Im×m

01×m

]
, L2 =

[
01×m

Im×m

]

When X1,s = [0, 1] with s ∈ S, PS1 can be written as:

min
∑
s∈S1

us

H∗(Zs +
1

2
(L1WsL

T
2 + L2WsL

T
1 )

−L2WsL
T
2 )− us − Rsµi,s
−γ(P1,su + P̂1,sû)

= 0 ∀s ∈ S1 (5)

Zs,Ws � 0 ∀s ∈ S1 (6)

H(µi,s) � 0 ∀s ∈ S1 (7)

1

2
(L
T
1 H(µi,s)L2 + L

T
2 H(µi,s)L1)

−LT2 H(µi,s)L2

� 0 ∀s ∈ S1 (8)

µi,s,0 = 1 ∀s ∈ S1 (9)

H(µ′i,s) � 0 ∀s ∈ S1 (10)

H(µi,s)−H(µ′i,s) � 0 ∀s ∈ S1 (11)

where µ′i,s = [µi,s,1 µi,s,2 . . . µi,s,m+1], Ws and Zs are
matrices of auxiliary variables, and “� 0” means semidefi-
nite positive. Constraints (5) and (6) translate constraint (1)
in SDP fashion; constraints (7)–(9) translate constraint (2);
constraints (10) and (11) are accessory for the resolution of
PS1, but necessary for finding well defined µi,s,m+1 that are
needed for the strategy recovery as described in the follow-
ing section. The proof that strong duality holds with this
SDP easily follows from the satisfaction of Slater’s con-
straint qualification and that it is bounded from below, a sim-
ilar proof can be found in (Shah and Parrilo 2007).

Strategy recovery
The SDP programs discussed in the previous sections re-
turn strategies defined in the space of moments. In order
to recovery the strategy in the space of actions we can
use the methods discussed in (Karlin and Shapley 1953;
Schmeiser and Devroye 1988; Shohat and Tamarkin 1943).
Since the number of moments of µi,s,h of σi,s is finite, we
can always define a finite support Ψi,s, where xi,s,h is the
h-th value of Ψi,s. For the sake of presentation, in the fol-
lowing we will omit indices i, s from µi,s,h, xi,s,h, and σi,s.

The strategy can be recovered by, at first, solving the fol-
lowing linear equation system:


µ0 µ1 · · · µm

2
+1

µ1 µ2 · · · µm
...

...
. . .

...
µm

2
+1 µm

2
+2 · · · µm

 ·


b0

b1
...

bm−1

 = −


µm

2
+1

µm
2

+2

...
µm+1


and finding the vector of coefficients bj . Notice that the
above (Hankel) matrix of the moments is semidefinite pos-
itive due to constraint (7) and therefore the solution of the
above linear system is unique. The actions in the support are
the roots xh of the following univariate polynomial:

x
m

+ bm−1 · xm−1
+ ...+ b1 · x+ b0 = 0.

The probabilities σ(xh) associated with actions xh can be
found by solving the non–singular system of Vandermonde:

∑m
h=1 σ(xh) · xjh = µj 0 ≤ j ≤ m− 1

Best response computation
Given strategy σ2, the problem BR1 to find the agent 1’s
best response is:

min
∑
s∈S us

us −
∑
h∈Ψ2,s

σ2,s,h

∑m
k=0 ∀s ∈ S1

·
∑m
j=0 rs,k,j · (x1)k · (x2,s,h)j−

−γ
∑
s′∈S u

′
s ·
∑m
k=0 ps,s′,k · (x1)k ∈ P+(X1,s)

us −
∑
h∈Ψ2,s

σ2,s,h

∑m
k=0

∑m
j=0 rs,k,j ∀s ∈ S2

·(x1)k · (x2,s,h)j − γ
∑
h∈Φ2,s

σ2,s,h

·
∑
s′∈S u

′
s

∑m
k=0 ps,s′,k · (x2,s,h)k ∈ P+(X2,s)
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Call:

R
T
s · [xs]ds =

∑
h∈Ψ2,s

σ2,s,h

m∑
k=0

·
m∑
j=0

rs,j,k · (x2,s,h)
j · (x1)

k

u
T · PTs · [xs]ds =

∑
h∈Ψ2,s

σ2,s,h

∑
s′∈S

u
′
s

m∑
k=0

ps,s′,j · (x2,s,h)
k · (x1)

0

when Xs = [0, 1] the above mathematical program can be
formulated as the following SDP:

min
∑
s∈S us

H∗(Zs + 1
2 (L1WsL

T
2 + L2WsL

T
2 )− ∀s ∈ S1 (12)

−L2WsL
T
2 )− us − Rs − γPsu = 0

H∗(Zs + 1
2 (L1WsL

T
2 + L2WsL

T
2 )− ∀s ∈ S2 (13)

−L2WsL
T
2 )− us − Rs − γP su = 0

Ws, Zs � 0 ∀s ∈ S (14)

constraints (12) translate constraints (3), while con-
straints (13) translate constraints (4); Ws and Zs are ma-
trices of auxiliary variables. BR2 can be similarly defined.

Equilibrium approximation with
non–polynomial games

In case of non–polynomial games, we approximate reward
and state transitions with polynomial functions and then we
apply Algorithm 1. If maximum approximation errors are
small we can expect to find solutions that produces nearly–
optimal outcomes. Notice that, it is known from approxi-
mation theory that continuous functions defined over com-
pact subsets of a d–dimensional Euclidean space can be ap-
proximated to arbitrary accuracy with a degree–n polyno-
mial (Cheney 1982). In this section, we provide theoretical
bounds on how the equilibrium approximation accuracy is
affected by using reward and state transition functions that
are polynomial approximations of the original ones.

For the sake of presentation, in the following we use the
contract form fσ1,σ2

s to denote the expected value of a func-
tion f in state s with respect to the strategy profile (σ1,σ2):

f
σ1,σ2
s = E x1 ∼ σ1,s

x2 ∼ σ2,s

fs(x1, x2)

Given a stochastic game with reward function r·(·, ·) and
state transition probabilities p·,·(·), we consider their poly-
nomial approximations r̃·(·, ·) and p̃·,·(·) with the following
maximum error bounds:1

‖rs(·, ·)− r̃s(·, ·)‖∞ ≤ δ ∀s ∈ S (15)

‖ps,s′ (·)− p̃s,s′ (·)‖∞ ≤ ρ ∀s, s′ ∈ S (16)

1Given an arbitrary univariate function ps, it is possible to find the best m–
degree polynomial approximation p̃s (i.e., the m–degree polynomial minimizing ρ)
with (Remez 1935). The optimal approximation of rs is harder, it being a bivariate
function. In this case, the algorithm presented in (Caliari, de Marchi, and Vianello
2008) can be used to find a good polynomial approximation r̃s of rs.

We define an εs–MPE as a strategy profile such that no
agent can gain more than ε in state s by deviating from her
strategy, while in the other state utilities can be arbitrary.
We state the following theoretical results. The first result is
similar to (Chen, Deng, and Teng 2006), but stronger.
Theorem 2. Given game G and absorbing state s, the MPE
strategy profile (σ̃1, σ̃2) when agents’ utility functions are
ũs(·, ·) and −ũs(·, ·), respectively, is an εs–MPE with εs ≤
2δ when agents’ utility functions are us(·, ·) and −us(·, ·).

Proof. Call σ∗1 the best response of agent 1 to the σ2 of
agent 2. We can compute the upper bound over the expected
utility loss of agent 1 (recalling that, by definition, for every
σ1 we have ũσ̃1,σ̃2

s − ũσ1,σ̃2
s ≥ 0):

εs = u
σ∗1 ,σ̃2
s − uσ̃1,σ̃2

s = r
σ∗1 ,σ̃2
s − rσ̃1,σ̃2

s

≤ r
σ∗1 ,σ̃2
s − r̃σ

∗
1 ,σ̃2
s + r̃

σ̃1,σ̃2
s − rσ̃1,σ̃2

s

≤ |rσ
∗
1 ,σ̃2
s − r̃σ

∗
1 ,σ̃2
s |+ |r̃σ̃1,σ̃2

s − rσ̃1,σ̃2
s |

≤ ‖rs(·, ·)− r̃s(·, ·)‖∞ + ‖r̃s(·, ·)− rs(·, ·)‖∞

≤ 2δ

The same reasoning can be applied to agent 2, obtaining the
same upper bound. Hence, the theorem is proved. �

We generalize the above theorem for generic states when
ρ = 0. Given state s, call l(s) the largest number of actions
needed to reach an absorbing state from s. We first introduce
the following lemma which bounds the difference between
the two utility functions uσ1,σ2

s and ũσ1,σ2
s for any state s

and any strategy profile (σ1,σ2).
Lemma 3. (With ρ = 0.) Given a tree–based game G, for
any state s and for any strategy profile (σ1,σ2), the maxi-
mum absolute difference between utility of agent 1 computed
according to u(·, ·) and utility of agent 1 computed accord-
ing to ũ(·, ·) is less than δ 1−γl(s)+1

1−γ : ‖uσ1,σ2
s − ũσ1,σ2

s ‖∞ ≤
δ 1−γl(s)+1

1−γ .
Proof. Given the bound on the reward functions in

Eq. (15) we can write:

‖uσ1,σ2
s − ũσ1,σ2

s ‖∞ ≤ ‖rσ1,σ2
s − r̃σ1,σ2

s ‖∞

+γ‖
∑
s′
p
σc
s,s′

(
u
σ1,σ2
s′ − ũσ1,σ2

s′

)
‖∞

≤ δ + γmax
s′
‖uσ1,σ2
s′ − ũσ1,σ2

s′ ‖∞

By the recursive application of the above formula starting
from an absorbing state s up to state s, we obtain: ‖uσ1,σ2

s −
ũσ1,σ2
s ‖∞ ≤ δ

∑l(s)
i=0(γ)i = δ 1−(γ)l(s)+1

1−γ . �
Now, we are ready to extend Theorem 2 to the case of

tree–based games.
Theorem 4. (With ρ = 0.) Given a tree–based game G and
a generic state s, the MPE strategy profile (σ̃1, σ̃2) of the
subgame whose root node is s when agents’ utility functions
are ũ(·, ·) and−ũ(·, ·), respectively, is an εs–MPE with εs ≤
2δ 1−γl(s)+1

1−γ of such subgame when agents’ utility functions
are u(·, ·) and −u(·, ·).
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Proof. For every state s′ in the subgame whose root node
s, call σ∗2(σ2) the best strategy of agent 1 found by back-
ward induction when agent 2 plays σ2. By following the
same line of Theorem 2’s proof, we can compute the upper
bound over the expected utility loss of agent 1 at s as a func-
tion of the difference of the two utility functions us(·, ·) and
ũs(·, ·), which have been bounded in Lemma 3:

εs = u
σ∗1 ,σ̃2
s − uσ̃1,σ̃2

s

≤ u
σ∗1 ,σ̃2
s − ũσ∗1 ,σ̃2

s + ũ
σ̃1,σ̃2
s − uσ̃1,σ̃2

s

≤ 2‖us(·, ·)− ũs(·, ·)‖∞

≤ 2δ
1− γl(s)+1

1− γ

The same result can be obtained for the loss of agent 2. �
Now, we focus on graph–based games.

Corollary 5 (With ρ = 0.) The bound stated in Theorem 4
can be generalized to graph–based games G as follows:

ε ≤ lim
l(s)→+∞

2δ
1− γl(s)+1

1− γ
=

2δ

1− γ

Notice that the above bound is state independent and is
meaningful (i.e., ε < 1) only when 2δ + γ < 1.

Call Φ(s) =
∑
s′∈FH(s) ũ

σ̃1,σ̃1

s′ −
∑
s′∈LH(s) ũ

σ̃1,σ̃1

s′ where
sets FH(s) and LH(s) are defined as follows. Call qs the
number of states s′ reachable from s with a single action.
FH(s) contains the bqs/2c states with the highest ũσ̃1,σ̃1

s′ ,
while LH(s) contains the bqs/2c states with the lowest
ũσ̃1,σ̃1

s′ . Call Φ = maxs{Φ(s)}.
Similarly to what has been done in Lemma 3, in the fol-

lowing we bound the difference between the two utility func-
tions uσ1,σ2

s and ũσ1,σ2
s for any state s and any strategy pro-

file (σ1,σ2) when δ = 0 and ρ > 0.
Lemma 6. (With δ = 0.) Given a tree–based game G, for
any state s and for any strategy profile (σ1,σ2), the maxi-
mum absolute difference between utility of agent 1 computed
according to u(·, ·) and utility of agent 1 computed accord-
ing to ũ(·, ·) is less than δ 1−γl(s)+1

1−γ : ‖uσ1,σ2
s − ũσ1,σ2

s ‖∞ ≤
δ 1−γl(s)+1

1−γ .
Proof. Given the bound on the transition probability func-

tions in Eq. (16), we obtain:

‖uσ1,σ2
s − ũσ1,σ2

s ‖∞ ≤ ‖rσ1,σ2
s − r̃σ1,σ2

s ‖∞

+γ‖
∑
s′

(
p
σc
s,s′u

σ1,σ2
s′ − p̃σc

s,s′ ũ
σ1,σ2
s′

)
‖∞

= γ‖
∑
s′

(
p
σc
s,s′u

σ1,σ2
s′ − pσc

s,s′ ũ
σ1,σ2
s′

)
+
∑
s′

(
p
σc
s,s′ ũ

σ1,σ2
s′ − p̃σc

s,s′ ũ
σ1,σ2
s′

)
‖∞

≤ γ‖
∑
s′
p
σc
s,s′

(
u
σ1,σ2
s′ − ũσ1,σ2

s′

)
‖∞

+γ‖
∑
s′

(
p
σc
s,s′ − p̃

σc
s,s′

)
ũ
σ1,σ2
s′ ‖∞

≤ γmax
s′
‖uσ1,σ2
s′ − ũσ1,σ2

s′ ‖∞ + γρΦ(s)

≤ γρΦ + γmax
s′
‖uσ1,σ2
s′ − ũσ1,σ2

s′ ‖∞

By the recursive application of the above formula starting
from an absorbing state s up to state s, we obtain: ‖uσ1,σ2

s −
ũσ1,σ2
s ‖∞ ≤ γρΦ 1−(γ)l(s)+1

1−γ . �
Theorem 7. (With δ = 0.) Given a tree–based game G and
a generic state s, the MPE strategy profile (σ̃1, σ̃2) of the
subgame whose root node is s when agents’ utility func-
tions are ũ(·, ·) and −ũ(·, ·), respectively, is an εs–MPE
with εs ≤ 2γρΦ 1−γl(s)+1

1−γ of such subgame when agents’
utility functions are u(·, ·) and −u(·, ·).

Proof. By Theorem 2, we compute the upper bound over
the expected utility loss of agent 1 at s as a function of the
loss of agent 1 in the states directly reachable from s:

εs = u
σ∗1 ,σ̃2
s − uσ̃1,σ̃2

s

≤ 2‖us(·, ·)− ũs(·, ·)‖∞

≤ 2γρΦ
1− (γ)l(s)+1

1− γ

The same result can be obtained for the loss of agent 2. �
Now, we focus on graph–based games.

Corollary 8. (With δ = 0.) The bound stated in Theorem 7
can be generalized to graph–based games G as follows:

εs ≤ lim
l(s)→+∞

2γρΦ
1− (γ)l(s)+1

1− γ
=

2γρΦ

1− γ

As previously, the above bound is state independent and
is significative (i.e., ε < 1) only when γ(1 + 2ρΦ) < 1.

Taken together, the results exposed above allow us to state
the bound for the general case, in which δ, ρ ≥ 0:
Theorem 9. Given a tree–based game G and a generic
state s, the MPE strategy profile (σ̃1, σ̃2) of the subgame
whose root node is s when agents’ utility functions are
ũ(·, ·) and −ũ(·, ·), respectively, is an εs–MPE with εs ≤
2(δ+γρΦ) 1−(γ)l(s)+1

1−γ of such subgame when agents’ utility
functions are u(·, ·) and −u(·, ·).

The proof is easy, the two bounds being additive in our
problem. Similarly, we obtain:
Corollary 10. The bound stated in Theorem 9 can be gener-
alized to graph–based games G as follows:

εs ≤ lim
l(s)→+∞

2(δ + γρΦ)
1− (γ)l(s)+1

1− γ
=

2(δ + γρΦ)

1− γ

Notice that this bound is meaningful (i.e.,< 1) only when
2δ + γ(1 + 2ρΦ) < 1.

Finally, we collect all the above results and we consider
the situation in which an ε̃–MPE computed on the approxi-
mated game G̃ is used in the original game G.
Theorem 11. Given a game G and a generic state s, an ε̃–
MPE strategy profile (σ̃1, σ̃2) of the approximated game G̃,
is an ε∗–MPE for game G, with ε∗ ≤ maxs{εs}+ ε̃.

Again, the proof stems from the additivity of the two
bounds and the definition of ε–MPE.
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Figure 1: Average ε value.

Experimental evaluation
We implemented our algorithm with Matlab 7.12
calling Yalmip R20120109 (Lofberg 2004) and
SDPT3 v.4 (K.C. Toh and Tutuncu 1999) to solve SDPs. We
conducted the experiments on a UNIX computer with dual
quadcore 2.33GHz CPUs and 16GB RAM.

We preliminarily evaluated the efficiency of our algorithm
with medium/small polynomial games. We randomly gener-
ated 10 game instances with |S| ∈ {2, 4, 10, 20, 30, 40, 50}
and m ∈ {2, 5, 10, 15, 20} as follows. Without loss of gen-
erality, rs,k,j has been uniformly drawn from [−1, 1] except
ri,0,0 that is set equal to ri,0,0 = m · (m+ 1)/2 to guarantee
that the reward functions are always positive on [0, 1]×[0, 1].
We generated ps,s′,i by exploiting SDP programming: we
formulated the space of feasible polynomials (ps,s′,i ≥ 0,∑
s′ ps,s′,i = 1) as an SDP and we randomly selected a fea-

sible point of such space. The reward functions have been
normalized such that maxs{us} = 1 and mins{us} = 0.

We applied our algorithm to the above experimental set-
ting. Fig. 1 shows how ε varies with the number of iterations
(the plot is semi–log). Fixed the iteration, for each value of
m we report the value of ε averaged over the instances with
all the different |S|. At every iteration, ε is monotonically
decreasing with m and the ratio between ε with m = 20
(max used degree) and ε with m = 2 (min used degree) is
always less than 10 and hence the performances with dif-
ferent m are close. ε decreases exponentially with the num-
ber of iterations and gets very small — in [10−5, 10−4] —
even after few iterations. Then, we evaluated the computa-
tion time. About 98% of the compute time per iteration is
required by the resolution of the SDPs (PSi, DSi, and BRi
require approximately the same compute time). In Fig. 2 we
report how the average compute time needed by Yalmip and
SDPT3 to solve a single SDP (precisely, PS1) varies with
|S| for differentm. The average compute time remains short
even with |S| = 50 and m = 20, and, therefore, with
small/medium instances, the algorithm scales very well find-
ing ε–MPEs with very small ε by short compute time.

Finally, we preliminarily evaluated the effectiveness of
our theoretical bounds for non–polynomial games by eval-
uating, with Caliari et al. (2008), the approximation error δ
with infinity norm for different classes of bivariate functions
(their approximation is harder than that of univariate func-
tions). In Tab. 1, we report, for different m, the average δ
with three different function classes (exp, sin, linear piece-

Figure 2: Average compute time per single SDP.

wise) by generating randomly 30 instances per class (10 per
n). δ ≈ 10−5 for every n when m = 20 with smooth func-
tions (exp/sin), while δ ≥ 10−2 with continuous but not dif-
ferentiable functions (piecewise). Anyway, also with these
last functions the error and hence the upper bound on ε is
reasonably small.

Conclusions
We studied the problem to find and approximate an MPE
with continuous two–player zero–sum stochastic games
with switching control. We provided an algorithm based on
SDP that converges to an MDP when the game is polyno-
mial. When instead the game is non–polynomial, we approx-
imate the reward and the transition functions minimizing the
error with infinity norm and then we apply our algorithm. In
this case, we provide theoretical guarantees over the value
of ε of the ε–MPE to which the algorithm converges. Fi-
nally, we experimentally evaluated our algorithm, showing
that with small/medium games it is efficient and that the ap-
proximation error with infinity norm is small.

As future works, we aim at studying the scalability of
the algorithm with large instances, evaluating our theoretical
bounds with a variety of function classes, improving them,
and extending the algorithm to solve general–sum games.
In addition, we will remove the assumption of switching
controller and we will explore both verification (Gatti and
Panozzo 2012) and computation (Gatti and Iuliano 2011) of
perfection–based solution concepts with continuous actions.
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