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Abstract

The (Shapley-Scarf) housing market is a well-studied and
fundamental model of an exchange economy. Each agent
owns a single house and the goal is to reallocate the houses to
the agents in a mutually beneficial and stable manner. Re-
cently, Alcalde-Unzu and Molis (2011) and Jaramillo and
Manjunath (2011) independently examined housing markets
in which agents can express indifferences among houses.They
proposed two important families of mechanisms, known as
TTAS and TCR respectively. We formulate a family of mech-
anisms which not only includes TTAS and TCR but also sat-
isfies many desirable properties of both families. As a corol-
lary, we show that TCR is strict core selecting (if the strict
core is non-empty). Finally, we settle an open question re-
garding the computational complexity of the TTAS mecha-
nism. Our study also raises a number of interesting research
questions.

Introduction
Housing markets are fundamental models of exchange
economies of goods where the goods could range from dor-
mitories to kidneys (Sönmez and Ünver 2011). The clas-
sic housing market (also called the Shapley-Scarf Market)
consists of a set of agents each of which owns a house and
has strict preferences over the set of all houses. The goal
is to redistribute the houses to the agents in the most desir-
able fashion. Shapley and Scarf (1974) showed that a sim-
ple yet elegant mechanism called Gale’s Top Trading Cycle
(TTC) is strategy-proof and finds an allocation which is in
the core. TTC is based on multi-way exchanges of houses
between agents. Since the basic assumption in the model is
that agents have strict preferences over houses, TTC is also
strict core selecting and therefore Pareto optimal.

Indifferences in preferences are not only a natural relax-
ation but are also a practical reality in many cases. Many
new challenges arise in the presence of indifferences: the
core does not imply Pareto optimality; the strict core can be
empty (Quint and Wako 2004); and strategic issues need to
be re-examined. In spite of these challenges, Alcalde-Unzu
and Molis (2011) and Jaramillo and Manjunath (2011) pro-
posed desirable mechanisms for housing markets with indif-
ferences. Alcalde-Unzu and Molis (2011) presented the Top
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Trading Absorbing Sets (TTAS) family of mechanisms which
are strategy-proof, core selecting (and therefore individu-
ally rational), Pareto optimal, and strict core selecting (if
the strict core is non-empty). Independently, Jaramillo and
Manjunath (2011) came up with a different family of mech-
anisms called Top Cycle Rules (TCR) which are strategy-
proof, core selecting, and Pareto optimal. Whereas it was
shown in (Jaramillo and Manjunath 2011) that each TCR
mechanism runs in polynomial time, the time complexity of
TTAS was raised as an open problem in (Alcalde-Unzu and
Molis 2011).

We first highlight the commonality of TCR and TTAS by
describing a simple class of mechanisms called Generalized
Absorbing Top Trading Cycle (GATTC) which encapsulates
the TTAS and TCR families. It is proved that each GATTC
mechanism is core selecting, strict core selecting, and Pareto
optimal. As a corollary, TCR is strict core selecting. We
note that whereas a GATTC mechanism satisfies a number
of desirable properties, the strategy-proofness of a particular
GATTC mechanism hinges critically on the order and way of
choosing trading cycles. Finally, we settle the computational
complexity of TTAS. By simulating a binary counter, it is
shown that a TTAS mechanism can take exponential time to
terminate.

Preliminaries
Let N be a set of n agents and H a set of n houses. The
endowment function ω : N → H assigns to each agent the
house he originally owns. Each agent has complete and tran-
sitive preferences %i over the houses and %= (%1, . . . %n) is
the preference profile of the agents. The housing market
is a quadruple M = (N,H, ω,%). For S ⊆ N, we denote⋃

i∈S ω(i) by ω(S ). A function x : S → H is an alloca-
tion on S ⊆ N if there exists a bijection π on S such that
x(i) = ω(π(i)) for each i ∈ S . The goal in housing mar-
kets is to re-allocate the houses in a mutually beneficial and
efficient way. An allocation is individually rational (IR) if
x(i) %i ω(i). A coalition S ⊆ N blocks an allocation x on
N if there exists an allocation y on S such that for all i ∈ S ,
y(i) ∈ ω(S ) and y(i) �i x(i). An allocation x on N is in the
core (C) of market M if it admits no blocking coalition. An
allocation that is in the core is also said to be core stable.
An allocation is weakly Pareto optimal (w-PO) if N is not
a blocking coalition. A coalition S ⊆ N weakly blocks an
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allocation x on N if there exists an allocation y on S such
that for all i ∈ S , y(i) ∈ ω(S ), y(i) %i x(i), and there exists
an i ∈ S such that y(i) �i x(i). An allocation x on N is in the
strict core (SC) of market M if it admits no weakly blocking
coalition. An allocation that is in the strict core is also said
to be strict core stable. An allocation is Pareto optimal (PO)
if N is not a weakly blocking coalition. It is clear that strict
core implies core and also Pareto optimality. Core implies
weak Pareto optimality and also individual rationality.

A mechanism that always returns a Pareto optimal and
(strict) core stable allocation is said to be Pareto optimal
and (strict) core-selecting respectively. A mechanism is
strategy-proof if for each agent, reporting false preferences
to the mechanism will not be beneficial to the agent (i.e.,
when the agent reports false preferences, he will not end up
with a house that he prefers more than the house he would
get when he reports his true preferences to the mechanism).

Desirable allocations of housing markets can be computed
via a graph-theoretic approach to housing markets. Each
housing market M = (N,H, ω,%) has a corresponding sim-
ple digraph G(%) = (N ∪ H, E) such that for each i ∈ N
and h ∈ H, (i, h) ∈ E if h % h′ for all h′ ∈ H, and (h, i) if
h = ω(i). In other words, each agent points to his maximally
preferred houses and each house points to his owner. An ab-
sorbing set of a digraph is a strongly connected component
from which there are no outgoing edges. Two nodes consti-
tute a symmetric pair if there are edges from each node to
the other. Both nodes are then called paired-symmetric. An
absorbing set is paired-symmetric if each node belongs to a
symmetric pair.

GATTC
In this section, we formulate a simple family of mechanisms
called Generalized Absorbing Top Trading Cycle (GATTC)
which is designed for housing markets with indifferences
and extends not only TTC but also includes the two fami-
lies TTAS and TCR. It is based on multi-way exchanges of
houses between agents. We will show that GATTC satisfies
many desirable properties of housing mechanisms such as
being core-selecting and Pareto optimal.

Before we describe GATTC, we will introduce the orig-
inal TTC mechanism which is for the domain of housing
markets with strict preferences. TTC works as follows. For a
housing market M with strict preferences, we first construct
the corresponding graph G(%) as defined above. Then, we
start from an agent and walk arbitrarily along the edges un-
til a cycle is completed. A cycle starting from any agent is
of course guaranteed to exist as each node in G(%) has pos-
itive outdegree. This cycle is removed from G(%). Within
the removed cycle, each agent gets the house he was point-
ing to. The graph G(%) is adjusted so that the remaining
agents point to the most preferred houses among the remain-
ing houses. The process is repeated until all the houses and
agents are deleted from the graph.1

For a housing market with indifferences, TTC can still be
used to return a core selecting allocation: break ties arbi-

1Please see Section 2.2 of (Sönmez and Ünver, 2011) for an
elegant illustration of how TTC works.

trarily and then run TTC. However such an allocation may
not be Pareto optimal (see e.g., Alcalde-Unzu and Molis,
2011; Jaramillo and Manjunath, 2011). GATTC achieves
Pareto optimality and is based on absorbing sets and the
concept of a ‘good cycle’. A good cycle is any cycle in
G(%) which contains at least one node that is not paired-
symmetric. By implementing a cycle we mean reallocating
the houses along the cycle. For example consider the cy-
cle a0, h1, a1, . . . , hm, am, h0, a0. Then for all i ∈ {0, . . . ,m},
house hi+1 mod m is made to point to ai. The following is the
description of a GATTC mechanism.

GATTC
Let G = G(%) and repeat the following until G is empty.

1. Repeat the following a finite number of times on G:

1.1. Either implement a non-good cycle (if G is not empty), or
do nothing.

1.2. Either remove a paired-symmetric absorbing set and adjust2

G (if a paired symmetric-absorbing set exists), or do
nothing.

2. Repeatedly remove paired-symmetric absorbing sets and adjust

G, until there are no paired-symmetric absorbing sets in G.

3. If G is not empty, implement a good cycle.

We stress that the choices that a GATTC mechanism
makes in steps 1.1. and 1.2. are allowed to be different each
time the mechanism executes these steps during the same
run. The same holds for the number of times that steps 1.1.
and 1.2. are repeated, each time that step 1 is executed. It
is not even required that a GATTC mechanism is determin-
istic: as long as the property that the output can always be
obtained by a procedure that respects the form above, it is
part of the GATTC family.

Example 1 Consider a housing market M = (N,H, ω,%)
where N = {a1, . . . , a5}, H = {h1, . . . , h5}, ω is such that
ω(ai) = hi for all i ∈ {1, . . . , 5}, and preferences % are de-
fined as follows:

agent a1 a2 a3 a4 a5

preferences h2 h3 h4, h5 h1 h2
h1 h2 h3 h5 h4

h4 h5
Then, if ties are broken in any way, TTC does not

return a Pareto optimal allocation. However, GATTC
(or TTAS/TCR) returns the following Pareto optimal
allocations: {{a1, h2}, {a2, h3}, {a3, h5}, {a4, h1}, {a5, h4}} or
{{a1, h1}, {a2, h3}, {a3, h4}, {a4, h5}, {a5, h2}}. Figure 2 (placed
at the end of this paper, due to space constraints) illustrates
the first steps in the execution of a GATTC mechanism on
this housing market.

We say that a housing market mechanism is valid if it
terminates and returns a proper allocation.

Theorem 1 GATTC is valid, core-selecting, and Pareto op-
timal.

2Adjusting is defined here in the same way as for the TTC mech-
anism.
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Proof: We prove each property separately:
• Valid: At the beginning of every step, G has the property

that each node has positive out-degree. For non-empty
graphs with this property, an absorbing set of cardinality
greater than 1 is guaranteed to exist (Kalai and Schmei-
dler, 1977). Therefore, if G is not empty, then at step 1.1.
there is guaranteed to be a cycle, and at step 3. there is
guaranteed to be a good cycle (because there must be an
absorbing set that is not paired-symmetric). In each itera-
tion (of steps 1, 2, and 3), if paired-symmetric absorbing
sets exist they are removed in Step 2. 3 Also, at least one
good cycle is implemented in step 3 which reduces the
number of non-paired-symmetric nodes. Therefore, there
can be a maximum of O(n) iterations until GATTC termi-
nates. Since each removed house is allocated to the agent
it was last pointing to, GATTC returns a proper allocation.

• Core selecting: When any agent i is removed from the
graph along with his allocated house h, then h is a maxi-
mal house for i from among the remaining houses. There-
fore i cannot be in a blocking coalition with the agents
remaining in the graph.

• Pareto optimal: Let S k be the kth paired-symmetric ab-
sorbing set that arises at some point in the GATTC mech-
anism (and is thus removed from the graph by the GATTC
mechanism, and is included accordingly in the allocation
produced by the GATTC mechanism). In any allocation
x in which none of the players are worse off than in the
allocation produced by GATTC, these players must be al-
located to houses in S 1. Taking this as the base case, it
follows by easy induction that in x, the players of S k must
be allocated to houses in the kth paired-symmetric absorb-
ing set. Next, suppose that i is a player in S k for some k.
Then no house in S k is more preferred by i than the house
that the GATTC mechanism assigns him to. It follows
that no player is strictly better off in x than in the alloca-
tion produced by GATTC.

This completes the proof. �

Theorem 2 GATTC is strict core selecting in case the strict
core is non-empty.

Proof: We prove the statement by proving two claims. The
first claim is the following:

Claim 1 GATTC ensures that if each agent in an absorbing
set A can get his maximal house within A, then it will.

Proof: Define an inward set as a set of vertices without
edges pointing outward from A. An absorbing set is by
definition an inward set. We prove this claim for the more
general notion of inward sets. Let A be an inward set that
arises at some point in time t during execution of the GATTC
mechanism, and assume that each agent can simultaneously
get a maximal house in A. If A eventually becomes paired-
symmetric, then every agent in A surely gets a maximal
house within A. Let us thus assume that A does not even-
tually become paired-symmetric. Consider the first point in

3An absorbing set of a graph can be computed in linear time via
the algorithm of Tarjan (1972).

time t′ where vertices are removed from A by the mecha-
nism. This point t′ exists because the mechanism terminates.
All cycles that are implemented in between t and t′ either lie
completely inside A or completely outside A, because there
are no edges pointing from outside A to a vertex in A. It
follows that at point t′, the removed paired-symmetric ab-
sorbing set A′ is a strict subset of A. Note that agents in
A\A′ cannot get a house from within A′ without some agent
in A′ getting a worse house. Hence, by the assumption that
each agent in A can get his maximal house within A, it fol-
lows that agents in A \ A′ can still all get a maximal house
from within A \ A′. The proof follows by induction; repeat-
ing the same argument on the inward set A \ A′ that arises
when removing A′ from the graph. �

The next claim is as follows.

Claim 2 The returned allocation x is in the strict core if
and only if for each absorbing set A encountered in the al-
gorithm, each agent in A will get his maximal house in A.

Proof: (⇒) Assume there is an agent i ∈ A such that there
exists a house h in A for which h %i x(i). But then i can be
involved in a weakly blocking coalition by forming a cycle
within A.

(⇐) Assume that each agent i in A gets a maximal house
from within A. Thus i cannot be part of a blocking coalition.
It could still be part of a weakly blocking coalition if an
agent i in A had a maximal house h outside A within the re-
maining graph and there exists a cycle of the form i, h, . . . , i.
But this is not possible since A is absorbing. �

From the two claims, the theorem follows. �

We also observe that on the domain of strict preferences,
GATTC is equivalent to TTC. The reason is that implemen-
tation of any cycle results in a paired-symmetric absorbing
set which is then removed from the graph. Ma (1994) proved
that for housing markets with strict preferences, a mecha-
nism is core selecting if and only if it is individually ratio-
nal, Pareto optimal, and strategy-proof. On the other hand,
we note that in the presence of ties, even if a mechanism
is core selecting, and Pareto optimal, it is not necessarily
strategy-proof.

Theorem 3 Not every GATTC mechanism is strategy-proof.

Proof Sketch: Consider the following GATTC mechanism
in which no non-good cycle is implemented and every good
cycle is found in the following way. Consider ai ∈ N, h j ∈ H
such that (ai, h j) ∈ E , (h j, ai) < E, and ai and h j are in a
strongly connected component. Then, there exists a shortest
path P from h j to ai. Find this path P by Dijkstra’s shortest
path algorithm. Path P gives us a good cycle ai, h j, P, ai.

For this subclass of GATTC, it can be shown that an agent
may have incentive to lie about his preferences to obtain a
better allocation. Informally, there exist instances of a hous-
ing market in which if an agent a does not lie, it may only
get a third most preferred house. However, if a points to his
second most preferred house h in the graph, it can manage
to influence which good cycle is selected and be included in
that good cycle. Agent a then gets allocated h. �

1251



TTAS and TCR
We now describe the two families of mechanisms in the
literature — TTAS (Alcalde-Unzu and Molis, 2011) and
TCR (Jaramillo and Manjunath, 2011) — designed for hous-
ing markets with indifferences. Both families of mecha-
nisms are extensions of TTC. We will later show that both
families are subclasses of GATTC.

TTAS
Fix a priority ranking of the houses; i.e., a complete,

transitive and antisymmetric binary relation over H. Construct

the graph G(%), and run the following procedure on it
(starting with i = 1, incrementing i every iteration) until
no more agents are remaining in the graph.

Step i

(i.1) Let each remaining agent point to her maximal houses among

the remaining ones. Select the absorbing sets of this

digraph.

(i.2) Consider the paired-symmetric absorbing sets. Their agents

are allocated the house that the agents currently point to

in the graph. These absorbing sets are removed from the

graph.

(i.3) Consider the remaining absorbing sets. Select for each

agent a unique house to point to by using the following

criterion: each agent i currently owning house h
provisionally points only to the house that i likes most
(according to %i) among the houses remaining. Ties are

broken by selecting the among the candidate houses the

one that comes after h in the priority order (if there is
no such house, then select among the candidate houses the

first house in the priority order).

(i.4) Then, in this subgraph, there is necessarily at least one

cycle and no two cycles intersect. Assign (provisionally)

to each agent in these cycles the house that he is pointing

to, but do not remove them from the graph.

The algorithm terminates when no agents and houses re-
main, and the outcome is the assignment formed during its
execution.

TCR
Consider a priority ranking of the agents; i.e., a complete,

transitive and antisymmetric binary relation over A. Do the

following until no more agents are left.

1. Departure: A group of agents is chosen to ‘‘depart’’ if two

conditions are met: i) What each agent in the group holds is

among his most preferred houses (among the remaining ones),

and ii) All of the most preferred houses (among the remaining

ones) of the group are held by them. Once a group departs,

each agent in it is assigned what he holds and is removed

from the set of remaining agents. In addition, their houses

are removed from the remaining houses. There may be another

group that can be chosen to depart. The process continues

until there are no more groups that can depart. If the two

conditions are not met by any group, then nobody departs.

2. Pointing: Each agent points to an agent holding one of his

top houses (among the remaining ones). Since there may be

more than one such agent, the problem of figuring whom each

agent points to is a complicated one.

We solve it in stages as follows:

Stage 1 For each remaining j such that j holds the same house that

he held in the previous step, each i that pointed at j

in the previous step points to j in the current step. Of

course, this does not apply for the very first step.

Stage 2 Each i with a unique top house (among the remaining ones)

points to the agent holding it.

Stage 3 Each agent who has at least one of his top houses (among

the remaining ones) held by an unsatisfied agent points to

whomever has the highest priority among such unsatisfied

agents.

Stage 4 Each agent who has at least one of his top houses (among

the remaining ones) held by a satisfied agent who points

to an unsatisfied agent points to whomever points to the

unsatisfied agent with highest priority. If two or more of

his satisfied ‘‘candidates’’ point to the unsatisfied agent

with highest priority, he points to the satisfied candidate

with the highest priority.

Stage ... And so on.

3. Trading: Since each remaining agent points to someone, there

is at least one cycle of remaining agents. For each such

cycle, agents trade according to the way that they point and

what they hold for the next step is updated accordingly.

Note that TTAS and TCR mechanisms depend on the pri-
ority ordering over H and A respectively. The variation in
priority rankings leads to classes of mechanisms rather than
a single mechanism. Next, we show that TTAS and TCR are
subclasses of GATTC in which cycles are selected via the
strict order over houses and agents respectively.

Theorem 4 GATTC generalizes both the TTAS and TCR
families of mechanisms.

Proof: (GATTC generalizes TTAS). (GATTC generalizes
TTAS). Step i.2 of TTAS corresponds to repeatedly execut-
ing step 1.2. (and skipping step 1.1). After that, TTAS may
implement a number of non-good cycles. This corresponds
in GATTC to executing step 1.1 (skipping step 1.2). How-
ever, the proof of Proposition 1 in (Alcalde-Unzu and Mo-
lis, 2011) shows that TTAS can never perpetually implement
non-good cycles: Either the graph becomes empty, or even-
tually a good cycle is found and implemented. So execut-
ing in TTAS step i.2 to i.4 on iterations where a good cycle
is implemented, corresponds to executing steps 3 and 4 of
GATTC.

(GATTC generalizes TCR). A TCR rule reduces to the
GATTC mechanism if zero non-good cycles are imple-
mented in Step 1. and if in Step 3 of GATTC, a good cycle is
implemented in the particular way as outlined in the defini-
tion as TCR. It is clear from the Step 2 (pointing) of TCR
that the way agents are made to point, the cycle induced
involves at least one node which is not paired-symmetric.
Therefore the cycle in question is a good cycle. �

In contrast to TTAS (which is strict core-selecting), it was
not known whether TCR is also strict core-selecting. As a
corollary of Theorems 2 and 4, we obtain the following.

Corollary 1 Each TCR mechanism is strict core selecting
(if the strict core is non-empty).

In the next section, we answer an open question concern-
ing the running time of the TTAS mechanism.
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Step 8 (G101) Step 10 (G011) Step 11 (G111)Step 9 Step 12Step 7 (G001)
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Step 4 (G010) Step 5 (G110)Step 1 (G000) Step 2 (G100) Step 3 Step 6

h′2

h′1

a′1 h1

a1

h2

a2

h3

a3

h4

a4

Figure 1: (Illustrative example for the proof of Theorem 5.) The graph at the beginning of every step of the TTAS mechanism when it is
ran on the instance M3. Black vertices represent players and white vertices represent houses. When an arc is drawn that has arrows pointing
to both its vertices, say vertices a and b, then it stands for the presence of arcs (a, b) and (b, a) in the graph. At the graph for step 1, the names
of the vertices are displayed. This is omitted for subsequent steps. In the last step it can be seen that the entire graph is paired symmetric. For
every step i except the last one, an arc is displayed in bold in the graph of step i when that arc points from an agent to a house and when that
arc is included in the subgraph generated in part 3 of step i (the remaining arcs in this subgraph are all arcs pointing from houses to agents).
When in some step, the graph at the beginning of that step equals Gb for some b ∈ {0, 1}k, then this is indicated in the figure by the tag “(Gb)”
after the step number.

Complexity of TTAS
An important property of TTAS is that if an agent i is re-
allocated a house h during the running of TTAS but i and
h are not yet deleted from the graph, then agent i is guar-
anteed to be finally allocated a house h′ ∈ H such that
h ∼i h′ (Lemma 1, Alcalde-Unzu and Molis, 2011). There-
fore the number of symmetric pairs can only increase during
the running of the algorithm although they may stay constant
in a number of iterations. Alcalde-Unzu and Molis (2011)
showed that despite a number of stages in which no obvious
progress is being made, TTAS eventually terminates (Propo-
sition 1, Alcalde-Unzu and Molis, 2011). Although, we
know that TTAS terminates and results in a proper alloca-
tion, the proof of (Proposition 1, Alcalde-Unzu and Molis,
2011) does not help shed light on how many steps are taken
in the running of TTAS.We will show the following.

Theorem 5 There exists a family of housing markets {Mk =
(Nk,Hk, ωk,�

k) : k ∈ N>0} with |Nk | = |Hk | = 2k + 1, and
corresponding priority rankings {Rk : k ∈ N>0} such that if
the TTAS mechanism receives input Mk and chooses R as its
priority ranking in step 0, then the TTAS mechanism runs for
at least 2k = 2(|Nk |−1)/2 steps until it terminates.

This theorem shows thus that the TTAS mechanism, accord-
ing to its current description, does not run in polynomial
time. It still might be that for each instance, there is some
priority ranking such that the TTAS mechanism runs in poly-
nomial time, but then at least some additional details are
needed in the description on how to choose the priority rank-
ing. The algorithm described in Alcalde-Unzu and Molis
(2011) is not sufficient.

Proof: The houses and agents of housing market Mk
are named as Hk = {h1, h′1, h2, h′2, . . . , hk, h′k, hk+1} and
{a1, a′1, a2, a′2, . . . , ak, a′k, ak+1} respectively. In the initial en-

dowment, house h j is assigned to agent a j for all j ∈ [k+1],4
and house h′j is assigned to agent a′j for all j ∈ [k]. The
preference profile of agent a j, j ∈ [k] is described by two
equivalence classes: his class of most preferred houses is
{h′j, h j, h j+1}, and the remainder of the houses is in his other
equivalence class, i.e., his class of least preferred houses.
The preference profile of agent a′j, j ∈ [k], is also described
by two equivalence classes: His class of most preferred
houses is {h j, h′j, h1} (so for j = 1, this set has cardinality 2),
and the remainder of the houses are in the other equivalence
class, i.e., his class of least preferred houses. The preference
profile of agent ak+1 is also described by two equivalence
classes: His class of most preferred houses is {h1}, and the
remainder of the houses is in his other equivalence class, i.e.,
his class of least preferred houses. The priority ranking R is
(h1, h′1, h2, h′2, . . . , hk, h′k, hk+1).

The high level idea of this example is to simulate a binary
counter. The graph that the TTAS mechanism maintains will
contain a single absorbing set in every step: the entire graph.
In every step except the last one, the only agent that prevents
the graph from being paired-symmetric will be agent ak+1.
We associate bit-strings of length k to the graphs that may
arise in some of the steps of the TTAS algorithm: Let b ∈
{0, 1}k be any bit-string of length k, then we define the graph
Gb as the graph where for all j,
• a j and a′j all point to their set of most preferred houses,
• if b j = 0, then h j points to a j and h′j points to a′j.
• if b j = 1, then h j points to a′j and h′j points to a j.

We prove that for all bit-strings b of length k there is a step ib
such that the graph at the beginning of step ib is equal to Gb.
Because there are 2k possible bit-strings, it then follows that
there are at least 2k steps before the algorithm terminates.

In order to understand what happens during the execution
of the TTAS algorithm on an instance M j, it will be helpful

4Suppose x ∈ N, then [x] stands for the set {1, . . . , x}.
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to look at the example of Figure 1, where the graph at the
beginning of every step is shown when we run the TTAS
mechanism on M3.

Let us assume that at the beginning step i of the execution
of the TTAS mechanism, the graph is equal to Gb for some
b. We can prove that Gb is strongly connected:

Claim 3 For each length k bit-string b, Gb is strongly con-
nected.

Proof: We first show that there is a path from h1 to every
other vertex v.

If b1 = 0, then h1 points to a1 and h′1 points to a′1. If b2 =
0, then there exists a path (h1, a1, h2, a2, h′2, a

′
2). If b2 = 1,

then there exists a path (h1, a1, h2, a2, h′2, a2).
If b1 = 1, then h1 points to a′1 and h′1 points to a1. If

b2 = 0, then there exists a path (h1, a′1, h
′
1, a1, h2, a2, h′2, a

′
2).

If b2 = 1, then there is a path (h1, a′1, h
′
1, a1, h2, a′2, h

′
2, a2).

Therefore h1 has a path to each of the following vertices:
a1, a2, h1, h2, a′1, a

′
2, h
′
1, h
′
2.

Using the same argument, we can see that for each a j,
there is a path to a j+1; for each a′j, there is a path to a′j+1;
for each h j there is a path to h j+1; for each h′j, there is a path
to h′j+1. Therefore, it holds that: From h1, there is a path to
each a j for j ∈ [k + 1]; From h1, there is a path to each a′j for
j ∈ [k]; From h1, there is a path to each h j for j ∈ [k + 1];
and from h1, there is a path to each h′j for j ∈ [k].

Similarly, it can be shown that from every vertex, there is
a path to h1. This completes the argument of the claim.

�

Therefore, Gb has only one absorbing set: the whole of
Gb.

Also observe that for all b, Gb is not paired symmetric,
because of player k + 1. From this we conclude that if the
graph at the beginning of a step i is equal to Gb, for some
b ∈ {0, 1}k, then the TTAS mechanism does not terminate at
step i, and the mechanism will certainly reach step i + 1.

For some step i of the TTAS mechanism, and for every
agent a ∈ N, let S i

a denote the set of most preferred houses
of a that are ranked lower than the house assigned to a in
step i. However, if this set is empty, then define S i

a to be
the set of most preferred houses of a. Let us assume that
for step i, the following property holds, which we will call
Property Ai: for every agent a ∈ N, it holds that the set
of most preferred houses of a that have been provisionally
assigned to a the least number of times (including 0 times),
is S i

a.
We define a straightforward bijection c : {0, 1}k → [2k −

1] ∪ {0} as follows: bit-string b corresponds to the integer∑k
j=1 2 j−1b j. We then see that the following happens:

Claim 4 Let b be a bit-string of length k, suppose that i is a
step in the TTAS mechanism such that the graph at step i is
equal to Gb, and suppose that Property Ai holds.

• If c(b) is even, then the graph at step i + 1 of the TTAS
algorithm is equal to Gb+1, and Property Ai+1 holds.

• If c(b) is odd and not equal to 2k−1, then the graph at step
i + 2 of the TTAS algorithm is equal to Gb+1, and Property
Ai+2 holds.

Proof: If c(b) is even, it is easy to see that at the beginning
of step i + 1, the graph will be Gc−1(c(b)+1): the only cycle
found in part 3 of step i is (h1, a1, h′1, a

′
1, h1). Any other cy-

cles would have to make use of one of the arcs pointing to-
ward h′1, but that is not possible by the vertex-disjointness
property of the cycles in the subgraph used at part 3 of step
i. After augmenting Gb according to cycle (h1, a1, h′1, a

′
1, h1),

it is easy to check that the graph is equal to Gb+1. Also, ob-
serve that Property Ai+1 holds.

If c(b) is odd and not equal to 2k − 1, then de-
fine j to be the largest index such that b j′ = 1 for
all j′ ≤ j. Then, in part 3 of step i, the cycle
(h1, a′1, h

′
1, a1, h2, a′2, h

′
2, a2, . . . , h j, a′j, h

′
j, a j, h j+1, a j+1, h′j+1,

a′j+1, h1) is found, and no other cycle is found, because oth-
erwise h1 would be in such a cycle: a contradiction. It is not
hard to verify that property A still holds for step i+1, and the
graph that now arises at the beginning of step i + 1 is again
a single absorbing set that is not paired symmetric, because
of ak+1. Step i + 2 will therefore certainly be reached, and
it can be verified by similar reasoning as before that again a
single cycle is found in part 3 of step i + 1. This cycle is
(h1, a′j+1, h j+1, a j, h j, a j−1, h j−1, a j−2, h j−2, . . . , a1, h1). Aug-
menting the graph on this cycle makes the graph exactly
equal to Gc−1(c(b)+1). Moreover, Property A now still holds
for step i + 2. �

Property A1 is certainly satisfied, and the graph at step 1 is
G000.... By straightforward induction, using the claim above,
it follows that for all bit-strings b of length k there is indeed
a step ib such that the graph at the beginning of step ib is
equal to Gb. �

Discussion

Properties TTAS TCR GATTC

Core, Pareto optimal X X 4Th. 1

Strict core (if non-empty) X 4 Cor. 1 4Th. 2

Strategy-proof X X 7 Th. 3

Polynomial-time 7 Th. 5 X 7 Th. 5

Table 1: Housing market mechanisms: new results are in a
bolder font.

We analyzed and compared two recently introduced hous-
ing market mechanisms. Whereas it was shown that TTAS
may take exponential time, TCR was shown to be strict core
selecting just like TTAS. The new and old results are sum-
marized in Table 1. Our abstraction from TTAS and TCR
to GATTC helps identify the crucial higher level details and
commonality of both TTAS and TCR. This leads to simple
proofs for properties satisfied by any GATTC mechanism.
Whereas core, strict core, and Pareto optimality are prop-
erties that can be fulfilled by any GATTC mechanism, ad-
ditionally satisfying strategy-proofness requires subtlety in
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choosing which cycles are implemented in which order. This
additional complexity leads to an exponential time lower
bound in the case of TTAS and a difficulty in having a sim-
plistically elegant description in the case of TCR. 5

Our study leads to a number of further research ques-
tions. It will be interesting to characterize the subset of
GATTC mechanisms which are strategy-proof or are both
strategy-proof and polynomial-time. Another question is to
see whether being a GATTC mechanism is a necessary con-
dition to simultaneously achieve core stability, Pareto opti-
mality and strict core stability. We have seen that all known
housing market mechanisms which are core selecting and
Pareto optimal are also strict core selecting (if the strict core
is non-empty). This raises the question whether every hous-
ing market mechanism which is core selecting and Pareto
optimal is also strict core selecting (if the strict core is non-
empty).
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Figure 2: Illustration of the first steps of a GATTC mechanism
applied to the housing market in Example 1. Recall that the
preferences of the agents were as follows:

agent a1 a2 a3 a4 a5

preferences h2 h3 h4, h5 h1 h2
h1 h2 h3 h5 h4

h4 h5

The top figure shows the graph as initialized. The algorithm
proceeds by executing step 1 zero times, removing no paired
symmetric absorbing sets in step 2 (as there are none), and
implementing the cycle (a1, h2, a2, h3, a3, h4, a4, h1, a1) in step
3. The graph after implementing this cycle is shown in the
middle figure. Subsequently, the mechanism removes the paired
symmetric absorbing sets, forcing a5 to point to his second-most
preferred houses, i.e., house h4. This is shown in the bottom figure.
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