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Abstract
We propose a natural model for agent failures in congestion
games. In our model, each of the agents may fail to partici-
pate in the game, introducing uncertainty regarding the set of
active agents. We examine how such uncertainty may change
the Nash equilibria (NE) of the game. We prove that although
the perturbed game induced by the failure model is not always
a congestion game, it still admits at least one pure Nash equi-
librium. Then, we turn to examine the effect of failures on
the maximal social cost in any NE of the perturbed game.
We show that in the limit case where failure probability is
negligible new equilibria never emerge, and that the social
cost may decrease but it never increases. For the case of non-
negligible failure probabilities, we provide a full character-
ization of the maximal impact of failures on the social cost
under worst-case equilibrium outcomes.

Introduction
Congestion games (Rosenthal 1973) are a well-studied
model of strategic sharing of resource, and have been used to
investigate domains ranging from network design and rout-
ing (Kunniyur and Srikant 2003; Anshelevich et al. 2004)
to cloud-computing and load-balancing (Suri, Tóth, and
Zhou 2007; Vöcking 2007; Ashlagi, Tennenholtz, and Zo-
har 2010).

The characterization and computation of equilibrium out-
comes in congestion games have received much attention
(see e.g. (Fabrikant, Papadimitriou, and Talwar 2004;
Ieong et al. 2005; Hayrapetyan, Tardos, and Wexler 2006;
Ashlagi, Monderer, and Tennenholtz 2007)). In particular,
researchers focused on the Price of Anarchy, which is the
gap between the optimal cost and the cost under equilibrium
outcome (Roughgarden and Tardos 2004; Christodoulou and
Koutsoupias 2005). Nevertheless, an implicit assumption
underlying all of this vast literature, is that agents who de-
cided to use a certain resource always succeed in doing so.
In practice, however, agents may fail to follow their chosen
strategies, thereby utterly changing the costs of the game.

Consider a simple motivating example, where two travel-
ers (our agents) wish to go from the airport to the city. Taxis
to the city depart from gate C or gate E, where the taxis in
gate E cost almost twice as much as those in gate C. The
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travelers cannot communicate but if they happen to ride to-
gether, they share the cost of the ride equally. This can be
modeled as a congestion game with two strategies, where
(C,C) (sharing a cheap taxi) is optimal. However (E,E) is
also an equilibrium. Consider what happens if both travelers
know that their peer has some probability of failing to arrive,
leaving the other to face the full costs of the ride (no matter
what gate they may choose). In this new perturbed game it is
a dominant strategy to take taxi from gate C (and hope that
the other traveler will not fail to arrive, and choose the same
gate). The “bad” equilibrium (E,E) dissolves.

Indeed, in most everyday interactions we cannot assume
players are completely reliable. This is particularly true in
computerized and online environments, where agents may
inadvertently disconnect, face communication delays, etc.
The above example shows that the equilibrium outcomes can
change considerably when agents may fail, and that lack of
reliability may lead to a more socially desirable outcome.
These observations highlight the importance of understand-
ing how failures affect the predicted outcomes of games.

We suggest a natural extension to the standard model of
congestion games, which attributes a survival probability to
each agent. Since in every congestion game the costs of
players are determined only by the number of agents using a
resource, it is straightforward to derive the new costs. In the
absence of some agents, we compute the cost induced by the
surviving agents, where each agent now aims to minimize
her expected cost over all the realizations of the game.

Related work
Uncertainty in congestion games Though to the best of
our knowledge no previous work studies the effects of agent
failures on equilibria in congestion games, several works do
examine similar themes. Penn et al. (2009; 2011) study con-
gestion games with failure of resources rather than agents.
In their model uncertainty always has a hazardous effect, as
it encourages the agents to overload the system. While our
model relies on the fact that congestion games already natu-
rally define the costs for any set of surviving agents, Penn et
al. must make specific assumptions regarding costs incurred
when a resource fails.

A different model of uncertainty was introduced by Bal-
can et al. (2009), where agents perceive a noisy signal of the
cost, which is either random or adversarial. Agents are un-
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aware of the actual cost distribution, and are assumed to fol-
low a myopic best-response strategy, which may lead them
far away from any equilibrium. Balcan et al. study the Price
of Uncertainty (PoU) in congestion games, which is the in-
crease in social cost due to these perturbed dynamics.

Agent failures in games In general normal-form games
there is no clear interpretation for a failure of an agent.
However, there are particular families of games where fail-
ures do have a straightforward meaning. Messner and Pol-
born (2002) study how failures of voters to cast their vote
shape the equilibria of election systems, focusing on the
limit case where failure probability is negligible.

Closest in spirit to this paper is the work of Bachrach
et al. (2011) which considers agent failures on cooperative
games with transferable utilities. They prove that as in our
case, failures in such games tend to have a beneficial ef-
fect. This is since failures can expand the core of the original
game, thereby increasing its stability against collusion.

Our contribution
Our primary conceptual contribution is the introduction of
agent failures to congestion games.

We first prove that every congestion game with failures al-
ways admits at least one pure Nash equilibrium, even if the
induced game is not a congestion game. We then focus on a
simpler scenario where each agent survives with a uniform
independent probability p. We analyze both the limit behav-
ior, where the survival probability goes to 1, and the case of
fixed survival probabilities. In the limit case, we show that
failures are beneficial: while the costs never increase, cer-
tain “bad equilibria” may be eliminated, thereby decreasing
the worst social cost by an unbounded factor. Interestingly,
we show that this no longer holds for Resource Selection
games with increasing costs. For the case of fixed probabili-
ties, we provide a full characterization of the maximal effect
that failures may have on the Price of Anarchy, in terms of
the probability p and the number of agents n. All omitted
proofs can be found in the full version of this paper.1

Definitions and Preliminaries
A Congestion game G is defined by a set of n agents N ,
and a set of resources F , each coupled with a cost func-
tion cj : [n] → R+. We denote the costs of resource
x ∈ F by a cost vector cx = (cx(1), cx(2), . . . , cx(n)).
The highest possible cost on any single resource in a given
game G is denoted by MG = maxx∈F,k≤n cx(k). Each
agent has a set of allowed strategies Si ⊆ 2F . A strategy
profile is a vector of strategies A = (A1, . . . , An), where
Ai ∈ Si. For every profile A, each agent i incurs a cost
(negative utility) costi(G,A) =

∑
x∈Ai

cx(nx), where nx
is the number of agents that selected resource x in A (in-
cluding i). The social cost (or total cost) of a profile A is:
cost(G,A) =

∑n
i=1 costi(G,A) =

∑
x∈F nxcx(nx). We

denote by OPT (G) the minimal total cost over all profiles,
i.e. OPT (G) = minA∈×n

i=1Si
cost(G,A). For simplicity,

1Available from http://tinyurl.com/bm5okau.
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Figure 1: The network K. An allowed strategy is a path
from s to t, e.g. A1 = (s, x, t).

we assume all costs are non-negative integers, and (unless
explicitly stated otherwise) that all costs are non-zero.2

Nash equilibrium A profile A in G is a (pure) Nash equi-
librium (NE) if no agent can gain by departing from A: for
any strategy A′i ∈ Si, costi(G,A) ≤ costi(G, (A

′
i, A−i)),

where -i=N\{i}. All congestion games are potential games,
and thus admit a pure Nash equilibrium (Rosenthal 1973). In
this work we restrict our attention to pure Nash equilibria.

Types of congestion games We focus on games where
cost functions are either (weakly) decreasing or increasing.
We denote such games by Ǧ or Ĝ, respectively. Congestion
games where all Si are equal are called symmetric.

In a resource selection game (RSG), each agent i selects
exactly one resource j from F . In restricted resource selec-
tion games (RRSG), which are an extension of RSGs, each
agent i is restricted to select a single resource from Si ⊆ F .

A different extension is symmetric routing games (SRTG)
on a graph (V,E), where each agent i ∈ N selects a path
from a source s ∈ V to a target t ∈ V . An example of an
SRTG (without the costs) is in Figure 1.

Note that in symmetric games (such as RSGs and SRTGs)
with decreasing costs there is always an optimal NE where
all agents select the same strategy.

Price of Anarchy The Price of Anarchy (PoA) of a game
G compares the social cost of the worst Nash equilibrium
to the optimal social cost, that is, PoA(G) = cost(G,A∗)

OPT (G) ,
where A∗ is the pure NE with maximal cost in G.

Agent failures
Given a game G, we extend it with survival probabilities to
every agent. In general, failures may be correlated, so we
have a vector p ∈ ∆(2N ), s.t. p(S) is the probability that
exactly the set S of agents survives to play. For any subsets
T ⊆ R ⊆ N , let p(T : R) =

∑
S⊆N\R p(T ∪ S), i.e. it

denotes the probability that from all agents in R, exactly the
agents of T survive. For any game G and a survival vector
p, we define the reliability extensionGp ofG, by computing
the expected cost that each surviving agent experiences.

If an agent j selects resource x, she is only affected by the
failures of other agents on x. Thus, agent j will pay

cpj,x(Nx) =
∑

R⊆Nx\{j}

p(R ∪ {j} : Nx | j)cx(|R|+ 1),

2This technical assumption is required to avoid issues of divi-
sion by zero when computing a ratio between costs.
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where Nx is the set of agents selecting resource x. Note
that if cx is decreasing, then cpj,x(Nx) ≥ cx(Nx), and if cx
is strictly decreasing, then for all |Nx| > 1 the inequality is
strict. Similarly, if cx is increasing then cpj,x(Nx) ≤ cx(Nx).

In the general case the gameGp is not a congestion game,
as the cost for agent j depends both on the identity of j, and
on the identity of the other agents sharing the resource. One
may wonder if this new game still has a pure Nash equilib-
rium, since this is not guaranteed in other extensions such as
weighted congestion games (Milchtaich 1996). Our model
may initially seem as an even broader generalization, as it
allows dependencies among the agents. Somewhat surpris-
ingly, we show that any reliability extension ofG does admit
a pure NE (see Theorem 1).

Games with i.i.d. failures In many cases we can avoid
considering complicated failure distributions, and instead
assume that each agent survives independently with a known
probability p ∈ (0, 1). In this case the number of surviv-
ing agents on each resource is simply a Binomial random
variable. In particular, the cost to agent j does not depend
on the identity of j. That is, all (surviving) agents on re-
source x pay EZ∼Bin(nx−1,p)[cx(Z + 1)]. Equivalently,
cpx(nx) =

∑nx−1
k=0

(
nx−1

k

)
pk(1− p)nx−kcx(k + 1).

We focus on measuring the effect that failures have on the
game’s outcome. For this purpose it is convenient to focus
on i.i.d failures for two reasons: (a) they can be described by
a single parameter p; and (b) in contrast to the general case,
the reliability extension Gp is also a congestion game.

Effect of failures on the costs Failures change costs in
two distinct but interrelated ways.

Direct effect: the remaining players pay modified costs, as
shown above. Note that the direct effect applies to optimal
outcomes and to equilibrium outcomes alike. For example,
if the costs inG are decreasing in the number of agents, then
the direct effect of failures is that agents will now face higher
costs in any given profile.

Indirect effect: the equilibria in the new game may
change, leading to different payoffs.

We compute the total cost, summing over all the surviving
players. That is,

cost(Gp,A) =
n∑

i=1

costi(G
p,A) =

∑
x∈F

nxc
p
x(nx).

We are particularly interested in cases where failure prob-
abilities are low (i.e. when p is close to 1). In such cases the
direct affect is negligible, but the indirect effect may play a
major role. Specifically, we want to know if the equilibrium
costs in the game can change significantly with small fail-
ure probabilities. When considering a “low probability” it
is important to specify the order of quantifiers, i.e. whether
the failure probability may depend on the game or not. In
each result, we specify whether the survival probability p is
allowed to take any fixed value. In contrast, when p→ 1 we
can take an arbitrary value that may depend on the game. To
demonstrate the difference, consider the following. For any
fixed p < 1 there is a game G = G(p) where MG > 1

1−p .
However, for any fixed game G′, there is p = p(G′) suffi-
ciently close to 1, s.t. MG′ <

1
1−p .

We are mainly interested in the indirect effect of failures
on the costs. To that end we compare the PoA of G and
Gp, which is a standard practice. Note that in the limit case
p → 1 the direct effect is negligible, so this is equivalent to
measuring the indirect effect on the maximal costs.

General properties
We first prove that any reliability extension of a congestion
game has a pure NE. We emphasize that no restriction on the
cost functions is required for this result.
Theorem 1. LetG be a congestion game, and p a probabil-
ity vector. Then Gp has a pure Nash equilibrium.

Due to space constraints, we omit the full proof. However,
it relies on the definition of the following function, which is
a convex combination of the potential functions of all 2n

subgames of G.

φ(A) = φ(N1, . . . , N|F |) =
∑
R⊆N

p(R)
∑
x∈F

|R∩Nx|∑
k=1

cx(k).

While φ is not a potential function of Gp, we show that it is
weighted potential function of the game, where the weight
of each agent is her own survival probability. Due to the ex-
istence of a weighted potential function, it is guaranteed that
any sequence of best-replies by agents eventually converges
to a pure Nash equilibrium (Monderer and Shapley 1996).

Another important issue is whether properties of the orig-
inal game are conserved in Gp. One property of interest
is convexity (or concavity) of the cost functions, since such
constraints can often be assumed in practice, and may have
implications on the PoA. It turns out that convexity is main-
tained in the perturbed game (the proof is straightforward).
Proposition 2. Let cx be a convex [respectively, concave]
cost function in the game G, and p a probability vector.
Then cpj,x is also convex [resp., concave], for all j ∈ N .

In the remainder of this paper we assume that failures are
i.i.d., that is that every player survives with probability p. We
do note however, that most of our results easily extend to the
more general cases of distinct (or correlated) probabilities.

Negligible failure probabilities
We now study how equilibria of a given gameG are affected
in the limit case. Most of the results assume negligible fail-
ure probabilities, but some hold for any p < 1 (e.g. Prop. 4).

Effect of failures on the set of NE
A crucial observation is that when failure probabilities are
sufficiently low, no new NEs emerge caused by agent failure.
Proposition 3. Let G be a congestion game. There is some
p∗ = p∗(G) s.t. for all p > p∗, every NE profile of Gp is
also an NE of G.

Proof. If failure probabilities are negligible, then the costs
in Gp can be arbitrarily close to the costs in G. Therefore
all strict orders between costs remain, i.e. if cx(k) > cy(k)
then cpx(k) > cpy(k). If cx(k) = cy(k) then this equality
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might break inGp, but new equalities may not form. Finally,
equality means that there is no incentive to deviate (from
one strategy to another). Since equalities can only disappear,
incentives to deviate can only increase, and Nash equilibria
can only dissolve.

In contrast, the following examples demonstrate that cer-
tain NEs may dissolve even with a negligible failure proba-
bility, whether the costs are decreasing or increasing.

Proposition 4. There is a RSG with decreasing costs Ǧ1

and an NE A in Ǧ1, s.t. for any survival probability p < 1,
A is not an NE of Ǧp

1.

Ǧ1 is an RSG with n = 2, |F | = 2, and we define costs as
follows. ca = (M, 1) and cb = (M + 1,M), where M > 1.
We can construct a similar example with increasing costs,
by setting ca = (1,M), and cb = (M, 2M). Thus:

Proposition 5. There is a RSG with increasing costs Ĝ1 and
an NE A in Ĝ1, s.t. for any survival probability p < 1, A is
not an NE of Ĝp

1.

Effect of failures on the PoA
We show that if failure probabilities are small, the PoA can-
not significantly increase.

Proposition 6. Let G be a given congestion game with
bounded PoA. For any ε > 0 there is p∗ = p∗(G, ε) s.t.
for all p ≥ p∗, PoA(Gp) ≤ PoA(G)(1 + ε).

Proof sketch. We can set p∗ arbitrarily close to 1. There-
fore, by Prop. 3, there are no new equilibria in Gp. In
particular, there are no new bad equilibria. Moreover,
since costs are bounded, for every profile A and agent i,
|costi(Gp,A)−costi(G,A)| can be made arbitrarily small.
Thus there is no indirect effect, and the direct effect is neg-
ligible for sufficiently small failure probabilities.

By Proposition 6 the PoA cannot increase due to failures.
However the PoA might decrease due to the elimination of
“bad” equilibria, and we would like to quantify this effect.

Decreasing costs In the RSG Ǧ1 above one of the two
NEs of the game dissolved when we added (even negligi-
ble) failure probabilities. Moreover, the removed NE was
the worst NE in terms of social welfare. To be precise,
without failures we had that PoA(Ǧ1) = M/1 = M ,
whereas with failures the unique remaining NE was optimal,
i.e. PoA(Ǧp

1) = 1. We get the following as a corollary,

Proposition 7. For any M , there is a RSG with decreasing
costs and two players Ǧ1 s.t. (a) PoA(Ǧ1) > M (i.e. it is
unbounded); and (b) for any p < 1, PoA(Ǧp

1) = 1.

Increasing costs We next study the improvement in the
PoA due to failures in games with increasing costs. The
main result of this section is that in RSGs, i.e. symmet-
ric singleton games, such a decrease is impossible. We first
show that both symmetry and the singleton restriction are
minimal. That is, if either one is relaxed, then there is an
example where the PoA can improve arbitrarily.

Proposition 8. For any M , there is a RRSG with increasing
costs and three players Ĝ2 s.t. (a) PoA(Ĝ2) > M ; and (b)
for any p < 1 PoA(Ĝp

2) = 1.
Proposition 9. For anyM there is an SRTG with increasing
costs and two agents Ĝ3 (over the network K from Fig. 1),
such that (a) PoA(Ĝ3) = Ω(M); and (b) for any p < 1,
PoA(Ĝp

3) = 1.

RSGs with increasing costs To conclude this section, we
show that when costs are increasing, the PoA can neither
increase nor decrease due to negligible failure probabilities
– in contrast to games with decreasing costs.

Lemma 10. Let Ĝ be a RSG with increasing costs. Let c∗ =

cost(Ĝ,A∗) be the cost of the worst NE in Ĝ. For any p < 1

there is another profile B which is a pure NE in Ĝp, and
cost(Ĝ,B) ≥ c∗ −RĜ · (1− p),

where RĜ is a constant that depends only on Ĝ.

Proof. If A∗ is an NE in Ĝp then we are done. Therefore
assume that it is not, and thus there is an agent i ∈ N which
gains (in Ĝp) by moving from some resource a ∈ F to an-
other b ∈ F . If there is more than one such deviation, then b
is the strategy (resource) where i pays the lowest cost (break
ties arbitrarily). Denote by A1 the outcome where i plays b
instead of a, and all other agents play as in A0 ≡ A∗. As
long as At is not an NE (in Ĝp), we repeat the process until
no agent wants to deviate, and denote the final profile by B.
We argue that there are at most n steps until convergence.

If an agent i moves from a to b in step t then no agent
will leave resource b in a future step t′ > t (otherwise agent
i would have had a better step at time t). Thus there are
mutually exclusive subsets A,B ⊆ F s.t. agents only move
fromA toB. In particular, this means that each agent moves
at most once and thus there are at most n steps.

Let M = MĜ (a constant). We next show that for all t,
δt ≡ cost(Ĝ,At−1)− cost(Ĝ,At) ≤ O(n2M(1− p)).

We denote by n∗j , nj , n
′
j the number of agents using re-

source j in the profiles A∗,At−1 and At, respectively. Sup-
pose that between At−1 and At some agent i moved from
a to b. Then n∗a ≥ na = n′a + 1 and n∗b ≤ nb = n′b − 1.
Since A∗ is an NE in Ĝ, and by monotonicity of cj ,

ca(na) ≤ ca(n∗a) ≤ cb(n∗b+1) ≤ cb(nb+1) = cb(n
′
b). (1)

On the other hand, since i preferred b over a in Ĝp,

cpa(na) > cpb(n′b). (2)

We next bound the two expressions. Denote α = 1 − p.
Denote ∆a = ca(na) − ca(na − 1), and ∆b = cb(n

′
b) −

cb(n
′
b − 1). There is a probability of pna−1 < 1 − (na −

1)α + (na − 1)2α2 that all agents on a (except i) survive.
Thus w.p. of at least (na − 1)α − (na − 1)2α2 at least one
agent fails. Thus

cpa(na) ≤ ca(na)− ((na − 1)α− (na − 1)2α2)∆a. (3)

Similarly, the probability that exactly one agent fails in re-
source b is at most (n′b − 1)α = nbα (in which case the cost
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drops by ∆b), and the probability that more than one agent
fails is at most n2

bα
2 (in which case the cost drops by at most

M ). Thus cpb(n′b) ≥ cb(n′b)− nbα∆b − (nbα)2M .
By combining the last equation with Eq. (1),(2) and (3) ,

ca(na)− ((na − 1)α− (na − 1)2α2)∆a ≥
cb(n

′
b)−nbα∆b−(nbα)2M ≥ ca(na)−nbα∆b−(nbα)2M

Then, by rearranging terms,

nb∆b + (nb)
2αM ≥ ((na − 1)− (na − 1)2α)∆a ⇒

nb∆b ≥ (na − 1)∆a − (na − 1)2α∆a − (nb)
2αM

≥ (na − 1)∆a − 2αn2M (4)

We can now bound the costs of At−1,At.

δc = naca(na) + nbcb(nb)− (n′aca(n′a) + n′bcb(n
′
b))

= n′a(ca(na)−ca(n′a)) + ca(na)− nb(cb(n′b)−cb(nb))− cb(n′b)
= (na − 1)∆a − nb∆b + (ca(na)− cb(n′b))
≤ (na − 1)∆a − nb∆b ≤ 2αn2M, (by (1),(4))

Finally, since there are at most n steps, we get that

cost(Ĝ,B) ≥ c∗ − n · (2αn2M) = c∗ −RĜ(1− p).

Proposition 11. Let Ĝ be a RSG with increasing costs. Then
for any ε > 0 there is some p < 1 s.t. the ratio between
PoA(Ĝ) and PoA(Ĝp) is small, i.e.

PoA(Ĝ)(1− ε) ≤ PoA(Ĝp) ≤ PoA(Ĝ)(1 + ε).

Proof sketch. The crux of the proof is Lemma 10, show-
ing that although some bad equilibria may dissolve in Gp,
at least one bad equilibrium (that is ε/3 close to the worst
equilibrium A∗) survives if p exceeds some value p∗.

We then set p high enough so that (a) For every profile
A, cost(Gp,A) ≥ cost(G,A) − ε/3 (i.e. the direct effect
is negligible); (b) No new equilibria emerge (i.e. Prop. 6
holds); and (c) p > p∗ (i.e. (1− p)RĜ < ε/3).

Since OPT (Ĝ) > 0, then it is at least 1 as all costs are
integers. Then by (c) and Lemma 10 there is a bad equilib-
rium B that still exists in Gp, and by (a) both OPT and the
cost of B do not improve much in Ĝp. Thus

PoA(Ĝp) =
cost(Ĝp,B∗)

OPT (Ĝp)
≥ cost(Ĝ,B)(1− ε/3)

OPT (Ĝ)(1 + ε/3)

≥ cost(Ĝ,A∗)(1− ε/3)(1− ε/3)

OPT (Ĝ)(1 + ε/3)

= PoA(Ĝ)
(1− ε/3)2

1 + ε/3
≥ PoA(Ĝ)(1− ε).

The upper bound follows directly from (b).

Fixed failure probabilities
In this section we assume that there is some fixed survival
probability p, whereas the parameters of the game may vary.
Interestingly, it turns out that fixing the probability before
the game is defined (i.e. changing the order of quantifiers) is

highly significant, and some results are very different from
the ones in the previous section. Recall for example that
when p → 1, it was impossible to introduce new NEs to a
game via failures. However this is no longer true when p is
fixed (even if small), and the costs may significantly vary.3

Effect of failure on the set of NEs
While some NEs may disappear, no new NEs can emerge in
a symmetric game with decreasing costs.
Proposition 12. Let Ǧ be a symmetric game with decreas-
ing costs, and let p < 1. Then Ǧp does not admit new Nash
equilibria.

However, symmetry turns out to be a minimal require-
ment. Note that the game Ǧ2 depends on the value of p.
Proposition 13. For any p < 1 there is a RRSG with two
agents and decreasing costs Ǧ2 s.t. Ǧp

2 has new NEs.
As for games with increasing costs, they can behave quite

differently from games with decreasing costs when there are
fixed failure probabilities (even small ones). In particular,
new NEs may emerge even in symmetric games.
Proposition 14. For any p < 1, there is a RSG with increas-
ing costs Ĝ4, such that Ĝp

4 has new NEs.

Example. The game Ĝ4 has two resources {a, b} and n
agents. a always costs M > 1. b costs 1, unless everybody
select it, and then it costs R > M . ♦

Effect on the PoA – Games with decreasing costs
It is quite clear that with significant failure probabilities, the
social cost of playing some NE in a game may increase.
However since the cost of OPT may also increase, it is not
clear how the PoA is affected. The following examples show
that PoA can increase as well – in contrast to the result we
had when failure probabilities are negligible.
Proposition 15. For any M and any p < 1, there is a
RRSG Ǧ2 with three players s.t. (a) PoA(Ǧ2) = 1; and
PoA(Ǧp

2) > M .
That is, in asymmetric games we can get an unbounded

increase in the PoA (in fact, Ǧ2 is the same game used in
Prop. 13). When Ǧ is symmetric, there is a tight bound on
the PoA – and thus on the maximal increase in the PoA.
Proposition 16. Let Ǧ be a symmetric game with decreas-
ing costs. For any p < 1 it holds that PoA(Ǧp) ≤
(1− p)1−n.
Proposition 17. For any p < 1, any n, and any ε > 0, there
is a RSG with decreasing costs Ǧ3 s.t. (a) PoA(Ǧ3) = 1;
and (b) PoA(Ǧp

3) ≥ (1− p)1−n − ε.
Example. The game Ǧ3 contains n players and 2 resources
with the following costs: ca = (M, 1, 1, . . . , 1), and cb =

(R, . . . , R,R, 1), where R = M−pn−1

1−pn−1 . ♦

The bound of (1 − p)1−n is somewhat counter-intuitive.
For a fixed game Ǧ, we know that increasing the survival

3To see these contrasts more clearly, the reader is advised to
look at Tables 1, 2 and 3 in the last section.
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probability p eventually means that the PoA cannot increase
(much). It therefore seems reasonable to assume that this
effect is “monotone”, i.e. that as p grows, then the maximal
ratio PoA(Ǧp)

PoA(Ǧ)
becomes smaller and smaller. However, the

converse is true: While for small p the ratio is also small,
as p grows we can find examples where this ratio becomes
larger and larger.

Another interesting implication is that the PoA of Ǧp is
bounded, whereas this is not true for games without failures.
Some insight might be gain by the following explanation.
The cost of the worst equilibrium can sharply increase for
any probability. However, for low p a high increase must
entail that the optimal cost is also increasing, thereby limit-
ing the maximal ratio between the two.

Effect on the PoA – Games with increasing costs
Lemma 18. For any RSG with increasing costs Ĝ, 1 ≤
PoA(Ĝ) ≤ n.

In particular, the lemma entails that the PoA of Ĝ can
never decrease or increase by a factor of more than n.

Bounds on the increase in PoA By properly setting the
parameters of the game Ĝ4 (from Prop. 14), we get:

Proposition 19. For any p < 1, any ε > 0 and any number
of players n, there is a RSG with increasing costs Ĝ4, s.t.
(a) PoA(Ĝ4) = 1; and (b) PoA(Ĝp

4) > n− ε.
If we either relax the symmetry constraint, or allow more

complex strategies than singletons, then the PoA may in-
crease by an unbounded factor (examples omitted).

Proposition 20. For any 1
2 < p < 1 and any constant M ,

there is a RRSG with increasing costs and three players Ĝ5

s.t. (a) PoA(Ĝ5) = 1; and (b) PoA(Ĝp
5) > M .

Proposition 21. For any p < 1 and M , there is a SRTG Ĝ6

with increasing costs and four players s.t. (a) PoA(Ĝ6) =

1; and (b) PoA(Ĝp
6) > M .

Example. Set R s.t. R > 2M/p3 and R
R+7 > p (for p > 1

2 ).
Consider the SRTG networkK from Figure 1, with the costs
as follows. c(x,y) = (1, 1, 1, R+8), and the cost of the other
four edges is (1, 1, R+ 5, R+ 5). ♦

Bounds on lowering the PoA Prop. 9 shows that failures
can trigger an unbounded improvement in the PoA in routing
games, even if they are symmetric. Our last result concludes
that with fixed failure probabilities even the PoA of RSGs
can improve, although not by an unbounded factor.

Proposition 22. Suppose 1 > p > 1
2 . There exists a family

of RSG (with n = 2, 3, 4, . . . agents) with increasing costs
Ĝ7, s.t. (a) PoA(Ĝ7) = Ω(n); and (b) PoA(Ĝp

7) = O(1).

Discussion
Two particular conclusions can be drawn from our results.
First, failures may completely alter the outcome of the game,
even if they occur with a very low probability. Thus they

Decreasing NE may NE may emerge
costs dissolve symmetric any game
p < 1 yes (⇑) no (P. 12) yes (P. 13)
p→ 1 yes (P. 4) no (⇓,⇐) no (P. 3)
increasing costs
p < 1 yes (⇑) yes (P. 14) yes (⇒)
p→ 1 yes (P. 5) no (⇐) no (P. 3)

Table 1: The table describes how NEs inGp may differ from
those in G. “yes” means that there is an example where the
described effect occurs. P. # refers to Proposition #.

Dec. Max. decrease Maximal increase in PoA
costs in PoA symmetric other
p < 1 UB (P. 7) (1− p)1−n (*) UB (P. 15)
p→ 1 UB (P. 7) none (⇐) none (P. 6)

Table 2: The table describes the bounds on the maximal ratio
between PoA(Ǧp) and PoA(Ǧ). “none” means there is no
change, or effect is negligible. “UB” means the change is
unbounded in terms of p and n. (* by P. 17 and P. 16)

must be taken into account in the analysis of many realistic
scenarios. Second, some limited level of noise (in the form
of failures) can actually contribute to the participating play-
ers, by eliminating bad equilibria. Two notable examples
for this are Prop. 7 showing an unbounded improvement in
the social cost; and Prop. 16 showing an upper bound on the
PoA of whole family of games, where no such bound exists
for games without failures.

Concavity and convexity In many realistic games we can
assume that marginal costs are increasing or decreasing. We
have shown that this property does not change when fail-
ures occur. However concavity/convexity can potentially
limit the PoA or the ratio by which the PoA changes due
to failures. We note that all our results for the limit case
hold regardless of convexity or concavity. However, some
examples in the latter section make use of particular cost
functions. We leave it as an open question whether con-
vex/concave examples can be constructed in each case.

Future Work Many questions are left open for future re-
search. These include understanding the effect of failures
on the best Nash equilibria (e.g. by studying the Price of
Stability); focusing on particular interesting families of cost
functions; and bounding the rate of convergence of various
game dynamics. We also believe that with strictly monotone
cost functions (and in particular convex or concave families)
some of our results may change.

An important future goal is to leverage our current knowl-
edge on uncertainty in congestion games in various models,
to prompt the design of better mechanisms. That is, to intel-
ligently manipulate the reliability of the connections or the
information players have on the number of survivors, so as
to benefit the society by eliminating unwanted equilibria.
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Inc. Maximal increase in PoA
costs RSG symmetric other
p < 1 n (P. 19, L. 18) UB (P. 21) UB (P. 20)
p→ 1 none (⇐) none (⇐) none (P. 6)

Maximal decrease in PoA
p < 1 Θ (n) (P. 22, L. 18) UB (P. 9) UB (⇒)
p→ 1 none (P. 11) UB (P. 9) UB (⇒)

Table 3: (see caption of Table 2).
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