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Ondřej Suchý‡
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Abstract

We extend work by Christian et al. [Review of Economic De-
sign 2007] on lobbying in multiple referenda by first providing
a more fine-grained analysis of the computational complexity
of the NP-complete LOBBYING problem. Herein, given a
binary matrix, the columns represent issues to vote on and
the rows correspond to voters making a binary vote on each
issue. An issue is approved if a majority of votes has a 1 in the
corresponding column. The goal is to get all issues approved
by modifying a minimum number of rows to all-1-rows. In
our multivariate complexity analysis, we present a more holis-
tic view on the nature of the computational complexity of
LOBBYING, providing both (parameterized) tractability and
intractability results, depending on various problem parameter-
izations to be adopted. Moreover, we show non-existence re-
sults concerning efficient and effective preprocessing for LOB-
BYING and introduce natural variants such as RESTRICTED
LOBBYING and PARTIAL LOBBYING.

1 Introduction
Campaign management, roughly speaking, comprises all
sorts of activities for influencing the outcome of an elec-
tion, including well-known scenarios such as bribery (Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2009; Dorn
and Schlotter 2012; Schlotter, Elkind, and Faliszewski
2011) and control (Bartholdi III, Tovey, and Trick 1992;
Elkind, Faliszewski, and Slinko 2010; Erdélyi, Piras, and
Rothe 2011). While these works relate to campaigning in
case of classical voting scenarios where one typically wants
to make a specific candidate win or not win, Christian et
al. (2007) introduced the scenario of lobbying in multiple ref-
erenda by considering the following combinatorial problem:
LOBBYING

Input: A matrix A ∈ {0, 1}n×m and an integer k ≥ 0.
Question: Can one modify at most k rows in A such that in
the resulting matrix every column has more 1s than 0s?
∗Supported by the DFG project PAWS (NI 369/10).
†Supported by the Studienstiftung des Deutschen Volkes.
‡Main work done while with the Universität des Saarlandes,

Saarbrücken, Germany. Supported by the DFG Cluster of Excel-
lence on Multimodal Computing and Interaction (MMCI) and the
DFG project DARE (GU 1023/1-2).
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Herein, modifying a row allows to flip all 0s to 1s. Then,
modifying a minimum number of rows can be interpreted
as a lobby (that is, a set of external agents) influencing a
minimum number of voters to get all issues approved.

In difference to Christian et al. (2007), we assume that
the “desired outcome” of each column is 1. Clearly, by
appropriately flipping all entries of a column this can be
always ensured. Furthermore, we assume that any column
with a majority of 1s is removed from the input matrix.

As a special case of reverse combinatorial auction (Sand-
holm et al. 2002), LOBBYING is relevant to combinatorial
markets in multi-agent systems. It is also closely related to
bribery in judgment aggregations (Baumeister, Erdélyi, and
Rothe 2011) where the judges submit binary opinions on
different propositions and the goal is to bribe as few judges
as possible in order to obtain a certain outcome.

LOBBYING is NP-complete and Christian et al. (2007)
even showed that the problem is W[2]-complete with respect
to the parameter k, that is, even if only a small number of
voters shall be influenced the problem is computationally
(worst-case) hard. In the first part of this work, we provide a
much more refined view on the multivariate computational
complexity (Fellows 2009; Niedermeier 2010) of LOBBYING.
To this end, we identify the following parameters naturally
occurring in LOBBYING and analyze their influence on its
computational complexity. Herein, the gap of a column is the
number of additional 1s this column needs in order to have a
majority of 1s.

• n: number of rows;
• m: number of columns1;
• k: number of rows to modify;
• g: maximum gap over all columns;
• s: maximum number of 1s per row;
• t: maximum number of 0s per row.

Note that the various parameters are partially related to each
other; for instance, for every non-trivial instance of LOBBY-
ING it holds that k < d(n+ 1)/2e, m ≤ n · s, t ≤ m ≤ 2t,
and g ≤ k.

LOBBYING as defined above is a first step towards model-
ing the phenomena in the real world. There are many possible
refinements such as variating the prices of the voters or using

1Christian et al. (2007) argued that m seldom exceeds 20.
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m k g s

m ILP-FPT (Theorem 8) FPT (Theorem 9) FPT (Theorem 9) ILP-FPT (Theorem 8)
k W[2]-complete a W[2]-complete a FPT (Lemma 1)
g W[2]-hard a FPT (Lemma 1)
s para-NP-hard (s ≥ 3) (Theorem 1)

a(Christian et al. 2007)

Table 1: Summary of our results. For each parameter combination the entries indicate whether LOBBYING is fixed-parameter
tractable (FPT), FPT based on a formulation as integer linear program (ILP-FPT), W[2]-hard, W[2]-complete (meaning that it is
W[2]-hard and contained in W[2] ⊆XP), or NP-hard even for a constant parameter value (para-NP-hard). Entries on the main
diagonal represent results for the single parameters. Furthermore, for each of the parameter combinations above, under some
reasonable complexity-theoretic assumptions (see Section 3), there cannot be a polynomial-size problem kernel.

probability values instead of 0-1 values in the matrix. Further-
more, a voter may not want to change his entire preference,
more closely resembling the real-world scenarios. In the sec-
ond part of this work, we introduce some more fine-grained
models of control over the voters and the lobbyist’s intentions.
We hope that our extensions will be useful for future research.
Preliminaries on Parameterized Algorithmics. The con-
cept of parameterized complexity was pioneered by Downey
and Fellows (1999) (see also (Flum and Grohe 2006;
Niedermeier 2006) for more recent textbooks). The funda-
mental goal is to find out whether the seemingly unavoidable
combinatorial explosion occurring in algorithms to solve NP-
hard problems can be confined to certain problem-specific
parameters. If such a parameter assumes only small val-
ues in applications, then an algorithm with a running time
that is exponential exclusively with respect to this parame-
ter may be efficient. For LOBBYING, we suggest a number
of (potentially small) parameters. Formally, we call LOB-
BYING fixed-parameter tractable with respect to a parame-
ter p (equivalently, contained in the parameterized complexity
class FPT) if it can be solved in f(p) · |A|O(1) time, where
f solely depends on p. Downey and Fellows (1999) intro-
duced a framework of parameterized intractability. In this
framework the two basic complexity classes of parameterized
intractability are W[1] and W[2] and a problem is shown to
be W[1]- or W[2]-hard by providing a parameterized reduc-
tion from a W[1]- or W[2]-hard problem to the problem in
question. The difference between a parameterized reduction
and a classical many-to-one reduction (used to prove NP-
hardness) is that for the former it is allowed to take FPT-time
but the parameter in the instance one reduces to has to be
bounded by some function solely depending on the param-
eter in the problem instance one reduces from. A further
parameterized complexity class of interest is XP, contain-
ing all problems that can be solved in nf(p) time for input
size n and a function f solely depending on the parameter p.
Note that containment in XP ensures polynomial-time solv-
ability for a constant parameter p whereas FPT additionally
ensures that the degree of the corresponding polynomial is
independent of the parameter p.
Related Work. The central point of reference is the work
by Christian et al. (2007), whose result is the proof of W[2]-
completeness of LOBBYING with respect to k. Erdélyi et

al. (2007) generalized LOBBYING to a weighted scenario
and showed that an efficient greedy algorithm achieves a
logarithmic approximation ratio. Moreover, they showed
that essentially no better approximation ratio can be proven
for their algorithm. Later, Erdélyi et al. (2009) and Binkele-
Raible et al. (2009) proposed models for lobbying in a proba-
bilistic environment, providing (parameterized) hardness and
tractability results.
Our Contributions. We provide a multivariate complexity
analysis of LOBBYING and look into two practical variants of
LOBBYING. Most of our theoretical results are summarized
in Table 1. We subsequently sketch a few highlights. In Sec-
tion 2, we show that LOBBYING remains NP-hard for s = 3.
Thus, there is no hope for fixed-parameter tractability with
respect to s. In Section 3, we reveal limitations of effective
polynomial-time preprocessing for LOBBYING. In Section 4,
we show that LOBBYING is fixed-parameter tractable for pa-
rameter m. From a practical point of view, we provide two
efficient algorithms yielding optimal results for input matri-
ces with up to four columns. Furthermore, we develop several
fixed-parameter algorithms for various parameter combina-
tions and show that LOBBYING is polynomial-time solvable
for s ≤ 2. Finally, in Section 5 we introduce two more
fine-grained models of lobbying: RESTRICTED LOBBYING
(modeling restricted influence on a voter) and PARTIAL LOB-
BYING (not the full list of issues needs to be approved).

2 Computational Intractability
In this paper, we provide several reductions from variants of
the SET COVER (SC) problem. Given a family of sets S =
{S1, . . . , Sl} over a universe of elements U = {e1, . . . , eu}
and a positive integer k, SC asks whether there is a size-k set
cover, that is, a subset of S whose union is U . Note that even
3-SET COVER (3-SC), where each set from S is of size at
most three, is NP-complete (Karp 1972). A common starting
point for each of our reductions is to transform S (and U)
into a binary matrix in a similar way as Christian et al. (2007)
transform DOMINATING SET instances into binary matrices.
The corresponding |S| × |U|-matrix is called SC-matrix and
is defined as

M(U ,S) = (xi,j) with xi,j :=

{
1 if ej ∈ Si,

0 otherwise.
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We will make use of the SC-matrix in Section 3, in Sec-
tion 5, and in the following reduction which is used in several
hardness proofs in this work.

Reduction 1 (from 3-SC). Let (S,U , k) denote a 3-SC-
instance. First, compute M(U ,S), which we refer to as
original rows and original columns in the following. Second,
add |S| − 2k + 1 additional dummy rows and |S| − 2k + 1
additional dummy columns containing only 0s. Finally, for
1 ≤ i ≤ |S| − 2k + 1, change the entry in the ith dummy
column of the ith dummy row to 1.

To modify at most |S| − k rows from the matrix such that
in the resulting matrix every column has more 1s than 0s
requires to select a set cover for (S,U , k): The gap of each
dummy column is exactly |S|−k and since each dummy row
has a 1 in a dummy column one never modifies any dummy
row. Hence, all dummy rows and k original rows remain
unmodified in every solution. Since no dummy row contains
a 1 in an original column and the solution flips at most |S|−k
entries per column, each original column must contain a 1 in
at least one unmodified original row to obtain a majority of 1s.
Thus, for every LOBBYING-solution, the sets corresponding
to the k unmodified rows must form a set cover because
every uncovered element corresponds to an original column
containing only 0s in the unmodified rows.

Theorem 1. LOBBYING restricted to input matrices with at
least three ones per row, that is, s ≥ 3, is NP-hard.

Proof. (Sketch.) Reduction 1 constructs LOBBYING in-
stances with at most three 1s per row: By definition of 3-
SC every original row has at most three 1s in the original
columns and only 0s in the dummy columns. Dummy rows
contain exactly one 1.

An instance of LOBBYING with k ≥ d(n + 1)/2e is a
yes-instance. Following general ideas of Mahajan and Ra-
man (1999), we investigate the complexity of LOBBYING in
case k is slightly below the bound. Such a parameterization
is called below guarantee.

Theorem 2. LOBBYING is NP-hard even if the below-
guarantee parameter (d(n+ 1)/2e − k) takes any positive
constant value.

Proof. (Sketch.) In Reduction 1, we reduce the question
whether there is a set cover of size k to the question whether
it is possible to modify at most (|S| − k) rows in a (2|S| −
2k + 1)-rows matrix such that in the resulting matrix every
column has more 1s than 0s. Since a trivial solution consists
of (|S| − k + 1) arbitrary rows, NP-hardness holds even if
we ask for a solution of size one less than guaranteed.

3 Limits of Preprocessing
In this section, we prove that LOBBYING does not admit,
under a reasonable complexity-theoretic assumption, an ef-
ficient preprocessing algorithm formalized as a polynomial
kernelization in parameterized algorithmics: A kernelization
algorithm takes as input a problem instance I together with a
parameter p and transforms it in polynomial time into an in-
stance I ′ with parameter p′ such that i) (I, p) is a yes-instance

if and only if (I ′, p′) is a yes-instance and there are two func-
tions f1 and f2 such that ii) p′ ≤ f1(p) and iii) |I ′| ≤ f2(p).
The function f2 measures the size of the kernel I ′ and the
kernel is said to be a polynomial kernel if f2 is polynomial.

One way for showing the non-existence of polynomial
kernels is to give a so-called polynomial time and param-
eter transformation from an NP-hard problem that is al-
ready shown not to admit a polynomial kernel (Bodlaender,
Thomassé, and Yeo 2011). A polynomial time and parameter
transformation is a parameterized reduction that is required
to be computable in polynomial time and the parameter in
the instance where one reduces to is polynomially upper-
bounded by the parameter in the instance where one reduces
from. Also refer to Szeider (2011) for a general account on
showing limits of preprocessing for AI problems.

We prove that LOBBYING admits neither a polynomial-
size kernel with respect to the combined parameter (m, k)
nor with respect to n. By simple further observations on
the relation between parameters, these two results imply the
non-existence of polynomial kernels for all the parameter
combinations listed in Table 1. Specifically, we use the fol-
lowing reduction to obtain our results.
Reduction 2 (from SC). Let (S,U , k) be an SC-instance.
First, take M(U ,S) and invert 0s and 1s. Second, add |S| −
2k + 1 dummy rows containing only 0s. In every column j,
flip |S| − |{Si : ej ∈ Si}| − k + 1 of the 0s from arbitrary
dummy rows to 1s.2 Finally, add one additional dummy
column containing 1s in the dummy rows, and 0s elsewhere.

The number of 0s in the dummy column is |S|, the number
of 0s in any other column is |S|−k+1, and the total number
of rows is 2|S| − 2k + 1. We claim that to modify at most k
rows from the matrix such that in the resulting matrix every
column has more 1s than 0s means to select a set cover for
(S,U , k): Since the gap in the dummy column is k and no
dummy row contains a 0 in the dummy column, a solution
cannot modify any dummy row. The gap of each original
column is exactly one. Hence, the sets corresponding to the
modified rows of any LOBBYING solution must form a set
cover.
Theorem 3. Unless NP ⊆ coNP/poly, LOBBYING does
not admit a polynomial kernel with respect to the combined
parameter (m, k).

Proof. (Sketch.) Dom et al. (2009) showed that, unless
NP ⊆ coNP/poly, SC does not admit a polynomial kernel
with respect to the combined parameter (|U|, k). Reduction 2
is a polynomial time and parameter transformation: The ma-
trix in the resulting LOBBYING instance has |U|+1 columns
and we are asked to modify at most k columns. Since LOBBY-
ING is (trivially) contained in NP and since SC is NP-hard,
a polynomial kernel for LOBBYING with respect to (m, k)
would imply a polynomial kernel for SC with respect to
(|U|, k).

Whereas LOBBYING is trivially fixed-parameter tractable
with respect to the parameter n, there is no effective prepro-
cessing in the following sense:

2We can assume without loss of generality that each element
occurs in at least k and in at most |S|-k sets.
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Theorem 4. Unless NP ⊆ coNP/poly, LOBBYING does not
admit a polynomial kernel with respect to n.

Proof. (Sketch.) Observe that in Reduction 2 the number
of rows in the constructed input matrix for LOBBYING is at
most twice the number of sets of the SC instance. Hence, if
SC does not admit a polynomial kernel with respect to the
number of sets (unless NP ⊆ coNP/poly), then LOBBYING
also does not admit a polynomial kernel with respect to n.
One can show that, indeed, SC does not admit a polynomial
kernel with respect to the number of sets.

4 Tractable Cases
In this section, we demonstrate that LOBBYING is efficiently
solvable in practically relevant cases.

Matching-Based Techniques for Parameter s ≤ 2. The
following result complements Theorem 1, thus providing a
complexity dichotomy.

Theorem 5. LOBBYING restricted to input matrices with
at most two 1s per row, that is, s ≤ 2, is solvable in
O(nm logm) time.

Proof. Let b = d(n+1)/2e−k, that is, the number of 1s that
each column requires in addition to the k modified rows of
a solution. Clearly, we can answer no if the number of 1s in
any column is less than b (we answer yes if k ≥ d(n+1)/2e).
Consider a solution R∗ of k rows (to be modified). Let R′ be
the multiset of remaining rows that are not contained in R∗.
We will show that R′ contains a special type of matching for a
certain auxiliary graph G. Computing a maximum matching
of this type will then lead to a solution.

For the auxiliary graph G we use one vertex for each col-
umn, and add an edge between two vertices for each row
which contains 1s in the corresponding two columns (mul-
tiple edges are allowed). For each column, we arbitrarily
mark b rows in R′ which contain 1 in this column (so each
row is marked at most twice). Let M ⊆ R′ denote the
marked rows, and let M2 ⊆ M denote the rows that are
marked twice. We observe that the size of M is b ·m− |M2|
since we marked b ·m times and used two marks for each
row of M2. Considering the edges of G which correspond
to M2 it is easy to see that each vertex is incident to at most b
of them (we only marked b per vertex, and only the twice
marked rows are considered); a set of edges having this prop-
erty is called a b-matching.

Let us consider any maximum b-matching M∗2 of G,
that is, each vertex is incident to at most b edges of M∗2 ;
clearly |M∗2 | ≥ |M2|. According to Gabow (1983), such
a b-matching can be computed in time O(nm logm) (see
also Schrijver (2003, Chapter 31) for a more general notion
of b-matchings). We know that the number of 1s in each
column is at least b, so we can greedily add rows to M∗2 , ob-
taining M∗ such that the number of 1s in rows of M∗ in each
column is at least b. We observe that |M∗| ≤ b ·m− |M∗2 |,
since we add b ·m− 2|M∗2 | additional rows to M∗2 (each one
contributes 1 for some column). It follows that

|M∗| ≤ b·m−|M∗2 | ≤ b·m−|M2| = |M | ≤ |R′| = |R|−k.

Thus, there are at least k rows left outside of M∗ which can
be modified to all-1 rows. Together with the rows of M∗ this
gives the required number d(n + 1)/2e = k + b of 1s for
each column.

Few Columns and an ILP for the Parameter m. We first
provide a simple and efficient greedy algorithm yielding opti-
mal results for input matrices with at most four columns. The
algorithm gd() utilizes the gap values of the columns. During
each iteration, it modifies a row r ∈ {0, 1}m with minimum
value v(r) :=

∑m
j=1 rj · 2m−j . In other words, v(r) is de-

rived by interpreting r as a binary number. Algorithm gd()
may change the column order. Hence, the value of each row
may also change.

gd(A ∈ {0, 1}n×m)
compute the gap values of all columns in A
while matrix A is nonempty do

reorder columns in descending order of gap values
modify an arbitrary row with minimum value
update the gap values of all columns
remove columns with gap value zero

return modified rows

Lemma 1. Algorithm gd() runs in O(mn + n(m logm +
mn+m)) time.

Proof. Computing the gap values of all columns takes
O(mn) time and gd() performs at most d(n + 1)/2e iter-
ations. During each iteration, reordering the columns takes
O(m logm) time, finding a row with minimum value takes
O(mn) time, and updating gap values and deleting columns
takes O(m) time.

Theorem 6. In polynomial time, Algorithm gd() provides
optimal solutions for LOBBYING when restricted to input
matrices with at most four columns, that is, m ≤ 4.

Proof. (Sketch.) We need to show that for every two
rows r, r′ with v(r) = v(r′) − 1, modifying row r first is
not worse than the other way round if r has the smallest value
among all rows. We consider only rows with values other
than 0 or 2m − 1, since it is always best to modify a row of
value 0 and never good to modify a row with value 2m − 1.

We call row r better (or not worse) than r′ if modifying r
before r′ is better (or not worse) than the other way round (as-
suming r has the smallest value among all rows). A column
is over-satisfied if the number of 1s in this column is more
than d(n+ 1)/2e.

Obviously, gd() works for m = 1. For m = 2, the essential
part is to show that a row of type 01 is not worse than a row
of type 10: Suppose that we modify 10 first, then we still
need rows whose first column is zero since g1 > 0. However,
these can only be rows of type 01, since 01 has currently
the smallest value which means the possibly better choice 00
does not exist in the current matrix. Hence, it is not worse to
modify 01 first.

1295



For m = 3, we consider six types of rows, from 001 to
110. Since 010 is better than 011 and 100 is better than 101,
we only need to show that 1) 001 is not worse than 010; 2)
011 is not worse than 100; and 3) 101 is not worse than 110.

Case 1) Suppose that we modify 010 before 001. Then we
still need at least g2 rows whose second column is zero.
These can only be of type 100 since 001 is better than 101.
If we modify g2 rows of type 100 (and 010), the third
column will be over-satisfied, so we can replace at least
one row of type 010 with 001. This means that if there
is an optimal solution modifying row 010, then it can be
assumed to contain 001, so it is not worse to modify 001
first.

Case 2) Since g1 > 0 and 011 is the only remaining type of
row whose first column is zero, modifying 011 is neces-
sary.

Case 3) Having only rows with 1 in the first column means
that the first column is satisfied and, thus, all columns are
satisfied. Hence, no modifications are needed.

We omit the proof for m = 4.

There are five-column input matrices where the above
greedy heuristic may not provide an optimal solution. How-
ever, we conjecture that our greedy algorithm can be extended
to also provide at least a logarithmic approximation ratio in
the general case (also cf. (Erdélyi et al. 2007)).

Exploiting Theorem 5 for parameter s ≤ 2 (at most two 1s
per row) there is an alternative algorithm specifically tailored
towards the cases m ≤ 4 with better running time bound than
our greedy algorithm.

Theorem 7. LOBBYING is solvable in linear time if m ≤ 4.

Proof (Sketch.) We modify the matching-based algorithm
from Theorem 5 to cover all cases with m ≤ 4. If m = 1 or
m = 2, then no modification is needed. For the cases m = 3
and m = 4 observe first that the matching-based algorithm
can be asked to modify k rows such that there will be bi ones
in column i for i ∈ {1, . . . ,m}. Now, if m = 3 and the input
matrix contains c all-1 rows, then we can remove them and
execute the matching-based algorithm on the rest and ask it
to achieve d(n+ 1)/2e − c ones in each column.

For the case m = 4 we claim that there is an optimal
solution in which at most one row with three 1s is modified.
To prove that, consider a solution modifying the minimum
number of such rows. Further assume that such rows are the
last to be modified and consider the situation just before any
row with three 1s is modified. Now suppose without loss of
generality that the row to be modified is of type 0111. Then
there is a positive gap in the first column and whenever there
is 0 in this column, then it is a 0111 row. Hence, the number
of 0s in this column is at least n/2 as it is not yet satisfied.
But the number is at most n/2, as otherwise we would have
more than n/2 rows of type 0111 and the columns 2, 3, and 4
would be satisfied in the given matrix — a contradiction.
Thus, the gap in the first column is 1 and it is enough to
modify one row of type 0111 to satisfy the first column. If
there was another row with three 1s to be modified, say of

type 1011, then this one together with all 0111 rows would
satisfy columns 3 and 4 — a contradiction.

We can solve the case m = 4 by branching into at most 5
cases: One 0111 row is modified, one 1011 row is modified,
one 1101 row is modified, one 1110 row is modified, and no
row with three 1s is modified. Then we modify the appro-
priate row, and remove all rows containing at least three 1s,
counting for each i the number ci of 1s in them in the column
i. Finally, we ask the matching-based algorithm to modify
at most k − 1 (or at most k, according to the branch fol-
lowed) of the remaining rows such that the column i contains
d(n+ 1)/2e − ci 1-entries. The running time follows from
Theorem 5.

Theorems 6 and 7 show that in case of at most four issues
LOBBYING can be solved very efficiently. On the contrary,
parameterizing by the number m of columns, we only have a
“theoretical fixed-parameter tractability result”; it is based on
a famous theorem in mathematical programming. However,
the (worst-case) running time of the corresponding algorithm
is impractical and of classification nature only.
Theorem 8. LOBBYING is in FPT with respect to the pa-
rameter m.

Proof (Sketch.) We describe an integer linear program (ILP)
with no more than 2m variables that solves LOBBYING.3
Then, by a result of Lenstra (1983), improved by Kan-
nan (1987), stating that any ILP can be solved in O(p9p/2L)
time with p denoting the number of variables and L denot-
ing the number of input bits, it follows that LOBBYING is
fixed-parameter tractable with respect to m.

There are at most 2m different rows in a binary matrix
with m columns. Let r1, . . . , rl be an arbitrary ordering of
all pairwise different rows in A and for all 1 ≤ i ≤ l let c(ri)
be the number of occurrences of ri. For 1 ≤ i ≤ l and
1 ≤ j ≤ m let Bj(ri) = 1 if the jth column of row ri
has value 0 and, otherwise Bj(ri) = 0. For all 1 ≤ i ≤ l
we introduce the integer variable bi, where 0 ≤ bi ≤ c(ri),
whose solution value indicates how often one has to modify
a row of type ri. It is straightforward to argue that a solution
for the following ILP provides a solution for LOBBYING in
which at most k rows have been modified.∑l

i=1 bi ≤ k, ∀1 ≤ j ≤ m :
∑l

i=1 bi ·Bj(ri) ≥ gj

Dynamic Programming for the Parameter (m, g). The-
orem 8 provides a purely theoretical result with respect to
the parameter m. Combining m with the “gap parameter” g,
however, may lead to a practically feasible algorithm.
Theorem 9. LOBBYING is solvable in O((g+ 1)m · n2 ·m)
time.

Proof. Let A ∈ {0, 1}n×m and k ∈ N be a LOBBYING
input instance and let g1, g2, . . . , gm be the corresponding
gaps in A. We solve the problem via dynamic programming
employing a boolean table T [i, l, g̃1, . . . , g̃m], where i ∈
{0, . . . , n}, l ∈ {0, . . . , k}, and g̃j ∈ {0, . . . , gj} for all j.

3Dorn and Schlotter (2012) already mentioned that their ILP for
the SWAP BRIBERY problem could be adapted to LOBBYING.
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An entry T [i, l, g̃1, . . . , g̃m] is set to True if it is possible
to reduce the gap of column j by at least g̃j by modifying
exactly l rows in the range 1, . . . , i. Otherwise it is False.
Clearly, the LOBBYING instance (A, k) is a yes-instance if
T [n, k, g1, . . . , gm] = True.

To initialize the table, we set T [0, 0, g̃1, . . . , g̃m] to be
True if g̃j = 0 for all j and False otherwise. To calculate
an entry T [i, l, g̃1, . . . , g̃m] we check two cases: First, we set
T [i, l, g̃1, . . . , g̃m] to True if T [i − 1, l, g̃1, . . . , g̃m] = True
(treating the case where row i is not contained in a solution).
Second, we set T [i, l, g̃1, . . . , g̃m] to True if T [i − 1, l −
1, g′1, . . . , g

′
m] = True where g′j = g̃j if row i has 1 in the

column j and g′j = max{0, g̃j − 1} otherwise. If none of the
two cases applies, then we set T [i, l, g̃1, . . . , g̃m] = False.

The table has (g + 1)mkn entries and each table entry can
be computed in O(m) time, resulting in a running time of
O((g + 1)mknm).

Results Based on Relating Parameters.
Proposition 1. LOBBYING is solvable in O((g+1)4ss ·n2+
16gg ·m) time.

Proof. Count the number of 1s in the given matrix. Since
there are at most s of them in each row, there are at most ns
of them in total. In addition, there are more than n/2− g of
them in each column and, hence, the total number of 1s is
more than (n/2− g)m. It follows that (n/2− g)m < ns.

If g ≤ n/4, then nm/4 ≤ (n/2− g)m < ns, hence m <
4s and we can use the O((g+1)mm·n2) = O((g+1)4ss·n2)
time algorithm from Theorem 9. Otherwise n < 4g and we
can solve the problem by brute-force, testing all possible
subsets of rows to be modified in O(2nn ·m) = O(24gg ·m)
time.

Since m ≤ 2t, Theorem 8 implies the following.

Corollary 1. LOBBYING is in FPT with respect to the pa-
rameter t.

About “Non-Hardness” with Respect to the Parameter g.
We could not show containment of LOBBYING in XP with
respect to the parameter g (max. gap of a column). How-
ever, there is “no hope” for showing para-NP-hardness for
parameter g as the following theorem shows.4

Theorem 10. LOBBYING is not NP-hard for constant g
unless all problems in NP can be solved in time |x|O(log |x|),
where |x| is the size of the input.

Proof. We show that LOBBYING is solvable in time
O(ng·logm+1 ·m). To this end we claim that if k ≥ g · logm,
then the answer is yes. To see this, observe first that there is
a row containing 0s in at least half of columns. Modify this
row and concentrate on the columns in which nothing was
modified so far. Again there must be a row containing 0s in at
least half of these columns, which one can modify. Continue

4Ongoing research in cooperation with Gerhard J. Woeginger
(TU Eindhoven) shows that LOBBYING is LOGSNP-complete (Pa-
padimitriou and Yannakakis 1996) for g=1.

this way and after a logarithmic number of such steps one
has touched each column at least once and g decreases by at
least one. Repeating this g times, it is possible to satisfy the
instance by modifying at most g · logm rows.

If k ≥ g · logm, then answer yes, and otherwise try all
combinations of at most k rows to modify and check for each
of them whether all columns get satisfied. This shows the
claimed running time. Now, if there was a polynomial time re-
duction from some NP-complete problem to LOBBYING with
constant g, then we would have n = |x|O(1) and m = |x|O(1)

for any instance of LOBBYING, and LOBBYING would be
solvable in time |x|O(log |x|), implying the claim.

5 Variants of LOBBYING
Restricted Lobbying. In the standard formulation of LOB-
BYING, the lobby may completely change the opinion of
the voters for every single referendum. It is plausible to
also investigate scenarios where the lobby is only able to
influence a limited amount of referenda per voter. Formally,
in RESTRICTED LOBBYING one is additionally given the
maximum number t′ of allowed flips per row. Notably, a
simple greedy strategy makes the problem polynomial-time
solvable for t′ = 1. However, the following theorem destroys
any hope for fixed-parameter tractability with respect to the
parameter t′. The idea of proof for the following theorem is
to use Reduction 2, but reduce from 3-SC.

Theorem 11. RESTRICTED LOBBYING is NP-hard for con-
stant t′ ≥ 4.

Theorem 11 implies that we need to combine parameter t′
with a further parameter in order to search for fixed-parameter
tractability; this is what we do next. Extending the ideas of
the proof of Theorem 9, the following can be shown.

Theorem 12. RESTRICTED LOBBYING is solvable in time
O((k + 1)t

′k ·
(
t′k
t′

)
· t′mn2), and it is in FPT with respect

to the combined parameter (s, t′).

Partial Lobbying. Consider the situation where it is suffi-
cient to approve a certain number of issues instead of the all
issues. This leads to PARTIAL LOBBYING: Is it possible to
“satisfy” at least r columns by modifying at most k rows?

Adapting the ILP formulation from Theorem 8, one can
show that PARTIAL LOBBYING is in FPT for the parame-
ter m.

Proposition 2. PARTIAL LOBBYING is in FPT with respect
to the parameter m.

Now, we take a closer look at parameter r.

Proposition 3. PARTIAL LOBBYING is in FPT with respect
to the combined parameter (g, r).

Proof. Remove all columns with gap greater than k such that
k ≥ g in the following. If m ≤ 2gr, we use Proposition 2
to solve the problem. Next, we prove by induction on g that
an instance with m ≥ 2gr is a yes-instance. If g = 0, the
claim is obvious. Otherwise suppose that g ≥ 1 and every
column’s gap is g (this can be achieved by changing some
arbitrary 1s to 0s). Now, since there are more 0s than 1s in the
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matrix, there is a row having 0s in at least half of the columns.
Changing these 0s to 1s and removing all other columns, we
get an instance with k′ = k−1, g′ = g−1, and m′ ≥ m/2 ≥
2g−1r, which is a yes-instance by induction hypothesis. This
shows that our instance is also a yes-instance.

Proposition 3 implies that PARTIAL LOBBYING can be
solved efficiently if the gap and the number of issues to be
approved are small. By similar technique, it can be solved
efficiently if the columns do not differ too much:

Proposition 4. PARTIAL LOBBYING is in FPT with respect
to (g′, r) with g′ being the maximum Hamming distance of
two columns.

6 Conclusion
Some of our fixed-parameter tractability results are of pure
classification nature. Hence, improvement on the time com-
plexities of the corresponding fixed-parameter algorithms
would be highly desirable. Whether PARTIAL LOBBYING is
W[2]-hard for the parameter r, as well as the complexity of
RESTRICTED LOBBYING in case of parameter values t′ = 2
or t′ = 3 are further open questions. Finally, we mention
in passing that many of our results on LOBBYING can be
adapted for the variants of LOBBYING where one either may
add or delete votes.
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