
Security Games for Controlling Contagion

Jason Tsai, Thanh H. Nguyen, Milind Tambe

University of Southern California, Los Angeles, CA 90089
{jasontts, thanhhng, tambe}@usc.edu

Abstract

Many strategic actions carry a ‘contagious’ component be-
yond the immediate locale of the effort itself. Viral marketing
and peacekeeping operations have both been observed to have
a spreading effect. In this work, we use counterinsurgency as
our illustrative domain. Defined as the effort to block the
spread of support for an insurgency, such operations lack the
manpower to defend the entire population and must focus on
the opinions of a subset of local leaders. As past researchers
of security resource allocation have done, we propose using
game theory to develop such policies and model the intercon-
nected network of leaders as a graph.
Unlike this past work in security games, actions in these
domains possess a probabilistic, non-local impact. To ad-
dress this new class of security games, we combine recent
research in influence blocking maximization with a double
oracle approach and create novel heuristic oracles to gener-
ate mixed strategies for a real-world leadership network from
Afghanistan, synthetic leadership networks, and a real social
network. We find that leadership networks that exhibit highly
interconnected clusters can be solved equally well by our
heuristic methods, but our more sophisticated heuristics out-
perform simpler ones in less interconnected social networks.

Introduction
Many adversarial domains exhibit ‘contagious’ actions for
each player. For example, word-of-mouth advertising / vi-
ral marketing has been widely studied by marketers trying
to understand why one product or video goes ‘viral’ while
others go unnoticed (Trusov, Bucklin, and Pauwels 2009).
Recent work has even shown that peacekeeping operations
in one nation reduces the probability of conflict arising in
nearby areas by 70% (Beardsley 2011).

Counterinsurgency (COIN) is the contest for the support
of the local leaders in an armed conflict and can include
a variety of operations such as providing security and giv-
ing medical supplies (U.S. Dept. of the Army and U.S.
Marine Corps 2007). Just as in word-of-mouth advertising
and peacekeeping operations, these efforts carry a social ef-
fect beyond the action taken that can cause advantageous
ripples through the neighboring population (Hung 2010).
Moreover, multiple intelligent parties attempt to leverage the
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same social network to spread their message, necessitating
an adversary-aware approach to strategy generation.

We use a game-theoretic approach to the problem and
develop algorithms to generate resource allocations strate-
gies for such large-scale, real world networks. We model
the interaction as a graph with one player attempting to
spread influence while the other player attempts to stop
the probabilistic propagation of that influence by spread-
ing their own influence. This ‘blocking’ problem mod-
els situations faced by governments/peacekeepers combat-
ting the spread of terrorist radicalism and armed conflict
with daily/weekly/monthy visits with local leaders to pro-
vide support and discuss grievances (Howard 2011).

This follows work in security games from recent years
(Basilico and Gatti 2011; Jain et al. 2011; Letchford and
Vorobeychik 2011; Bosanský et al. 2011; Dickerson et al.
2010; Paruchuri et al. 2008; Conitzer and Sandholm 2006).
While some works have also modeled interactions on a
graph, we extend the approach into a new area where ac-
tions carry a ‘contagion’ effect. The problem is a type
of influence blocking maximization (IBM) problems (Bu-
dak, Agrawal, and Abbadi 2011; He et al. 2011), which
are a competitive extension of the widely studied influ-
ence maximization problem (Chen, Wang, and Wang 2010;
Kimura et al. 2010). Past work in influence blocking maxi-
mization has looked only at the best-response problems and
has not produced algorithms to generate the game-theoretic
equilibria necessary for this repeated-interaction domain.

A major contribution of this work is opening up a new
area of research that combines recent research in security
games and in influence blocking maximization. Drawing
from recent work in security games, we propose using a
double oracle algorithm where each oracle produces a single
player’s best-response to the opponent’s strategy and incre-
mentally creates the payoff matrix being solved. This ap-
proach allows us to leverage advances in IBM research that
has focused entirely on fast best-response calculations.

We begin by proving approximation quality bounds on the
double oracle approach when one of the oracles is approx-
imated and combine this with a greedy approximate oracle
to produce a more efficient approximate algorithm. To fur-
ther increase scalability, we introduce two heuristic oracles,
LSMI and PAGERANK, that offer much greater efficiency.
We conclude with an experimental exploration of a variety

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1464



of combinations of oracles, testing runtime and quality on
random scale-free graphs, a real-world leadership network
in Afghanistan, synthetic leadership networks, and a real-
world social network. We find that the performance of the
PAGERANK oracle suffers minimal loss compared to LSMI
in leadership networks that possess clusters of highly inter-
connected nodes, but performs far worse in sparsely inter-
connected real-world social networks and scale-free graphs.
Finally, an unintuitive blend of oracles offers the best com-
bination of scalability and solution quality.

Related Work
Recent work by Goyal and Kearns (2012) is closely related
but features a different propagation model and does not fo-
cus on algorithmic aspects. In game-theoretic security allo-
cation, some works have dealt with graph models (Basilico
and Gatti 2011; Jain et al. 2011; Halvorson, Conitzer, and
Parr 2009), however their actions were deterministically de-
fined and did not feature a probabilistic contagion compo-
nent. This ‘spreading’ aspect of the problem is very closely
related to influence maximization. Influence maximization
saw its first treatment in computer science as a discrete max-
imization problem by Kempe et al. (2003) who proposed
a greedy approximation, followed-up by numerous pro-
posed speed-up techniques (Chen, Wang, and Wang 2010;
Kimura et al. 2010; Leskovec et al. 2007). We draw from
methods in these one-player models to create more efficient
best-response oracles in our work.

Influence blocking maximization problems, which we use
to model our domain, have been explored with both inde-
pendent cascade and linear threshold models of propagation
(Budak, Agrawal, and Abbadi 2011; He et al. 2011). Both
of these works only explored the defender’s best-response
problem. Some research exists on competitive influence
maximization where all players try to maximize their own
influence instead of limiting others’ (Bharathi, Kempe,
and Salek 2007; Kostka, Oswald, and Wattenhofer 2008;
Borodin, Filmus, and Oren 2010). Furthermore, these works
focus on complexity results instead of equilibrium strategy
generation. Hung et al. (2011) and Howard (2010) also ad-
dress the COIN problem. However, Hung et al. (2011) as-
sume a static adversary and Howard (2010) solves for local
pure strategy equilibria. These are very restrictive assump-
tions that do not reflect real constraints of the adversary.

Example Domain and Problem Definition
The counterinsurgency domain we focus on includes one
party that attempts to subvert the population to their cause
and another party that attempts to thwart the first party’s
efforts (Hung, Kolitz, and Ozdaglar 2011; Howard 2011;
Hung 2010). We assume that each side can carry out op-
erations such as provide security or give medical supplies to
sway the local leadership’s opinion. Furthermore, local lead-
ers will impact other leaders’ opinions of the two parties.
Specifically, one leader will convert other leaders to side
with their affiliated party with some predetermined proba-
bility, giving each party’s actions a ‘spreading’ effect. Since
resources for COIN operations are very limited relative to

the size of the task, each party is faced with a resource al-
location task. Hung (2010) models the leadership network
of a single district in Afghanistan (based on real data) with
73 nodes and notes that recent organizational assignments
show that a single battalion operates in 4-7 districts and di-
vides into 3-4 platoons per 1-2 districts. This translates into
5-30 teams responsible for a network with 300-500 nodes.
Furthermore, experts noted that missions are made approxi-
mately once a month.

We model counterinsurgency as a two-player influence
blocking maximization problem, which allows us to draw
from the influence maximization literature. An IBM takes
place on an undirected graph G = (V,E). One player, the
attacker, will attempt to maximize the number of nodes sup-
porting his cause on the graph while the second player, the
defender, will attempt to minimize the attacker’s influence.
Vertices represent local leaders that each player can sway to
their cause, while edges represent the influence of one lo-
cal leader on another. Specifically, each edge, e = (n,m),
has an associated probability, pe , which dictates the chance
that leader n will influence leader m to side with n’s chosen
player. Since the graph is undirected, this is a bidirectional
relationship. Only uninfluenced nodes can be influenced.

Each player chooses a subset of nodes, also termed
‘sources’, as his action (Sa, Sd ⊆ V ), where the size of
the subset is given for each player (|Sa| = ra, |Sd| = rd).
Nodes in Sa support the attacker and nodes in Sd support the
attacker, except nodes in Sa ∩ Sd which have a 50% chance
of supporting each player. The influence then propagates
synchronously, where at time step t0 only the initial nodes
have been influenced and at t1 each edge incident to nodes in
Sa ∪ Sd is ‘activated’ probabilistically. Uninfluenced nodes
incident to activated edges become supporters of the influ-
encing node’s player. If a single uninfluenced node is inci-
dent to activated edges from both player’s nodes, the node
has a 50% chance of being influenced by each player. Prop-
agation continues until no new nodes are influenced.

For a given pair of actions, the attacker’s payoff is equal
to the expected number of nodes influenced to the attacker’s
side and the defender’s payoff is the opposite of the at-
tacker’s payoff. We denote the function to calculate the ex-
pected number of attacker-influenced nodes as σ(Sa, Sd).
Each player chooses a mixed strategy, ρa for the attacker
and ρd for the defender, over their pure strategies (subsets
of nodes of size ra or rd) to maximize their expected pay-
off. This mixed strategy is a policy by which COIN teams
can randomize their deployment each day/week/month. Our
model implicitly assumes that leader opinions reset between
missions to reflect the difficulty of maintaining local sup-
port. The focus of the rest of this work will be to develop
optimal, approximate, and heuristic oracles that can be used
in double oracle algorithms to generate strategies for real-
world social networks.

Double Oracle Approach
The most commonly used approach for a zero-sum game
is a naı̈ve Maximin strategy. This involves precalculating
the payoffs for every pair of player actions to determine the
entire payoff matrix after which a Maximin algorithm can
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solve for a Nash equilibrium. Since this is a zero-sum game,
a Maximin solution produces policies that are optimal un-
der both a simultaneous-move as well as the leader-follower
Stackelberg framework that has been used in much of game-
theoretic resource allocation in the recent past (Yin et al.
2010). However, a naı̈ve maximin method admits two faults.

First, the payoff for a pair of player actions, (Sa, Sd), is
the value of σ(Sa, Sd), which is the expectation of the prop-
agation process outlined previously. As shown by Chen et
al. (2010), calculating the analogous expectation in a basic
influence maximization game exactly is #P -Hard. Since
influence maximization is a special case of influence block-
ing maximization, it is trivial to show that calculating σ(·)
exactly is also #P -Hard. The standard method for estimat-
ing these expectations is a Monte Carlo approach that was
adapted for the IBM problem by Budak et al. (2011) and
which we also adopt here. It involves simulating the prop-
agation process thousands of times to reach an accurate es-
timate of the expected outcome. Although it runs in time
polynomial in the size of the graph and is able to achieve
arbitrarily accurate estimations, the thousands of simulation
trials required for accurate results causes this method to be
extremely slow in practice.

Second, the Maximin algorithm stores the entire payoff
matrix in memory which can be prohibitive for large graphs.
For example, with 1000 nodes and 50 resources per player,
each player has

(
1000
50

)
actions. To overcome similar mem-

ory problems, double oracle algorithms have been proposed
in the past (Jain et al. 2011; Halvorson, Conitzer, and Parr
2009) and form the basis for our work.

Double oracle algorithms for zero-sum games use a Max-
imin linear program at the core, but the payoff matrix is
grown incrementally by two oracles. This process is shown
in Algorithm 1. D is the set of defender actions generated so
far, and A is the set of attacker actions generated so far. Max-
iminLP(D,A) solves for the equilibrium of the game that
only has the pure strategies in D and A and returns ρd and
ρa, which are the equilibrium defender and attacker mixed
strategies over D and A. DefenderOracle(·), generates a de-
fender action that is a best response against ρa among all
possible actions. This action is added to the set of avail-
able pure strategies for the defender D. A similar procedure
then occurs for the attacker. Convergence occurs when nei-
ther best-response oracle generates a pure strategy that is
superior to the given player’s current mixed strategy against
the fixed opponent mixed strategy. The number of attacker
and defender actions in the payoff matrix varies with conver-
gence speed, but is generally much smaller than the full ma-
trix. It has been shown that with two optimal best-response
oracles, the double oracle algorithm converges to the Max-
imin equilibrium (McMahan, Gordon, and Blum 2003).

Now we prove an approximate double oracle setup that
admits a quality guarantee. We denote the defender and at-
tacker’s mixed strategies at convergence as ρd and ρa. The
defender’s expected utility given a pair of mixed strategies is
ud(ρd, ρa). Assume that the defender’s oracle, DAR, is an
α-approximation of the optimal best-response oracle, DBR,
so that DAR(ρa) ≥ α ·DBR(ρa). The following theorem is
a generalization of a similar result in Halvorson et al. 2009.

Algorithm 1 DOUBLE ORACLE ALGORITHM

1: Initialize D with random defender allocations.
2: Initialize A with random attacker allocations.
3: repeat
4: (ρd, ρa) = MaximinLP(D,A)
5: D = D ∪ {DefenderOracle(ρa)}
6: A = A ∪ {AttackerOracle(ρd)}
7: until convergence
8: return (ρd, ρa)

Theorem 1. Let (ρd, ρa) be the output of the double
oracle algorithm using an approximate defender oracle
and let (ρ∗d, ρ

∗
a) be the optimal mixed strategies. Then:

ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

Proof. Since we know DAR is an α-approximation,
ud(ρd, ρa) ≥ ud(DAR(ρa), ρa) ≥ α · ud(DBR(ρa), ρa).
Since (ρ∗d, ρ

∗
a) is a maximin solution, we know that

∀ρ′d, ρ′a : ud(ρ
∗
d, ρ
′
a) ≥ ud(ρ

∗
d, ρ
∗
a) ≥ ud(ρ

′
d, ρ
∗
a). Thus:

ud(DBR(ρa), ρa) ≥ ud(ρ
∗
d, ρa) ≥ ud(ρ

∗
d, ρ
∗
a), implying

ud(ρd, ρa) ≥ α · ud(ρ∗d, ρ∗a).

Oracles
A major advantage of double oracle algorithms is the ability
to divide the problem into best-response components. This
allows for easily creating variations of algorithms to meet
runtime and quality needs by combining different oracles
together. Here, we present four oracles that we can combine
to create a suite of algorithms.

EXACT Oracle
The first oracle is an optimal best-response oracle. Our or-
acle, which we call EXACT , determines the best-response
by iterating through the entire action set for a given player.
For each action, the expected payoff against the opponent’s
strategy is calculated, which requires n calculations of σ(·),
where n is the size of the support for the opponent’s mixed
strategy. In this oracle, σ(·) is evaluated via the Monte Carlo
estimation method.

This oracle can be used for both the defender and the at-
tacker to create an incremental, optimal algorithm that can
potentially be superior to Maximin because of the incremen-
tal approach. However, the oracle will perform redundant
calculations that can cause it to run slower than Maximin
when the equilibrium strategy’s support size is very large.

APPROX Oracle
Here we describe approximate oracles that draw from re-
search in influence maximization, competitive influence
maximization, and influence blocking maximization. Bu-
dak et al. (2011) showed that the best-response problem
for the blocker is submodular when both players share the
same probability of influencing across a given edge. Thus, a
greedy hill-climbing approach provides the highest marginal
gain in each round provides a (1 − 1

e − ε)-approximation1.

1The ε-error of the Monte Carlo estimation can be made arbi-
trarily small with sufficient simulations.
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This is outlined in Algorithm 2, where MCEst(·) is the
Monte Carlo estimation of σ(·), ρa is the current attacker
mixed strategy, and Action()/Prob() retrieve a pure strategy,
Sa, and its associated probability. The Lazy-Forward speed-
up to the greedy algorithm introduced by Leskovec et al.
(2007) to tackle influence maximization problems is also im-
plemented, but we do not show it in Algorithm 2 for clarity.

For the attacker problem, we note that given a fixed
blocker strategy, the best-response problem of the maxi-
mizer in an IBM is exactly the best-response problem of
the last player in a competitive influence maximization from
Bharathi et al. (2007), which they showed to be submodu-
lar. Thus, the attacker’s best-response problem can also be
approximated with a greedy algorithm with the same guar-
antees. These oracles are referred to as APPROX .

By combining an APPROX oracle for the defender and an
EXACT oracle for the attacker, we can create an algorithm
that generates a strategy for the defender more efficiently
than an optimal one and guarantees a reward within (1− 1

e )
of the optimal strategy’s reward by Theorem 1. An algo-
rithm with two APPROX oracles no longer admits quality
guarantees, but the iteration process still maintains the best-
response reasoning crucial to adversarial domains.

Algorithm 2 APPROX -DefBR(ρa)
1: Sd = ∅
2: while |Sd| < rd do
3: for v ∈ (V − Sd) do
4: U(n) = -

∑ρa.Size()
i=1 ρa.Prob(i) ·

5: MCEst(ρa.Action(i),Sd ∪ {v})
6: end for
7: v∗ = argmaxv∈V U(n)
8: Sd = Sd ∪ {v∗}
9: end while

LSMI Oracle
We introduce our main heuristic oracle, LSMI, which is also
the name of the heuristic it is based on: Local Shortest-paths
for Multiple Influencers (LSMI(·)). This oracle uses AP-
PROX oracle’s Algorithm 2. However, LSMI(·) is used to
replace the MCEst(·) function and provides a fast, heuristic
estimation of the marginal gain from adding a node to the
best response. The heuristic is based on two assumptions:
very low probability paths between two nodes are unlikely to
have an impact and the highest probability path between two
nodes estimates the relative strength of the influence. The
probability associated with a path is defined as p =

∏
e pe

over all edges e on the path. We then combine these heuristic
influences from two players in a novel, efficient way.

The two heuristic assumptions have been applied suc-
cessfully for one-player influence maximization in various
forms, one of the most recent being Chen et al. (2010).
When calculating the influence of a node, they only consider
nodes reachable via a path with an associated probability of
at least some θ. Also, they assume that each source will only
affect nodes via the highest probability path. To improve the
accuracy of this estimation, they disallow other sources from

being on the path since the closer source’s influence will su-
persede the further source’s along the same path. We use
these ideas as well, but Chen et al. (2010)’s approach to the
critical step of combining these influences efficiently relies
on there being only one type of influence. In a two-player
situation such as ours, there are two probabilities associated
with each node, and the winning influencer depends not only
on the probability but on the distance to sources as well.
This ordering effect is a new issue that necessitates a novel
approach to influence estimation.

L-Eval(·), described in Algorithm 3, is our new algorithm
for determining the expected influence of the local neighbor-
hood around a given node. LSMI (n, Sa, Sd) estimates the
marginal gain of n by finding the difference between call-
ing L-Eval(·) with and without n and replaces the MCEst(·)
function in Algorithm 2. For the defender oracle, instead of
a call of MCEst(Sa, Sd ∪ n):

LSMI(Sa, Sd, n) =

L-Eval(V, Sa, Sd ∪ {n}) - L-Eval(V, Sa, Sd),

s.t. V =GetVerticesWithinθ(n).

GetVerticesWithinθ() is a modified Dijkstra’s algorithm
that measures path-length by hop-distance, tie-breaks with
the associated probabilities of the paths, and stores all nodes’
shortest hop-distance and associated probability to the given
node. It does not add a new node to the search queue if the
probability on the path to the node falls below θ.

In L-Eval(·), V is the set of n’s local nodes and Sa/Sd are
the attacker/defender source sets. Due to the addition of n,
we must recalculate the expected influence of each v ∈ V .
First, we determine all the nearby nodes that impact a given
v by calling GetVerticesWithinθ(v). Since only sources ex-
ert influence, we intersect this set with the set of all sources
and compile them into a priority queue ordered from lowest
hop-distance to greatest. pa and pd represent the probability
that the attacker/defender successfully influences the given
node. From the nearest source, we aggregate the conditional
probabilities in order. If the next nearest source is an attacker
source, then pa is increased by the probability that the new
source succeeds, conditional on the failure of all closer de-
fender and attacker sources. The probability that all closer
sources failed is exactly (1 - pa + pd). If the next nearest
source is a defender source, then a similar update is per-
formed. The algorithm iterates through all impacted nodes
and returns the total expected influence.

Although the estimated marginal gain of LSMI can be
arbitrarily inaccurate, choosing the best action only requires
that the relative marginal gain of different nodes be accurate.
We show in the Experiments section that LSMI does a very
good job of this in practice as evidenced by the high reward
achieved by LSMI-based algorithms.

PAGERANK Oracle
PageRank is a popular algorithm to rank webpages (Brin and
Page 1998), which we adapt here due to its frequent use in
influence maximization as a benchmark heuristic. The un-
derlying idea is to give each node a rating that captures the
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Algorithm 3 L-Eval(V, Sa, Sd)
1: InfV alue = 0
2: for v ∈ (V − Sa − Sd) do
3: N = GetVerticesWithinθ(v) ∩ (Sa ∪ Sd)
4: /* Prioritize sources by lowest hop-distance to v*/
5: S =makePriorityQueue(N)
6: pa = 0, pd = 0
7: while S 6= ∅ do
8: s = S.poll()
9: if (s ∈ Sa) then

10: pa = pa + (1− pa − pd)· Prob(s, v), pd = pd
11: else /* s must be in Sd */
12: pd = pd + (1− pa − pd)· Prob(s, v), pa = pa
13: end if
14: end while
15: InfV alue = InfV alue+ pa
16: end for
17: return InfV alue

power it has for spreading influence that is based on its con-
nectivity. For the purposes of describing PageRank, we will
refer to directed edges eu,v and ev,u for every undirected
edge between u and v. For each edge eu,v , set a weight
wu,v = pe/pv where pv =

∑
e pe over all edges incident

to v. The rating or ‘rank’ of a node u, τu =
∑

v wu,v · τv
for all non-source nodes v adjacent to u. The exclusion of
source nodes is performed because u cannot spread its influ-
ence through a source node.

For our oracles, since the defender’s goal is to mini-
mize the attacker’s influence, the defender oracle will fo-
cus on nodes incident to attacker sources Na = {n|n ∈
V ∧ ∃en,m,m ∈ Sa}. Specifically, ordering the nodes of
Na by decreasing rank value, the top rd nodes will be cho-
sen as the best response. In the attacker’s oracle phase,
the attacker will simply choose the nodes with the highest
ranks. Although PAGERANK is very efficient, we expect
its quality to be low, since the attacker oracle fails to ac-
count for the presence of a defender and the defender ora-
cle only searches through nodes directly incident to the at-
tacker’s source nodes. We will refer to oracles based on this
heuristic as PAGERANK .

Experiments
In this section, we show experiments on both synthetic and
real-world leadership and social networks. We evaluate the
algorithms on scalability and solution quality. One advan-
tage of double oracle algorithms is the ease with which the
oracles can be changed to produce new variations of ex-
isting algorithms. This allows us to simulate various at-
tacker/defender best-response strategies and test our heuris-
tics’ performance more thoroughly.

Ideally, we would report the performance of our mixed
strategy against an optimal best-response as a worst-case
analysis. However, due to scalability issues with the EXACT
best-response oracle, rewards for larger graphs can only be
calculated against an approximate best-response generated
by the APPROX oracle. Unless otherwise stated, each dat-
apoint is an average over 100 trials and the games created
used contagion probability on edges of 0.3, 20,000 Monte

Algo Label Def. Oracle Att. Oracle Nodes R
DOEE EXACT EXACT 15 3
DOAE APPROX EXACT 20 3
DOAA APPROX APPROX 100 3
DOLE LSMI EXACT 20 3
DOLA LSMI APPROX 100-200 3
DOLL LSMI LSMI 450 20
DOLP LSMI PAGERANK 700 20
DOPE PAGERANK EXACT 40 3
DOPA PAGERANK APPROX 200-300 3
DOPL PAGERANK LSMI 1000+ 20
DOPP PAGERANK PAGERANK 1000+ 20

Table 1: Algorithms evaluated

(a) Runtime, slower algorithms (b) Quality, faster algorithms

Figure 1: Scale-free, less than 100 nodes, 3 resources

Carlo simulations per estimation, and an LSMI θ = 0.001.
In addition to the optimal Maximin algorithm, we also test

the set of double oracle algorithms listed in Table 1, where
Nodes and R(esources) indicate the approximate problem
complexity the algorithm can handle within 20 minutes
based on experiments with scale-free graphs.

Random Scale-Free Graphs
Scale-free graphs have commonly been used as proxies for
real-world social networks because the distribution of node
degrees in many real world networks have been observed to
follow a power law (Clauset, Shalizi, and Newman 2009).
We conduct experiments on randomly generated scale-free
graphs of various sizes and show runtime and quality results
in Figure 1. With only 3 resources, we see most algorithms
incapable of scaling past 100 nodes (faster algorithms like
DOLL not shown as they hug the x-axis). Experiments with
larger graphs with more resources were only possible on al-
gorithms consisting only of LSMI and PAGERANK oracles.
Quality comparison only larger graphs between the four pos-
sible such algorithms in Figure 1b reveal that algorithms
with LSMI defender oracles vastly outperform ones with
PAGERANK defender oracles. Quality is measured against
an APPROX best-response by an adversary.

Leadership Networks
In Hung (2010), a leadership network was created based on
real data of a district in Afghanistan with 7 village areas,
each with a few ‘village leaders’ with connections outside
the village, and a cluster of ‘district leaders’ shown in the
middle. We recreate the same network, shown in Figure 2a
and run our algorithms on it. Although not shown, quality as
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measured against an APPROX attacker was very similar for
all algorithms. Algorithms exceeding 20min are not shown.

Closer examination of defender strategies reveals a differ-
ence in the oracles’ approach. Since the PAGERANK de-
fender oracle considers only attacker-adjacent nodes with
the highest rank, most of its strategies focus on two high-
degree district leaders (neither are maximal degree nodes)
and on a regular member of the highest population Village
G. In this graph structure, where sets of nodes are fully con-
nected, this strategy works very well because the attacker’s
best response will often be the highest degree district leader
and a node in Village G. This approach is more conservative
than LSMI , which directly chooses the attacker’s source
nodes since the 50% chance of wiping out an attacker source
provides slightly higher utility. The attacker oracles all se-
lect from the same set of four high-degree nodes. Aside from
the highest-degree district leader and Village G nodes, an ad-
ditional high-degree village leader far from Village G is also
used. This result suggests that not only connectivity, but also
strategic spacing provided by our algorithms is a key point
for the maximizer’s target selection.

Experiments varying contagion probability, shown in Fig-
ure 2b, show LSMI defender oracle algorithms randomizing
over many more nodes at low contagion levels. This is be-
cause the attacker’s initial set of nodes accounts for most of
his expected utility, encouraging randomization over many
nodes. PAGERANK ignores this since a given set of nodes
is often adjacent to all sets of attacker-chosen nodes, while
LSMI matches the increased node use directly.

(a) Network from Hung (2010) (b) Nodes in defender strategy

Figure 2: Afghanistan leadership network results

As noted previously, a battalion is responsible for 4-7 dis-
tricts, so we create synthetic graphs with multiple copies of a
village structure (70 nodes each) and link all district leaders
together to create multi-district graphs. In our experiments,
for every district, each player is given 3 resources. Figure 3
shows runtime and solution quality against an APPROX at-
tacker best-response. Since we create the graphs one district
at a time, the graph sizes increase by 70 nodes at a time.
The trend in rewards is once again that LSMI defender ora-
cle algorithms very slightly outperform the others. All four
algorithms scale to real-world problem sizes.

Social Networks
To evaluate our performance on social networks, we use
the real-world network commonly used to evaluate influence
maximization algorithms: High Energy Physics Theory col-

(a) Runtime (b) Quality

Figure 3: Synthetic leadership network results

laboration network (ca-HepTh). We use this graph as an ap-
proximation for a general social network as opposed to the
leadership network in the previous section which is hierar-
chical in structure. For the experiments conducted herein,
we extract randomly generated subgraphs of varying sizes
each of which is generated so that the degree of included
nodes are proportional to their degree in the actual dataset.

(a) Runtime (b) Reward

Figure 4: ca-HepTh results

The results shown in Figure 4 are very similar to the re-
sults from Figure1. Unlike in the leadership graphs, the
PAGERANK defender oracle works poorly in social net-
works, just as in random scale-free graphs. Simply choos-
ing the highest ranking neighbors may have minimal effect
on the influence of an attacker source because many neigh-
bors will not be interconnected, which was not the case in
leadership networks.

Conclusion
With increasingly informative data about interpersonal con-
nections, principled methods can finally be applied to inform
strategic interactions in social networks. Our work com-
bines recent research in influence blocking maximization,
operations research, and game-theoretic resource allocation
to provide the first set of solution techniques for a novel
class of security games with contagious actions. Experi-
ments on real-world leadership and social networks reveal
that a simple PAGERANK oracle can provide high quality
solutions for graphs with clusters of highly interconnected
nodes, whereas more sophisticated techniques can be very
beneficial in sparsely connected graphs. The methods used
herein are a first step into a new area of research in game-
theoretic security with applications ranging from product
marketing to peacekeeping in warring states.
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