
Possible Winners in Noisy Elections

Krzysztof Wojtas and Piotr Faliszewski
AGH University of Science and Technology

Krakow, Poland

Abstract

We consider the problem of predicting winners in elections
given complete knowledge about all possible candidates, all
possible voters (together with their preferences), but in the
case where it is uncertain either which candidates exactly reg-
ister for the election or which voters cast their votes. Un-
der reasonable assumptions our problems reduce to count-
ing variants of election control problems. We either give
polynomial-time algorithms or prove #P-completeness results
for counting variants of control by adding/deleting candi-
dates/voters for Plurality, k-Approval, Approval, Condorcet,
and Maximin voting rules.

Introduction
Predicting election winners is always an exciting activity:
Who will be the new president? Will the company merge
with another one? Will taxes be higher or lower? The goal
of this paper is to establish the computational complexity
of a family of problems modelling a certain type of winner-
prediction problems.

Naturally, predicting winners is a hard task, full of uncer-
tainties. For example, we typically are not sure which voters
will eventually cast their votes or, sometimes, even which
candidates will in fact participate in the election (consider,
e.g., a candidate withdrawing due to personal reasons). Fur-
ther, typically we do not have complete knowledge regard-
ing each voters’ preferences. Nonetheless, the problem of
predicting election winners is far too important to be aban-
doned due to technical difficulties as elections are in ev-
eryday use both among humans and among software agents
(see, e.g., (Ephrati and Rosenschein 1997; Ghosh et al. 1999;
Dwork et al. 2001). People and software agents may wish to
optimize their behavior in voting scenarios, and for that they
need to compute good estimates of election winners.

In this paper, we focus on a variant of the winner-
prediction problem where we have complete knowledge re-
garding all possible candidates and all eligible voters (in-
cluding knowledge of their preferences1), but we are uncer-
tain as to which candidates and which voters turn up for the

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Note that while full-knowledge assumption regarding voters’
preferences might seem very unrealistic, it is standard within com-
putational social choice literature, and in our case can often be jus-

actual election (see “Related Work” section for other ap-
proaches to the problem). However, modelling uncertainty
regarding both the candidate set and the voter collection on
one hand almost immediately leads to computationally hard
problems for typical election systems, and on the other hand
does not seem to be as well motivated as focusing on each
of these sets separately. Thus, we consider the following two
settings:

1. The set of candidates is fixed, but for each possible sub-
set of voters we are given a probability that exactly these
voters show up for the vote.

2. The set of voters is fixed, but for each possible subset of
candidates we are given a probability that exactly these
candidates register for the election.

The former setting, in particular, corresponds to political
elections (e.g., to presidential elections), where the candi-
date set is typically fixed well in advance due to election
rules, the set of all possible voters (i.e., the set of all citizens
eligible to vote) is known, but it is not clear as to which citi-
zens choose to cast their votes. The latter setting may occur,
for example, if one considers agents voting on a joint plan.
The set of agents participating in the election is typically
fixed, but various variants of the plan can be put forward or
dismissed dynamically. In either case, our goal is to compute
each candidate’s probability of victory.

However, our task would very quickly become computa-
tionally prohibitive (or, difficult to represent on a computer)
if we allowed arbitrary probability distributions. Thus, we
have to choose some restriction on the distributions we con-
sider. Let us consider the following example.

Let the set C of candidates participating in the election be
fixed (for example, because the election rules force all can-
didates to register well in advance). We know that some set
V of voters will certainly vote (for example, because they
have already voted and this information is public2). The set
of voters who have not decided to vote yet is W . From some
source (e.g., from prior experience) we have a probability
distribution P on the number of voters from W that will par-

tified (e.g., election polls can provide a good approximation of such
knowledge).

2Naturally, in typical political elections such information would
not be public and we would have to rely on polls. On the other hand,
in multiagent systems there can be cases where votes are public.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1499



ticipate in the election (we assume that each equal-sized sub-
set from W is equally likely to joint the election; we have no
prior knowledge as to which eligible voters are more likely
to vote). That is, for each i, 0 ≤ i ≤ |W |, by P (i) we denote
the probability that exactly i voters from W join the election
(we assume that P (i) is easily computable). By Q(i) we
denote the probability that a certain designated candidate p
wins provided that exactly i, randomly chosen, voters from
W participate in the election. The probability that p wins is
given by:

P (0)Q(0) + P (1)Q(1) + · · ·P (|W |)Q(|W |).

We use this formula to compute the probability of each can-
didate’s victory, which gives some idea as to who is the
likely winner of the election.

To compute Q(i) we have to compute for how many sets
W of size exactly i candidate p wins and divide it by

(|W |
i

)
.

However, this is essentially a variant of control by adding
voters, where instead of asking if it is possible to ensure p’s
victory by adding at most i voters, we ask how many ways
are there to add i voters so that p is a winner. Thus, our win-
ner prediction problem reduces to a counting variant of an
election control problem. Analogous reasoning can be given
for the case of deleting voters and adding/deleting candi-
dates. Thus, formally our winner prediction problems reduce
to counting variants of election control problems.

Computational study of election control was initiated by
Bartholdi, Tovey, and Trick (1992) and was continued by
Hemaspaandra, Hemaspaandra, and Rothe (2007), Meir et
al. (2008), Erdélyi, Nowak, and Rothe (2009), Faliszewski,
Hemaspaandra, and Hemaspaandra (2011b), and others (see
the survey of Faliszewski, Hemaspaandra and Hemaspaan-
dra (2010)). However, to the best of our knowledge, this is
the first paper to study counting variants of election control.

Preliminaries
Elections and Voting Systems. An election E is a pair
(C, V ) such that C is a finite set of candidates and V is a
finite collection of voters. We typically use m to denote the
number of candidates and n to denote the number of vot-
ers. Each voter has a preference order in which he or she
ranks candidates, from the most desirable one to the most
despised one. For example, if C = {a, b, c} and a voter
likes b most and a least, then this voter would have prefer-
ence order b > c > a. (However, under approval voting,
instead of ranking the candidates each voter simply indi-
cates which candidates he or she approves of.) We some-
times use the following notation. Let A be some subset of
the candidate set. Putting A in a preference order means list-
ing members of A in lexicographic order and putting

←−
A in a

preference order means listing members of A in the reverse
of the lexicographic order. For example, if C = {a, b, c, d}
then a > C − {a, b} > d means a > c > d > b and
a >
←−−−−−−−
C − {a, b} > d means a > d > c > b.

A voting system is a rule which specifies how election
winners are determined. We allow an election to have more
than one winner, or even to not have winners at all. In prac-
tice, tie-breaking rules are used, but here we disregard this

issue by simply using the unique winner model (see Defini-
tion 4). However, we point the reader to (Obraztsova, Elkind,
and Hazon 2011; Obraztsova and Elkind 2011) for a discus-
sion regarding the influence of tie-breaking for the case of
election manipulation problems (see (Faliszewski, Hemas-
paandra, and Hemaspaandra 2010; Faliszewski and Procac-
cia 2010) for overviews of the manipulation problem).

Let E = (C, V ) be an election. For each candidate c ∈ C,
we define c’s k-Approval score, scorekE(c), to be the num-
ber of voters in V that rank c among the top k candidates;
the candidates with highest scores win. Plurality rule is 1-
Approval (and we write scorepE(c) to denote the Plurality
score of candidate c). Under Approval (without the qualify-
ing “k-”), the score of a candidate c ∈ C, scoreaE(c), is the
number of voters that approve of c. Again, the candidates
with highest scores win. Under Condorcet’s rule, a candi-
date c ∈ C is a winner if and only if for each c′ ∈ C − {c},
more than half of the voters prefer c to c′ (i.e., more than half
of the voters have preference orders where c > c′). There
can be at most one winner under Condorcet’s rule and he
or she is called the Condorcet winner. We write NE(c, c

′)
to denote the number of voters in V that prefer c to c′; c
is a Condorcet winner exactly if NE(c, c

′) > NE(c
′, c) for

each c′ ∈ C − {c}. Under Maximin, a candidate c’s score,
scoremE (c), is defined to be mind∈C−{c}NE(c, d). The can-
didates with highest Maximin score are Maximin winners.
Notation for Graphs. We assume familiarity with basic
concepts of graph theory. Given an undirected graph G, by
V (G) we mean its set of vertices and by E(G) we mean its
set of edges.3 Whenever we discuss a bipartite graph G, we
assume that V (G) is partitioned into two subsets, X and Y .
We write X(G) to denote X , and Y (G) to denote Y .
Computational Complexity. We assume that the reader
is familiar with standard notions of complexity theory. Let
us, however, briefly review notions regarding the complexity
theory of counting problems. Let A be some computational
problem where for each instance I we ask if there exists
some mathematical object satisfying a given condition. In
the counting variant of A, denoted #A, we ask how many
such mathematical objects exist. For example, consider the
following definition.

Definition 1. An instance of X3C is a pair (B,S), where
B = {b1, . . . , b3k} and S = {S1, . . . , Sn} is a family of 3-
element subsets of B. In X3C we ask if it is possible to find
exactly k sets in S whose union is exactly B. In #X3C we
ask how many k-element subsets of S have B as their union.

The class of counting variants of NP-problems is called
#P and the class of functions computable in polynomial time
is called FP. To reduce counting problems to each other, we
will use one of the following reducibility notions.

Definition 2. Let #A and #B be two counting problems.

1. We say that #A Turing reduces to #B if there exists an
algorithm that solves #A in polynomial time given oracle
access to #B.

3We use this slightly nonstandard notation is to be able to also
use symbols V and E to denote voter collections and elections.

1500



2. We say that #A metric reduces to #B if there exist two
polynomial-time computable functions, f and g, such that
for each instance I of #A it holds that (1) f(I) is an in-
stance of #B, and (2) if #B(f(I)) is the number of solu-
tions for f(I), then g(I,#B(f(I))) outputs the number
of solutions for I .

3. We say that #A parsimoniously reduces to #B if #A
metric reduces to #B via functions f and g such that for
each instance I and each integer k, g(I, k) = k.
For a given reducibility notion R, we say that a problem

is #P-R-complete if it belongs to #P and every #P-problem
R reduces to it. For example, #X3C is #P-parsimonious-
complete (Hunt et al. 1998). Throughout this paper we will
write #P-complete to mean #P-parsimonious-complete. Tur-
ing reductions were used, e.g., by Valiant (1979) to show
#P-hardness of computing a permanent of a 0/1 matrix. As a
result, he also showed #P-Turing-hardness of the following
problem (but see also (Zankó 1991)).
Definition 3. In #PerfectMatching we are given a bipartite
graph G = (G(X), G(Y ), G(E)) with ‖G(X)‖ = ‖G(Y )‖
and we ask how many perfect matchings does G have.

Metric reductions were introduced by Krentel (1988), and
parsimonious reductions were defined by Simon (1975).

Counting Variants of Control Problems
Let us now formally define counting variants of election con-
trol problems. We are interested in control by adding candi-
dates (AC), control by deleting candidates (DC), control by
adding voters (AV), and control by deleting voters (DV). For
each of these problems, we consider its constructive variant
(CC) and its destructive variant (DC).
Definition 4. Let R be a voting system. In each of the count-
ing variants of constructive control problems we are given a
candidate set C, a voter collection V , a nonnegative inte-
ger k, and a designated candidate p ∈ C. In constructive
control by adding voters we are additionally given a collec-
tion W of unregistered voters, and in constructive control
by adding candidates we are additionally given a set A of
unregistered candidates. In these problems we ask for the
following quantities:
1. In control by adding voters (R-#CCAV), we ask how many

sets W ′, W ′ ⊆ W , are there such that p is the unique
winner of R-election (C, V ∪W ′), where |W ′| ≤ k.

2. In control by deleting voters (R-#CCDV), we ask how
many sets V ′, V ′ ⊆ V are there such that p is the unique
winner of R-election (C, V − V ′), where |V ′| ≤ k.

3. In control by adding candidates (R-#CCAC), we ask how
many sets A′, A′ ⊆ A, are there such that p is the unique
winner of R-election (C ∪A′, V ), where |A′| ≤ k.

4. In control by deleting candidates (R-#CCDC), we ask
how many sets C ′, C ′ ⊆ C, are there such that p is the
unique winner of R-election (C−C ′, V ), where |C ′| ≤ k
and p 6∈ C ′.

Destructive variants are defined identically, except that we
ask for the number of settings where the designated candi-
date is not the unique winner.

The above problems are interesting in their own right and
because they model winner-prediction scenarios.

Results
We now present our complexity results regarding counting
variants of election control problems. Not surprisingly, for
each NP-complete control problem that we have consid-
ered, its counting variant turned out to be complete for #P
(for some reducibility type). However, interestingly, we have
also found examples of election systems and control types
where the decision variant is easy, but the counting variant is
hard. This happens, e.g., for k-Approval, k ≥ 2, and destruc-
tive voter control, and for Maximin and control by deleting
candidates. These results are quite unexpected (especially
for the case of Maximin).

We omit many of our proofs due to space restrictions
(further, some of the omitted hardness results, but not all,
are easy adaptations of the decision-variant NP-hardness
proofs already given in the literature). We obtain all of our
destructive-case results via the following observation.

Theorem 5. Let R be a voting system, let #C be one of R-
#CCAC, R-#CCDC, R-#CCAV, R-#CCDV, and let #D be
the destructive variant of #C. Then, #C metric reduces to
#D.

Proof. We give a metric reduction from #C to #D. Let I
be an instance of #C, where the goal is to make some can-
didate p the unique winner. We define f(I) to be an instance
of #D that is identical to I , except that the goal is to en-
sure that p is not the unique winner. Let sI be the number
of all possible solutions for I4 (and, naturally, also the num-
ber of all possible solutions for f(I)). It is easy to see that
sI is polynomial-time computable and that the number of
solutions for I is exactly sI − #D(f(I)). Thus, we define
g(I,#D(f(I))) = sI −#D(f(I)). We see that the reduc-
tion is polynomial-time and correct.

In the following we present our results specific to Plural-
ity, k-Approval, Approval, Condorcet, and Maximin.
Plurality Voting. Under plurality voting, counting vari-
ants of both control by adding voters and control by deleting
voters are in FP. In both cases our algorithms are based on
dynamic programming.

Theorem 6. Plurality-#CCAV, Plurality-#DCAV, Plurality-
#CCDV, and Plurality-#DCDV are in FP.

Proof. Due to space restrictions we will only give proofs for
the adding-voters cases. The proofs for the deleting-voters
cases are similar in spirit.

Let I = (C, V,W, p, k) be an input instance of Plurality-
#CCAV, where C = {p, c1, . . . , cm−1} is the candidate set,
V is the set of registered voters, W is the set of unregis-
tered voters, p is the designated candidate, and k is the up-
per bound on the number of voters that can be added. We
now describe a polynomial-time algorithm that computes the
number of solutions for I .

Let Ap be the set of voters from W that rank p first. Sim-
ilarly, for each ci ∈ C, let Aci be the set of voters from W
that rank ci first. We also define count(C, V,W, p, k, j) to be

4For example, if #C was #CCDV and I = (C, V, p, k), then
sI would be the number of up-to-size-k subsets of V .

1501



the number of sets W ′ ⊆W−Ap such that (1) |W ′| ≤ k−j,
and (2) in election (C, V ∪ W ′) each candidate ci ∈ C,
1 ≤ i ≤ m− 1, has score at most scorep(C,V )(p) + j − 1.

Our algorithm works as follows. First, we compute k0, the
minimum number of voters from Ap that need to be added to
V to ensure that p has plurality score higher than any other
candidate (provided no other voters are added). Clearly, if p
already is the unique winner of (C, V ) then k0 is 0, and oth-
erwise k0 is maxci∈C(score

p
(C,V )(ci)− scorep(C,V )(p)+1).

Then, for each j, k0 ≤ j ≤ min(k, |Ap|), we compute
the number of sets W ′, W ′ ⊆ W , such that W ′ con-
tains exactly j voters from Ap, at most k − j voters from
W − Ap, and p is the unique winner of (C, V ∪ W ′). It
is easy to verify that for a given j, there is exactly h(j) =(|Ap|

j

)
· count(C, V,W, p, k, j) such sets. Our algorithm re-

turns
∑min(k,|Ap|)

j=k0
h(j). The reader can easily verify that

this indeed is the correct answer. To complete the proof it
suffices to show a polynomial-time algorithm for computing
count(C, V,W, p, k, j).

Let us fix j, k0 ≤ j ≤ min(k, |Ap|). We now show how
to compute count(C, V,W, p, k, j). Our goal is to count the
number of ways in which we can add at most k − j voters
from W − Ap so that no candidate ci ∈ C has score higher
than scorep(C,V )(p) + j − 1. For each candidate ci ∈ C,
we can add at most li = min

(
|Aci |, j + scorep(C,V )(p) −

scorep(C,V )(ci) − 1
)

voters from Aci ; otherwise ci’s score
would exceed scorep(C,V )(p) + j − 1.

For each i, 1 ≤ i ≤ m − 1, and each t, 0 ≤ t ≤ k − j,
let at,i be the number of sets W ′ ⊆ Ac1 ∪ Ac2 ∪ · · · ∪ Aci
that contain exactly t voters and such that each candidate
c1, c2, . . . , ci has score at most scorep(C,V )(p) + j − 1 in the
election (C, V ∪W ′). Naturally, count(C, V,W, p, k, j) =∑k−j

t=0 at,m−1. It is easy to check that at,i satisfies the fol-
lowing recursion:

at,i =



∑min(li,t)
s=0

(|Aci
|

s

)
at−s,i−1, if t > 0, i > 1,

1, if t = 0, i > 1,(|A1|
t

)
, if t ≤ |Ac1 |, i = 1,

0, if t > |Ac1 |, i = 1.

Thus, for each t, i we can compute at,i using standard dy-
namic programming techniques in polynomial time. Thus,
count(C, V,W, p, k, j) also is polynomial-time computable.
This completes the proof that Plurality-#CCAV is in FP.

For the case of Plurality-#DCAV, it suffices to invoke The-
orem 5 and the just-proved result for #CCAV.

On the other hand, for Plurality voting #CCAC and
#CCDC are #P-complete and this follows from proofs al-
ready given in the literature (Faliszewski, Hemaspaandra,
and Hemaspaandra 2011a).

Theorem 7. Plurality-#CCAC and Plurality-#CCDC are
#P-complete.

Now, Corollary 8 follows by combining Theorems 7 and 5.

Corollary 8. Plurality-#DCAC and Plurality-#DCDC are
#P-metric-complete.

k-Approval Voting. While k-Approval is in many re-
spects a simple generalization of the Plurality rule, it turns
out that for k ≥ 2 all counting variants of control problems
are intractable for k-approval. This is quite expected for can-
didate control as decision variants of these problems are NP-
complete (see (Lin 2011; Elkind, Faliszewski, and Slinko
2010)), but is more intriguing for voter control (as shown by
Lin, for 2-Approval all voter control decision problems are
in P, and, as one can verify, for k-Approval all destructive
voter control decision problems are in P).

Theorem 9. For each k, k ≥ 2, k-Approval-#CCAC
and k-Approval-#CCDC are #P-complete, and k-Approval-
#DCAC and k-Approval-#DCDC are #P-metric-complete.

The proof of this theorem follows by padding the con-
struction used in the proof of Theorem 7 and by applying
Theorem 5 (for the destructive variants). However, to show
hardness of voter control we need some new ideas.

Theorem 10. For each k, k ≥ 2, k-Approval-#CCAV is
#P-Turing-complete and k-Approval-#CCDV is #P-metric-
complete.

Proof. Due to space restriction, We will give a proof for k =
2 and for #CCAV only. The case of #CCDV follows by a
similar proof (though with some extra twists) and the cases
for k > 2 follow by padding.

We give a Turing reduction from #PerfectMatching to 2-
Approval-#CCAV. Let G = (G(X), G(Y ), G(E)) be our
input bipartite graph, where G(X) = {x1, . . . , xn} and
G(Y ) = {y1, . . . , yn} are sets of vertices, and G(E) =
{e1, . . . , em} is the set of edges. We form an election E =
(C, V ) and a collection W of unregistered voters as fol-
lows. We set C = {p, b1, b2} ∪ G(X) ∪ G(Y ) and we let
V = (v1, v2), where v1 has preference order p > b1 > C −
{p, b1} and v2 has preference order p > b2 > C − {p, b2}.
We let W = (w1, . . . , wm), where for each `, 1 ≤ ` ≤ m,
if e` = {xi, yj} then w` has preference order xi > yj >
C − {xi, yj}.

Thus, in election E candidate p has score 2, candidates b1
and b2 have score 1, and candidates in G(X) ∪ G(Y ) have
score 0. We form an instance I of 2-Approval-#CCAV with
election E = (C, V ), collection W of unregistered voters,
designated candidate p, and the number of voters that can be
added set to n. We form instance I ′ to be identical, except
we allow to add at most n− 1 voters.

It is easy to verify that the number of 2-Approval-#CCAV
solutions for I (for I ′) is the number of matchings in G of
cardinality at most n (the number of matchings in G of car-
dinality at most n−1). (Each unregistered voter corresponds
to an edge in G and one cannot add two edges that share a
vertex as then p would no longer be the unique winner.) The
number of perfect matchings in G is exactly the number of
solutions for I minus the number of solutions for I ′.

By applying a technical trick on top of the proof of the above
theorem, we get Corollary 11 below, and by Theorem 5 we
obtain Corollary 12.

1502



Corollary 11. For each k, k ≥ 2, (k+1)-Approval-#CCAV
and k-Approval-#CCDV are #P-metric-complete.

Corollary 12. 2-Approval-#DCAV is #P-Turing-complete
and for each k, k ≥ 2, (k + 1)-Approval-#DCAV and k-
Approval-#DCDV are #P-metric-complete.

Approval Voting and Condorcet Voting. Let us now con-
sider Approval voting and Condorcet voting. While these
two systems may seem very different in spirit, their behav-
ior with respect to election control is similar. Specifically, for
both systems #CCAV and #CCDV are #P-complete, for both
systems it is impossible to make some candidate a winner by
adding candidates, and for both systems it is impossible to
prevent someone from winning by deleting candidates. Yet,
for both systems #DCAC and #CCDC are in FP via almost
identical algorithms.

Theorem 13. Approval-#CCAV, Approval-#CCDV, Con-
dorcet-#CCAV, and Condorcet-#CCDV are #P-complete.
Their destructive variants are #P-metric-complete.

In Theorem 13, the results for Approval follow from the
work of Hemaspaandra, Hemaspaandra, and Rothe (2007),
the result for Condorcet-#CCDV follows from the proofs of
Theorems 5.1 and 4.19 of Faliszewski et al. (2009), and for
Condorcet-#CCAV we have found a new reduction.

Theorem 14. Approval-#DCAC, Condorcet-#DCAC,
Approval-#CCDC, and Condorcet-#CCDC are in FP.

Proof. We will give the proof for the case of Approval-
#CCDC. We omit the other cases due to space restrictions.

Let I = (C, V, p, k) be an instance of approval-#CCDC.
The only way to ensure that p ∈ C is the unique win-
ner is to remove all candidates c ∈ C − {p} such that
scorea(C,V )(c) ≥ scorea(C,V )(p). Such candidates can be
found immediately. Let’s assume that there are k0 such can-
didates. After removing all of them, we can also remove
k − k0 or less of any remaining candidates other than p.
Thus, the result is

∑k−k0

i=0

(|C|−k0−1
i

)
.

Maximin Voting. The complexity of decision variants of
control for Maximin was studied by Faliszewski, Hemas-
paandra, and Hemaspaandra (2011b). In particular, they
showed that under Maximin all voter control problems are
NP-complete and an easy adaptation of their proofs gives
the following theorem.

Theorem 15. Maximin-#CCAV and Maximin-#CCDV are
#P-complete, and Maximin-#DCAV and Maximin-#DCDV
are #P-metric-complete.

On the other hand, among the candidate control prob-
lems for Maximin, only Maximin-CCAC is NP-complete
(DCAC, CCDC, and DCDC are in P). Still, this hardness
of control by adding candidates translates into the hardness
of all the counting variants of candidate control.

Theorem 16. Maximin-#CCAC is #P-complete and
Maximin-#DCAC is #P-metric-complete.

(We omit the proof—an adaptation of Maximin-CCAC
NP-completeness proof of Faliszewski at al.—due to space

restriction.) The cases of Maximin-#CCDC and Maximin-
#DCDC are more complicated and require new ideas be-
cause decision variants of these problems are in P.

Theorem 17. Both Maximin-#CCDC and Maximin-
#DCDC are #P-Turing-complete.

Proof. We consider the #CCDC case first. Clearly, the prob-
lem belongs to #P and it remains to show hardness. We will
do so by giving a Turing reduction from #PerfectMatching.

Let G = (G(X), G(Y ), G(E)) be our input graph, where
G(X) = {x1, . . . , xn} and G(Y ) = {y1, . . . , yn} are sets
of vertices, and E = {e1, . . . , em} is the set of edges. For
each nonnegative integer k, define g(k) to be the number of
matchings in G that contain exactly k edges (e.g., g(n) is the
number of perfect matchings in G).

We define the following election E = (C, V ). We set
C = G(E)∪S∪B∪{p}, where S = {s0, . . . , sn} and B =
{b`i,j | 0 ≤ ` ≤ n, i < j, and ei and ej share a vertex}. To
build voter collection V , for each two candidates a, b ∈ C,
we define v(a, b) to be a pair of voters with preference or-
ders a > b > C − {a, b} and

←−−−−−−−
C − {a, b} > a > b. We

construct V as follows:

1. For each si ∈ S, we add pair v(si, p).
2. For each si ∈ S, we add two pairs v(si, si+1)), where

i+ 1 is taken modulo n+ 1.
3. For each si ∈ S and each et ∈ E, we add two pairs

v(si, et).
4. For each ei, ej ∈ E, i < j, where ei and ej share a vertex,

and for each `, 0 ≤ ` ≤ n, we add two pairs v(ei, b
`
i,j)

and two pairs v(ej , b`i,j).

Let T be the total number of pairs v(a, b), a, b ∈ C, included
in V . By our construction, the following properties hold:

1. scoremE (p) = T − 1 and it is impossible to change the
score of p be deleting n candidates or fewer (this is
because there are n + 1 candidates si ∈ S such that
NE(p, si) = T − 1.

2. For each si ∈ S, scoremE (si) = T − 2, but deleting si−1
(where we take i − 1 modulo n + 1) increases the score
of si to T + 1.

3. For each et ∈ E, scoremE (et) is T − 2.
4. For each b`i,j ∈ B, scoremE (b`i,j) = T − 2 and it remains

T − 2 if we delete either ei or ej , but it becomes T if we
delete both ei and ej .

Note that p is the unique winner of E. For each k, 0 ≤
k ≤ n, we form instance I(k) = (C, V, p, k) of Maximin-
#CCDC. We define f(k) = #I(k) − #I(k − 1). That is,
f(k) is the number of solutions for I(k) where we delete
exactly k candidates. We claim that for each k, 1 ≤ k ≤ n,
it holds that f(k) =

∑k
j=0

(‖B‖
j

)
g(k − j). Why is this so?

First, note that by the listed-above properties of E, delet-
ing any subset C ′ of candidates from C that contains some
member of S prevents p from being a winner. Thus, we
can only delete subsets C ′ of C that contains candidates in
G(E)∪B. Let us fix a nonnegative integer r, 0 ≤ r ≤ n. Let
C ′ ⊆ G(E) ∪ B be such that p is the unique Maximin win-
ner of E′ = (C−C ′, V ) and ‖C ′‖ = r. Let rB = ‖C ′∩B‖

1503



Problem Plurality k-Approval Approval Condorcet Maximin
k ≥ 2

#CCAC #P-complete #P-complete – – #P-complete
#DCAC #P-metric-complete #P-metric-complete FP FP #P-metric-complete
#CCDC #P-complete #P-complete FP FP #P-Turing-complete
#DCDC #P-metric-complete #P-metric-complete – – #P-Turing-complete
#CCAV FP #P-Turing-complete #P-complete #P-complete #P-complete
#DCAV FP #P-Turing-complete #P-metric-complete #P-metric-complete #P-metric-complete
#CCDV FP #P-metric-complete #P-complete #P-complete #P-complete
#DCDV FP #P-metric-complete #P-metric-complete #P-metric-complete #P-metric-complete

Table 1: The complexity of counting variants of control problems. A dash in an entry means that the given system is immune
to the type of control in question (i.e., it is impossible to achieve the desired effect by the action this control problem allows;
technically this means the answer to the counting question is always 0). Immunity results were established by Bartholdi, Tovey,
and Trick (1989) for the constructive cases, and by Hemaspaandra, Hemaspaandra, and Rothe (2007) for the destructive cases.

and rG(E) = ‖C ′ ∩G(E)‖. It must be the case that for each
ei, ej ∈ G(E), i < j, where ei and ej share a vertex, C ′
contains at most one of them. Otherwise, E′ would contain
at least one of the candidates b`i,j , 0 ≤ ` ≤ n, and this can-
didate would have score higher than p. Thus, the candidates
in C ′ ∩ G(E) correspond to a matching in G of cardinality
rG(E). On the other hand, since rB ≤ n, C ∩B contains an
arbitrary subset of B. Thus, there are exactly

(‖B‖
rB

)
g(rG(E))

such sets C ′. Our formula for f(k) is correct.
Now, using standard algebra (a process similar to

Gauss elimination), it is easy to verify that given values
f(1), f(2), . . . , f(n), it is possible to compute (in this or-
der) g(0), g(1), . . . , g(n). Together with the fact that con-
structing each I(k), 0 ≤ k ≤ n, requires polynomial time
with respect to the size of G, this proves that given oracle
access to Maximin-#CCDC, we can solve #PerfectMatch-
ing. Thus, Maximin-#CCDC is #P-Turing-complete and, by
Theorem 5, so is Maximin-#DCDC.

Related Work
From the high-level perspective, the focus of this paper is
on the complexity predicting election winners. However,
our model is just one of many approaches to this prob-
lem, which in various forms and shapes has been stud-
ied in the literature for some years already. For exam-
ple, to model imperfect knowledge regarding voters’ pref-
erences, Konczak and Lang (2005) introduced the possible
winner problem, further studied by many other researchers
(see, e.g., (Xia and Conitzer 2011; Betzler and Dorn 2010;
Bachrach, Betzler, and Faliszewski 2010; Chevaleyre et al.
2010; Xia, Lang, and Monnot 2011)). In the possible win-
ner problem, each voter is represented via a partial prefer-
ence order and we ask if there is an extension of these par-
tial orders to total orders that ensures a given candidate’s
victory. Bachrach, Betzler, and Faliszewski (2010) extended
the model by considering counting variants of possible win-
ner problems. Namely, they asked for how many extensions
of the votes a given candidate wins, in effect obtaining the
probability of the candidate’s victory. This is very similar
to our approach, but there are also important differences. In
the work of Bachrach et al., we have full knowledge regard-
ing the identities of candidates and voters participating in

the election, but we are uncertain about voters’ preference
orders. In our setting, we have full knowledge about voters’
preference orders, but we are uncertain about the identities
of candidates/voters participating in the election.

Hazon et al. (2008) considered a setting where each voter
has a probability distribution among several possible votes
and where the task is to compute the probability that a given
candidate wins.

Going in a different direction, our work is related to the
paper of Walsh and Xia (2011) on lot-based elections, where
winner determination reduces to counting variants of control
by adding/deleting voters.

Conclusions and Future Work
We have considered a model of predicting election winners
in settings where there is uncertainty regarding the struc-
ture of the election (that is, regarding the exact set of candi-
dates and the exact collection of voters participating in the
election). We have shown that our model corresponds to the
counting variants of election control problems (specifically,
we have focused on election control by adding/deleting can-
didates and voters). We have considered Plurality, Approval,
Condorcet, k-Approval, and Maximin (see Table 1 for our
results). For the former three, the complexity of counting
variants of control is analogous to the complexity of deci-
sion variants of respective problems, but for the latter two,
some of the counting control problems are more computa-
tionally demanding than their decision counterparts.

Many of our results indicate computational hardness of
winner prediction problems. Thus, in practice one might
have to seek heuristic algorithms or approximate solu-
tions (e.g., sampling-based algorithms similar to the one of
Bachrach, Betzler, and Faliszewski (2010, Theorem 6)).

There are many ways to extend our work. For example, it
would be natural to consider settings where for each voter
vi (for each candidate ci) we have a probability pi that this
voter casts a vote (that this candidate participates in the elec-
tion), and we would be to compute the probability of a given
candidate winning. (For the case of all the probabilities be-
ing equal, our model already captures this setting.)
Acknowledgements. An early version of this paper ap-
peared in IJCAI Workshop on Social Choice and Artificial

1504



Intelligence (2011). We thank both the AAAI and WSCAI
reviewers for very helpful feedback. Piotr Faliszewski was
in part supported by AGH University of Technology Grant
no. 11.11.120.865 and by Foundation for Polish Science’s
program Homing/Powroty.

References
Bachrach, Y.; Betzler, N.; and Faliszewski, P. 2010. Proba-
bilistic possible winner determination. In Proceedings of the
24th AAAI Conference on Artificial Intelligence, 697–702.
AAAI Press.
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1992. How hard
is it to control an election? Mathematical and Computer
Modeling 16(8/9):27–40.
Betzler, N., and Dorn, B. 2010. Towards a dichotomy of
finding possible winners in elections based on scoring rules.
Journal of Computer and System Sciences 76(8):812–836.
Chevaleyre, Y.; Lang, J.; Maudet, N.; and Monnot, J. 2010.
Possible winners when new candidates are added: The case
of scoring rules. In Proceedings of the 24th AAAI Confer-
ence on Artificial Intelligence, 762–767. AAAI Press.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
the 10th International World Wide Web Conference, 613–
622. ACM Press.
Elkind, E.; Faliszewski, P.; and Slinko, A. 2010. Cloning in
elections. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, 768–773. AAAI Press.
Ephrati, E., and Rosenschein, J. 1997. A heuristic technique
for multi-agent planning. Annals of Mathematics and Artifi-
cial Intelligence 20(1–4):13–67.
Erdélyi, G.; Nowak, M.; and Rothe, J. 2009. Sincere-
strategy preference-based approval voting fully resists con-
structive control and broadly resists destructive control.
Mathematical Logic Quarterly 55(4):425–443.
Faliszewski, P., and Procaccia, A. 2010. AI’s war on manip-
ulation: Are we winning? AI Magazine 31(4):52–64.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2009. Llull and Copeland voting computationally
resist bribery and constructive control. Journal of Artificial
Intelligence Research 35:275–341.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2010. Using complexity to protect elections. Communica-
tions of the ACM 53(11):74–82.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. 2011a. The complexity of manipulative attacks
in nearly single-peaked electorates. Technical Report
arXiv:1105.5032v1, arXiv.org.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2011b. Multimode control attacks on elections. Journal of
Artificial Intelligence Research 40:305–351.
Ghosh, S.; Mundhe, M.; Hernandez, K.; and Sen, S. 1999.
Voting for movies: The anatomy of recommender sys-
tems. In Proceedings of the 3rd Annual Conference on Au-
tonomous Agents, 434–435. ACM Press.

Hazon, N.; Aumann, Y.; Kraus, S.; and Wooldridge, M.
2008. Evaluation of election outcomes under uncertainty.
In Proceedings of the 7th International Conference on Au-
tonomous Agents and Multiagent Systems, 959–966.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone but him: The complexity of precluding an alterna-
tive. Artificial Intelligence 171(5–6):255–285.
Hunt, H.; Marathe, M.; Radhakrishnan, V.; and Stearns, R.
1998. The complexity of planar counting problems. SIAM
Journal on Computing 27(4):1142–1167.
Konczak, K., and Lang, J. 2005. Voting procedures with
incomplete preferences. In Proceedins of the Multidisci-
plinary IJCAI-05 Worshop on Advances in Preference Han-
dling, 124–129.
Krentel, M. 1988. The complexity of optimization prob-
lems. Journal of Computer and System Sciences 36(3):490–
509.
Lin, A. 2011. The complexity of manipulating k-approval
elections. In Proceedings of the Third International Confer-
ence on Agents and Artificial Intelligence, 212–218.
Meir, R.; Procaccia, A.; Rosenschein, J.; and Zohar, A.
2008. The complexity of strategic behavior in multi-
winner elections. Journal of Artificial Intelligence Research
33:149–178.
Obraztsova, S., and Elkind, E. 2011. On the complexity
of voting manipulation under randomized tie-breaking. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 319–324.
Obraztsova, S.; Elkind, E.; and Hazon, N. 2011. Ties matter:
Complexity of voting manipulation revisited. In Proceed-
ings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, 71–78.
Simon, J. 1975. On Some Central Problems in Computa-
tional Complexity. Ph.D. Dissertation, Cornell University,
Ithaca, N.Y. Available as Cornell Department of Computer
Science Technical Report TR75-224.
Valiant, L. 1979. The complexity of computing the perma-
nent. Theoretical Computer Science 8(2):189–201.
Walsh, T., and Xia, L. 2011. Venetian elections and lot-
based voting rules. In Proceedings of IJCAI Workshop on
Social Chocie and Aritficial Intelligence, 93–98.
Xia, L., and Conitzer, V. 2011. Determining possible and
necessary winners given partial orders. Journal of Artificial
Intelligence Research 41:25–67.
Xia, L.; Lang, J.; and Monnot, J. 2011. Possible win-
ners when new alternatives join: New results coming up!
In Proceedings of the 10th International Conference on Au-
tonomous Agents and Multiagent Systems, 829–836.
Zankó, V. 1991. #P-completeness via many-one reductions.
International Journal of Foundations of Computer Science
2(1):76–82.

1505




