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Abstract

Schulze’s rule and ranked pairs are two Condorcet methods
that both satisfy many natural axiomatic properties. Schulze’s
rule is used in the elections of many organizations, including
the Wikimedia Foundation, the Pirate Party of Sweden and
Germany, the Debian project, and the Gento Project. Both
rules are immune to control by cloning alternatives, but little
is otherwise known about their strategic robustness, including
resistance to manipulation by one or more voters, control by
adding or deleting alternatives, adding or deleting votes, and
bribery. Considering computational barriers, we show that
these types of strategic behavior are NP-hard for ranked pairs
(both constructive, in making an alternative a winner, and de-
structive, in precluding an alternative from being a winner).
Schulze’s rule, in comparison, remains vulnerable at least to
constructive manipulation by a single voter and destructive
manipulation by a coalition. As the first such polynomial-
time rule known to resist all such manipulations, and consid-
ering also the broad axiomatic support, ranked pairs seems
worthwhile to consider for practical applications.

Introduction
In multi-agent systems, voting is a popular method used to
aggregate agents’ preferences to make a joint decision. Yet
social choice does not give a clear prescription for the best
choice for a voting rule. A common approach is to look
for rules that satisfy particular axiomatic properties. The
Condorcet criterion is a prominent example of such a prop-
erty. A voting rule satisfies the Condorcet criterion (and is
called a Condorcet method), if it always selects the Con-
dorcet winner whenever one exists. An alternative c is the
Condorcet winner if it beats all other alternatives in pairwise
elections, that is, if for each other alternative d, a majority of
voters prefer c to d. Unfortunately, some natural axioms are
not compatible with others, as famously shown in Arrow’s
impossibility theorem (Arrow 1950). For this reason, it is
plausible to adopt a voting rule that satisfies as many natural
axiomatic properties as possible.

Both Schulze’s rule (Schulze for short) (Schulze 2011)
and the ranked pairs rule (Tideman 1987), satisfy many
natural and well-studied axiomatic properties. For exam-
ple, among all voting rules we are aware of (including all
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common voting rules), they are the only two that satisfy
anonymity, Condorcet criterion, resolvability, Pareto opti-
mality, reversal symmetry, monotonicity, and independence
of clones (Schulze 2011). Moreover, the winner(s) can be
computed in polynomial time in both rules. As a comparison
to some well-known voting rules, for example, Borda does
not satisfy the Condorcet criterion, Copeland does not sat-
isfy resolvability, STV does not satisfy reversal symmetry,
monotonicity, or the Condorcet criterion, and the maximin
rule does not satisfy reversal symmetry. The Kemeny winner
cannot be computed in polynomial-time unless P=NP. Only
STV amongst these rules satisfies independence of clones.1

Schulze is currently being used in many real-world
elections, including Wikimedia Foundation, the Pirate
Party of Sweden, the Pirate Party of Germany, the De-
bian project, and the Gento Project (Schulze 2011), and
is recognized as currently “the most widespread Con-
dorcet method” on Wikipedia (http://en.wikipedia.org/wiki/
Schulze method#Use of the Schulze method). In sharp
contrast, and despite sharing all these axiomatic properties,
ranked pairs is not widely used. Schulze himself has re-
marked that ranked pairs “comes closest” amongst other
election methods to his rule in terms of its axiomatic proper-
ties, differing only in that Schulze selects an alternative from
the “min max” set: when the Schulze winner is unique, then
the winner minimizes the maximum defeat in pairwise elec-
tions against other alternatives (Schulze 2011).

Our paper sets out to look for additional distinctions be-
tween Schulze and ranked pairs that can come from a com-
putational viewpoint. A voting rule is immune to a type of
strategic behavior if, for any profile, it is impossible to make
the winner more preferable to a strategic individual. Other-
wise the rule is susceptible. A voting rule is resistant (re-
spectively, vulnerable) to a type of strategic behavior, if de-
ciding whether the strategic individual can make the winner
more preferable by using only the particular type of strategic
behavior is NP-hard (respectively, is in P).

It is common to consider the following types of strategic
behavior:
• Manipulation: a voter or a coalition of voters cast

false vote(s) to make the winner more preferable. Having

1The definition of these rules and axiomatic properties can be
found in the references. We omit them due to the space constraint.
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rules that are susceptible to manipulation is inevitable due
to the Gibbard-Satterthwaite theorem (Gibbard 1973; Sat-
terthwaite 1975), but resistance can sometimes be achieved.
• Control: a chairman changes the procedure, for example

by adding or deleting alternatives, adding or deleting votes,
or introducing clones of alternatives, in order to make the
winner more preferable (Bartholdi, Tovey, and Trick 1992;
Tideman 1987). Control by adding votes is equivalent to
false-name manipulation (Conitzer and Yokoo 2010).
• Bribery: a briber can change some votes by bribing the

voters, in order to make the winner preferable (Faliszewski,
Hemaspaandra, and Hemaspaandra 2009). The bribery
problem is closely related to the problem of determining
the margin of victory (Cary 2011; Magrino et al. 2011;
Xia 2012).

All of these strategic behaviors have both constructive and
destructive variants. In the constructive (respectively, de-
structive) variant, the strategic individual wants to make a
favored alternative win (respectively, a disfavored alterna-
tive lose). These types of strategic behavior are generally
not known to be comparable, in the sense that establishing
resistance or vulnerability of one kind does not imply resis-
tance or vulnerability of another kind.2

Many common voting rules are susceptible to control or
bribery and it is common to look for computational re-
sistance. But prior to our work we know of no voting
rule that has been shown to be resistant (or immune) to
constructive and destructive control in regard to the strate-
gic behaviors considered here, or even in regard to con-
trol via changing the set of alternatives or adding or delet-
ing votes. For example, Copeland and Llull are vulnerable
to destructive control by adding (deleting) alternatives (Fal-
iszewski et al. 2009), plurality is vulnerable to constructive
and destructive control by adding (deleting) votes, approval
voting and sincere-strategy preference-based approval vot-
ing are vulnerable to destructive control by adding (delet-
ing) votes (Hemaspaandra, Hemaspaandra, and Rothe 2007;
Erdélyi, Nowak, and Rothe 2008).

Our contributions. For Schulze and ranked pairs, it was
only known that both are immune to control by cloning al-
ternatives (Tideman 1987; Schulze 2011), and that ranked
pairs is resistant to constructive manipulation for any fixed
number of manipulators (Xia et al. 2009).3 We show that
ranked pairs is resistant to all types of strategic behavior
under consideration. To the best of our knowledge, this is
the first time that a voting rule is known to resist all these
types of strategic behavior. Schulze also provides good re-

2An exception is that the vulnerability to the constructive vari-
ant of some type of strategic behavior implies the vulnerability to
the destructive variant. (For every alternative d other than the dis-
favored alternative c, we just check if it is possible to make d win.)
However, if we know that a voting rule is resistant to the destruc-
tive variant, we only know that computing the constructive variant
is not in P (unless P= NP); we do not immediately know whether
computing the constructive variant is NP-hard. Some other con-
nections can be found in Section 4 of (Faliszewski, Hemaspaandra,
and Hemaspaandra 2009).

3The proof in (Xia et al. 2009) works for ranked pairs with fixed
tie-breaking and ranked pairs with parallel-universe tie-breaking.

sistance, but remains vulnerable to constructive manipula-
tion by a single manipulator and destructive manipulation
for any fixed number of manipulators, while the computa-
tional resistance of Schulze in regard to destructive control
by adding alternatives or deleting votes remains open. Due
to the space constraint, some proofs are omitted. They can
be found on the second author’s homepage.

Admittedly, NP-hardness is merely a worst-case concept.
For example, manipulation has been shown to be compu-
tationally easy for any “reasonable” voting rule, including
ranked pairs and Schulze, in the sense that with a high prob-
ability, the manipulators can decide whether they can make
their favored alternative win by just looking at the number of
manipulators, and this leads to a polynomial-time algorithm
they can use to compute a successful manipulation (Xia and
Conitzer 2008). See (Faliszewski and Procaccia 2010; Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2010; Rothe
and Schend 2012) for recent surveys. Still, having a worst-
case barrier is better than no barrier, and no average-case
analysis is available for the other kinds of strategic behavior
considered here. Our results provide a computational dif-
ferentiator between Schulze and ranked pairs, and also dis-
tinguish ranked pairs in satisfying resistance properties that
are not known for other rules. Given the broad axiomatic
support for both Schulze and ranked pairs and given that
Schulze is in wide use, there seems to be good support to
adopt ranked pairs in practical applications.

Preliminaries
Let C denote the set of alternatives, |C| = m. We assume
strict preference orders. That is, a vote is a linear order over
C. The set of all linear orders over C is denoted by L(C).
A preference-profile P is a collection of n votes for some
n ∈ N, that is, P ∈ L(C)n. A voting rule r is a mapping that
assigns to each preference-profile a set of non-empty win-
ning alternatives. That is, r : L(C)n → (2C \∅). Throughout
the paper, we let n denote the number of votes and m denote
the number of alternatives.

For any profile P and any pair of alternatives {c, d}, let
DP (c, d) denote the number of times that c � d in P minus
the number of times that d � c in P . The weighted major-
ity graph (WMG) is a directed graph whose vertices are the
alternatives, and there is an edge between every pair of ver-
tices, where the weight on c → d is DP (c, d). We note that
in the WMG of any profile, all weights on the edges have the
same parity (and whether this is odd or even depends on the
number of votes), and DP (c, d) = −DP (d, c).

Ranked pairs: This rule selects the winner by first creat-
ing a ranking of all the alternatives and then selecting as the
winner the alternative at the top. In each step, consider a pair
of alternatives ci, cj that have not previously been consid-
ered; specifically, choose a remaining pair with the highest
DP (ci, cj). When there are multiple pairs with the highest
weight, break ties according to a fixed tie-breaking method
on pairs of alternatives. Fix the order ci � cj , unless this
contradicts previous orders that we fixed (that is, it violates
transitivity), in which case this pair is ignored going for-
ward. Continue until all pairs of alternatives are considered,
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ending with a ranking of all alternatives.4
Schulze: In the WMG of a profile P , the weight of a path

d1 → d2 → · · · → dl is mini≤l−1 DP (di, di+1).5 That is,
the weight of a path is the weight of the weakest edge along
the path. We note that the weight can be negative. For any
pair of alternatives (c, d), let SP (c, d) denote the maximum
weight path from c to d, giving the Schulze score a “max
min” semantics. Sometimes the subscript P is omitted when
there is no chance of confusion. A Schulze winner is an
alternative c such that for any other alternative d, SP (c, d) ≥
SP (d, c). Such an alternative always exists (Schulze 2011).
Example 1 The alternatives are {a, b, c, d}. Let P be a pro-
file whose WMG is illustrated in Figure 1.

Figure 1: The weighted majority graph of the profile in Exam-
ple 1. For simplicity, this figure only shows edges with positive
weights, ignoreing edges with negative weights.

For ranked pairs, the following edges are fixed in order:
b → c, c → d, a → d, b → a, and the winner is b. For
Schulze, we have SP (a, b) = SP (a, c) = SP (a, d) = 6 >
2 = S(b, a) = S(c, a) = S(d, a), and the winner is a.

Manipulation, Control, and Bribery
In the context of strategic behavior, we will say that an alter-
native “wins” for Schulze, if it is the unique winner. Our re-
sults also extend to the case when being in the winning set is
sufficient. If not mentioned specifically, all our results about
ranked pairs hold for any fixed tie-breaking mechanism.
Definition 1 In a constructive (respectively, destructive)
MANIPULATION problem, we are given a voting rule r, M
manipulators, a profile PNM of the non-manipulators, and
a (dis)favored alternative c ∈ C. We are asked whether
the manipulators can cast their votes P ∗ such that {c} =
r(PNM ∪ P ∗) (respectively, {c} 6= r(PNM ∪ P ∗)).

This problem is also known as the unweighted coalitional
manipulation problem in the literature.
Definition 2 In a constructive (respectively, destructive)
CONTROL-ADD-ALT problem, we are given a set of alterna-
tives C, a set of new alternatives C′, a profile over C ∪ C′, a
quota k ≤ |C′|, and a (dis)favored alternative c ∈ C. We are
asked whether the chairman can add no more than k alter-
natives in C′ such that c is the unique winner (repsectively, c
is not the unique winner).

4In this paper, ranked pairs is a resolute rule, that is, it only
selects a single winner. For another version of ranked pair that
selects multiple winners by using the parallel-universe tie-breaking
mechanism (Conitzer, Rognlie, and Xia 2009), it is NP-complete
to compute the winners (Brill and Fischer 2012).

5The original definition of the Schulze rule (Schulze 2011) is
slightly different, but the voting rule is the same when the voters’
preferences are linear orders.

Definition 3 In a constructive (respectively, destructive)
CONTROL-DEL-ALT problem, we are given a profile over
C, a quota k < |C| and a (dis)favored alternative c ∈ C. We
are asked whether the chairman can delete no more than k
alternatives such that c is the unique winner (respectively, c
is not the unique winner, and without deleting c).

Definition 4 In a constructive (respectively, destructive)
CONTROL-ADD-VOTE problem, we are given n votes and
a set N ′ of additional votes, a quota k ≤ |N ′| and a
(dis)favored alternative c ∈ C. We are asked whether the
chairman can add no more than k votes from N ′ such that
c is the unique winner (respectively, c is not the unique win-
ner).

Definition 5 In a constructive (respectively, destructive)
CONTROL-DEL-VOTE problem, we are given n votes, a
quota k < n, and a (dis)favored alternative c ∈ C. We
are asked whether the chairman can delete no more than k
votes such that c is the unique winner (respectively, c is not
the unique winner).

Definition 6 In a constructive (respectively, destructive)
BRIBERY problem, we are given a set of n votes, a quota
k < n, and a (dis)favored alternative c ∈ C. We are asked
whether the briber can change no more than k votes such
that c is the unique winner (respectively, c is not the unique
winner).

Many proofs in this paper use the McGarvey’s trick (Mc-
Garvey 1953), which constructs a profile whose WMG is the
same as some targeted weighted directed graph. This will be
helpful because when we present the proof, we only need to
specify the WMG instead of the whole profile, and then by
using the McGarvey’s trick, a profile can be constructed in
polynomial time. The trick works as follows. For any pair
of alternatives, (c, d), if we add two votes [c � d � c3 �
· · · � cm], [cm � cm−1 � · · · � c3 � c � d] to a profile P ,
then in the WMG, the weight on the edge c→ d is increased
by 2 and the weight on the edge d → c is decreased by 2,
while the weights on other edges are unchanged. Moreover,
for any given alternative c′ ∈ C \ {c, d}, we can switch c′

and cdm/2e in the two votes, such that c′ is always ranked
within the top dm/2e + 1 positions in the two votes. If we
require c or d be among top dm/2e + 1 positions, then we
add the following two votes. [c3 � · · · � cdm/2e+1 � c �
d � cdm/2e+2 � · · · � cm], [cm � · · · � cdm/2e+2 � c �
d � cdm/2e+1 � · · · � c3]. All of these variants on vote
pairs provide the same effect on the weights of c → d and
d→ c while leaving other weights unchanged.

Manipulation
We first investigate constructive MANIPULATION for
Schulze when there is one manipulator. Fix alternative c.
Let S(·, ·) denote SPNM (·, ·). We note that the manipula-
tor’s vote can only change the weight of any edge in the
WMG by 1. Hence, if there exists another alternative d 6= c
such that S(d, c) ≥ S(c, d) + 2, then c cannot be made the
(unique) winner by a single manipulator. In other words, if c
can be made the winner by a single manipulator, then c must
be a co-winner of PNM under Schulze. It has been proved
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that for any Schulze co-winner c, there exists a vote V such
that after V is added to the profile, c becomes the unique
winner (the Claim in Section 4.2.2 in (Schulze 2011)). This
property is called “second version of the resolvability prop-
erty”. Moreover, Schulze’s proof for the satisfiability of the
property is constructive, where V can be computed in poly-
nomial time. Therefore, given a MANIPULATION instance,
if c is not a co-winner of PNM then c cannot be made the
winner by a single manipulator, otherwise c can be made the
winner by a single manipulator. We immediately have the
following corollary.6

Corollary 1 There is a polynomial time algorithm for Con-
structive MANIPULATION with one manipulator in Schulze.

The algorithm does not have a straightforward extension
to two or more manipulators. For example, suppose there
are four alternatives {a, b, c, d} and two manipulators. The
WMG of PNM is illustrated in the following figure.

Figure 2: The weighted majority graph of PNM .

Note that it is optimal for the manipulator to rank c in the
top position. It is possible for the manipulators to make c
beat a (because SPNM (c, a) + 4 = 8 > 6 = SPNM (a, c))
or make c beat d (because SPNM (c, d) + 4 = 10 > 8 =
SPNM (d, c)). However, the weight on b → d must be in-
creased by two for c to beat d, and it must be decreased by
two for c to beat a. These two objectives cannot be achieved
at the same time, which means that c cannot be made the
winner.

Now we turn to destructive MANIPULATION. The follow-
ing lemma gives a necessary and sufficient condition for c to
be the unique Schulze winner.
Lemma 1 Alternative c is the unique Schulze winner of
a profile P if and only if for every other alternative d,
SP (c, d) > SP (d, c).

We next present a polynomial-time algorithm for de-
structive MANIPULATION for Schulze. Let S(·, ·) denote
SPNM (·, ·). We will show that the M manipulators can
make c not be the unique winner if and only if there exists
an alternative d 6= c such that S(d, c) ≥ S(c, d)− 2M . It is
easy to check that if S(d, c) < S(c, d) − 2M holds for ev-
ery alternative d that is different from c, then c must remain
the unique winner. Otherwise, the algorithm will find a suc-
cessful destructive manipulation in the following way. Let d
denote an alternative such that S(d, c) ≥ S(c, d)− 2M and
S(d, c) is maximized. Let k = S(d, c). Then, we choose
an arbitrary simple path (that is, a path that does not contain
a cycle) d(= f0) → f1 → · · · → fp → c with weight k.

6We thank Markus Schulze for pointing out the relationship be-
tween constructive MANIPULATION with one manipulator and the
second version of resolvability.

Algorithm 1: DestructiveManipulation
Input: PNM , c, and the number of manipulators M .

1 Compute SPNM (·, ·). Denote this as S(·, ·)
2 if for all d 6= c, S(d, c) < S(c, d)− 2M then
3 Output: No destructive manipulation.
4 end
5 Let d = argmaxd′:S(d′,c)≥S(c,d′)−2M{S(d′, c)} and
k = S(d, c). Let [d(= f0)→ f1 → · · · → fp → c] denote
an arbitrary simple path from d to c with weight k. Let
R = {d � f1, f1 � f2, . . . , fp � c}.

6 if S(d, c) ≥ S(c, d) then
7 return a profile where all manipulators cast the same vote

that extends R.
8 end
9 else

10 Let 0 ≤ T ≤ p denote the maximum number such that
S(fT , c) = k and S(c, fT ) ≤ k + 2M .

11 Let R1 = {fT � fT+1, . . . , fp � c} and R2 = ∅.
12 Compute all pairs of alternatives (a, b) such that

S(b, fT ) ≥ S(c, fT ) + 2 and S(a, fT ) ≤ S(c, fT ). Add
b � a to R2.

13 return a profile where all manipulators cast the same vote
that extends R = R1 ∪R2.

14 end

The algorithm will find an alternative fT along the path to
beat c. That is, the algorithm will compute a profile P ∗ for
the manipulators such that SPNM∪P∗(fT , c) = k + M ≥
S(c, fT ) −M = SPNM∪P∗(c, fT ), which means that c is
not the unique Schulze winner in PNM ∪ P ∗ (Lemma 1).

The algorithm also illustrates that, if the manipulators can
cast votes such that c is not the unique winner, then they can
also do so by casting the same vote.

Theorem 1 Algorithm 1 runs in polynomial time and com-
putes destructive MANIPULATION for Schulze.

Proof sketch: It is not hard to show that if all manipulators’
votes extend R, then c is not the unique winner because at
least d beats c. We now prove that there is no no cycle in
R1 ∪R2.

We first prove that for every i such that T < i ≤ p,
S(c, fi) > k + 2M . For contradiction, suppose there exists
an i, with T < i ≤ p, for which S(c, fi) ≤ k+2M . Because
the weight of the path from d to c is k, then S(fi, c) ≥ k. If
S(fi, c) = k, then i violates the maximality of T , which
is a contradiction. So S(fi, c) > k. Now, since k is
the largest S(d, c) such that S(d, c) ≥ S(c, d) − 2M , we
must have S(fi, c) < S(c, fi) − 2M . Hence, we have
S(c, fi) > S(fi, c) + 2M > k + 2M and a contradiction.

We are now ready to prove that there is no cycle in R1 ∪
R2. For contradiction, suppose there is a cycle in R1 ∪ R2.
Because R1 is composed of edges of a simple path from fT
to c, one or more edges from R2 must be involved, and we
need to consider the following two cases.

Case 1: The cycle contains an edge in R1. Then, there
exist (a � b) ∈ R1 and (b � e) ∈ R2 in the cycle. This case
is illustrated in Figure 3. By construction, since (a � b) ∈
R1 then b = fi for some T < i ≤ p, or b = c. Because (b �
e) ∈ R2, S(b, fT ) ≥ S(c, fT ) + 2 (Step 12). We see that
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MANIPULATION Cons.ADDALT Des.ADDALT DELALT {ADD,DEL}VOTE BRIBERY

Ranked pairs
R

(Xia et al. 2009) (Thm. 2)
R

(Thm. 3)

R
(Thm. 3)

R
(Thm. 4)

R
(Thm. 5, Thm. 6)

R
(Xia 2012)
(Thm. 7)

Schulze
V

(Coro. 1, Thm. 1)
? ?

Table 1: Summary of results. If not mentioned specifically, the results hold for both constructive and destructive cases. Question marks
represent open questions.

b 6= c. Now, we have shown above that S(c, b) > k+2M ≥
S(c, fT ). Therefore, S(c, fT ) ≥ min{S(c, b), S(b, fT )} >
S(c, fT ), and a contradiction.

Figure 3: A contradiction for the case (a � b) ∈ R1 and (b �
e) ∈ R2, where l = S(c, fT ).

Case 2: The cycle is only composed of edges in R2.
Then, there exist (e � b) ∈ R2 and (b � a) ∈ R2 in
the cycle. Because (b � a) and (e � b) are in R2 then by
applying the first and second conditions in Step 12, we have
S(b, fT ) ≥ S(c, fT ) + 2 and S(b, fT ) ≤ S(c, fT ), respec-
tively, and a contradiction.

It follows that Algorithm 1 runs in polynomial time and
computes destructive MANIPULATION. �

Theorem 2 It is NP-complete to compute destructive MA-
NIPULATION for ranked pairs, for any fixed number of ma-
nipulators and any fixed tie-breaking mechanism.

Proof sketch: The proof is by tweaking the NP-
completeness proof of constructive manipulation for ranked
pairs (Xia et al. 2009), which was a reduction from 3SAT. In
the proof in (Xia et al. 2009), a 3SAT instance has a solution
if and only if c can be made to win. We add one alternative
d, and let d beat all other alternatives except c in their pair-
wise elections, and the weights on these edges in the WMG
are high, so that these edges will be fixed first. We also let
d→ c with weight 2M−2, so that if all manipulators rank c
in the top places, then c barely beats d in their pairwise elec-
tion. We are asked whether d can be made to lose. We note
that if d is not the winner for ranked pairs, then c must be
the winner, which happens if and only if the 3SAT instance
has a solution. This proves the NP-hardness. �

Control and Bribery
It is easy to come up with examples where Schulze and
ranked pairs are not immune to constructive and destructive
variants of control by adding or deleting alternatives, con-
trol by adding or deleting votes, and bribery. In this section,
we study whether Schulze and ranked pairs are able to resist
these types of control and bribery.

Theorem 3 Schulze and ranked pairs resist constructive
CONTROL-ADD-ALT. Ranked pairs resists destructive
CONTROL-ADD-ALT.

Proof sketch: We first prove that Schulze and ranked pairs
resist constructive CONTROL-ADD-ALT through a reduc-
tion from EXACT COVER BY 3-SETS (X3C) (Garey and
Johnson 1979). In an X3C instance, we are given two
sets A = {a1, . . . , aq} (where q is a multiple of 3) and
E = {E1, · · · , Et}, where for each E ∈ E , E ⊆ A and
|E| = 3. We are asked whether there exist q/3 elements
E ′ = {Ej1 , . . . , Ejq/3} in E such that each element in A ap-
pears in one and exactly one element in E ′. Given an X3C
instance, we construct an election, where the old alternatives
are {c} ∪ A and the new alternatives are E . If no new alter-
native is added, then c loses to all other alternatives in pair-
wise elections. Each alternative E in E is used to introduce
a strong path from c to the three alternatives in E, and we
are asked whether the chair can introduce no more than q/3
alternatives to make c win. Formally, the election is defined
as follows.
• Alternatives: the old alternatives are {c}∪A and the new
alternatives are E . We are asked whether c can be made win
by adding no more than q/3 alternatives in E .
• Profile: Because of the McGarvey’s trick, it suffices to
specify the WMG of the profile, where we have the follow-
ing edges.
− For each i ≤ q, there is an edge ai → c with weight 4.
− For each E ∈ E , there is an edge c→ E with weight 6,

and for every c′ ∈ E, there is an edge E → c′ with weight
6.
− All edges not defined above have zero weight.
It is easy to check that c is the (unique) Schulze (respec-

tively, ranked pairs) winner if and only if the q/3 new alter-
natives correspond to an exact cover of A.

For the destructive variant, we add d to the set of old al-
ternatives, and in the WMG, let c → d with weight 2, and
there are edges from d to all other alternatives with weight
6. It follows that if d is not the ranked pairs winner if and
only if c is the ranked pairs winner. �

Theorem 4 Ranked pairs resists constructive and destruc-
tive CONTROL-DEL-ALT.

Proof sketch: We first prove that ranked pairs resist
constructive CONTROL-DEL-ALT through a reduction from
X3C. Given an X3C instance E = {E1, · · · , Et} over
A = {a1, . . . , aq}, we construct an election, where the al-
ternatives are {c} ∪ A ∪ E ∪ {cji : ∀ci ∈ Ej}. We are asked
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whether the chair can delete no more than q/3 alternatives to
make c win. If no alternative is deleted, then all alternatives
in A are ranked above c. Removing each alternative E in E
will introduce a strong path from c to the three alternatives
in E. Therefore, the only way to make c win is to remove the
q/3 alternatives in E that correspond to a 3-cover. Formally,
the election is defined as follows.
• Alternatives: {c} ∪ A ∪ E ∪ {cji : ∀ci ∈ Ej}. We are
asked whether c can be made win by deleting no more than
q/3 alternatives.
• Profile: Again, it suffices to specify the WMG of the pro-
file. In the WMG, we have the following edges.
− For each i ≤ q, there is an edge ai → c with weight

4; for all j such that ai ∈ Ej , there is an edge c → cji with
weight 8 and an edge cji → ai with weight 6.
− For each Ej ∈ E and each ai ∈ Ej , there is an edge

ai → Ej with weight 8, and an edge Ej → cji with weight
8.
− All edges c → c′ not defined above have weight 2.

Other edges have weight 0.
It is easy to check that c is the ranked pairs winner if and

only if the q/3 deleted alternatives are in E , and they corre-
spond to an exact cover of A.

For the destructive variant, we add d to the set of alterna-
tives, and in the WMG, let c → d with weight 2, and there
are edges from d to all other alternatives with weight 8. It
follows that if d is not the ranked pairs winner if and only if
c is the ranked pairs winner. �

Theorem 5 Schulze and ranked pairs resist constructive
and destructive CONTROL-ADD-VOTE.

Proof sketch: We first prove that Schulze and ranked pairs
resist constructive CONTROL-ADD-VOTE through a reduc-
tion from X3C. Given an X3C instance E = {E1, · · · , Et}
overA = {a1, . . . , aq}, we construct an election as follows.
• Alternatives: C = {c, d} ∪ A. We are asked whether c
can be made to win by adding no more than q/3 votes. For
ranked pairs, the proof is for tie-breaking order where c→ d
is ranked in the bottom. Our proof can be extended to any
other tie-breaking orders. (For the co-winner variant of the
problem for Schulze, we add a new alternative to introduce
strong paths from c to A.)
• Profile: For each j ≤ t, there is a new vote Vj = [Ej �
c � d � (A\Ej)]. The WMG of the old votes is defined as
follows.
− There is an edge c→ d with weight 2q/3 + 2.
− For each i ≤ q, there are an edge d → ai with weight

2q, and an edge ai → c with weight 4q/3− 2.
− All other edges have weight 0.
We note that adding Vj will increase the weight on c→ d

and c→ c′ (for all c′ ∈ (A\Ej)) by 1, and decrease c→ c′

for all c′ ∈ Ej by 1. The only way for c to win for Schulze
or ranked pairs is that after q/3 new votes are added, in the
WMG c → d with weight q + 2, and for all i ≤ q, ai → c
with weight q. This happens if and only if the votes added by
the chairman correspond to an exact cover of A. Therefore,
constructive control by adding votes is NP-hard for Schulze
and ranked pairs.

For the destructive variant, we are asked whether the
chairman can add no more than q/3 votes such that d does
not win. We note that if c is not the ranked pairs winner, then
d is the ranked pairs winner. Therefore, destructive control
for ranked pairs is NP-hard. For Schulze, we make the fol-
lowing changes to the above reduction: the weight on the
edge c→ d is 2q/3. �

Using similar reductions, we can prove the following two
theorems.
Theorem 6 Schulze and ranked pairs resist constructive
and destructive CONTROL-DEL-VOTE.
Proof sketch: The proof is similar to the proof of Theo-
rem 5. The differences are: we specify the WMG for the
old votes plus the new votes, and for each j ≤ t, there is
a voter whose vote is Vj = [d � (A \ Ej) � c � Ej ].
Therefore, removing Vj will increase the weight on c → d
and c→ c′ (for all c′ ∈ (A\Ej)) by 1, and decrease c→ c′

for all c′ ∈ Ej by 1. When using McGarvey’s trick, we al-
ways rank c among top bq/2c + 2 positions. We need this
constraint to make sure that the chairman can only make c
to win by removing votes in {Vj}.
• Alternatives: C = {c, d, c1, . . . , cq}. We are asked

whether c can be made win by deleting no more than q/3
votes. For ranked pairs, the proof is for tie-breaking or-
der where c → d is ranked in the bottom. Our proof can
be extended to other tie-breaking orders. (For co-winner
variant of the problem for Schulze, we add a new alterna-
tive to introduce strong paths from c to {c1, . . . , cq}.)
• Profile: For each j ≤ t, there is a voter whose vote is

Vj = [d � (C \ Sj) � c � Sj ]. The WMG of the profile
is defined as follows. When using McGarvey’s trick, we
always rank c among top bq/2c + 2 positions. We need
this constraint to make sure that the chairman can only
make c to win by removing votes in {Vj}.
– There is an edge c→ d with weight 2q/3 + 2.
– For each i ≤ q, there are an edge d → ci with weight

2q, and an edge ci → c with weight 4q/3− 2.
– All other edges not defined above have weight 0.

The only way for c to win for Schulze or ranked pairs is
that after q/3 votes are deleted, in the WMG c → d with
weight q + 2, and for all i ≤ q, ci → c with weight q.
This happens if and only if the chair only delete votes in
{Vj}, and these votes correspond to an exact cover of C.
Therefore, constructive control by deleting votes is NP-hard
for Schulze and ranked pairs.

For destructive control, we are asked whether the chair-
man can add no more than q/3 votes such that d does not
win. We note that if c is not the ranked pairs winner, then d
is the ranked pairs winner. Therefore, destructive control for
ranked pairs is NP-hard. For Schulze, we make the follow-
ing changes to the above reduction: the weight on the edge
c→ d is 2q/3. �

It was shown (Xia 2012) that for some fixed-order tie-
breaking mechanisms, ranked pairs resists constructive and
destructive BRIBERY, even when the briber’s quota is 1. We
note that if the briber’s quota is bounded above by a con-
stant, then destructive BRIBERY for Schulze is easy (by enu-
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merating all possible combinations of votes to remove, and
then the problem becomes a standard destructive MANIPU-
LATION problem, which is in P due to Theorem 1). We show
that if the quota is not bounded, then Schulze also resists
constructive and destructive BRIBERY.

Theorem 7 Schulze resists constructive and destructive
BRIBERY.

Proof sketch: The proof is similar to the proof of Theo-
rem 6. The differences are: For each i ≤ q, there is an edge
ai → c with weight 2q− 2. Again, when using McGarvey’s
trick, we always rank c among top dq/2e+ 2 positions. �

Summary and Future Work
In this paper, we investigated the computational complexity
of strategic behavior in Schulze and ranked pairs rules. Our
results and open questions are summarized in Table 1. We
also conjecture some other voting rules that resist construc-
tive MANIPULATION for even one manipulator, for example,
STV (Bartholdi and Orlin 1991), Nanson’s rule and Bald-
win’s rule (Davies et al. 2012), also broadly resist these
types of strategic behavior. There remain other types of
bribery and control to consider, for example control by par-
titioning alternatives or voters, and run-off partitioning of
alternatives (Bartholdi, Tovey, and Trick 1992), as well as
multi-mode control and bribery (Faliszewski, Hemaspaan-
dra, and Hemaspaandra 2011). Most importantly, the anal-
ysis here adopts worst-case intractability and it is important
to consider average case analysis for these richer kinds of
strategic behavior that reach beyond manipulation.
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