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Abstract

We present the first real-world benchmark for sequentially-
optimal team formation, working within the framework of a
class of online football prediction games known as Fantasy
Football. We model the problem as a Bayesian reinforce-
ment learning one, where the action space is exponential in
the number of players and where the decision maker’s be-
liefs are over multiple characteristics of each footballer. We
then exploit domain knowledge to construct computationally
tractable solution techniques in order to build a competitive
automated Fantasy Football manager. Thus, we are able to es-
tablish the baseline performance in this domain, even without
complete information on footballers’ performances (accessi-
ble to human managers), showing that our agent is able to
rank at around the top percentile when pitched against 2.5M
human players.

1 Introduction
In many real-world domains, a number of actors, each with
their own abilities or characteristics, need to be teamed up
to serve a task in order to achieve some common objec-
tive (e.g., maximising rewards or reducing inefficiencies).
Especially when there is uncertainty over these characteris-
tics, forming the best possible team is often a lengthy pro-
cess involving replacing certain members with others. This
fact naturally gives rise to the problem of identifying the
sequence of team formation decisions with maximal value
over time, for example in choosing the best sensors to surveil
an area (Dang et al. 2006), dispatching of optimal teams of
emergency responders (Ramchurn et al. 2010), or optimal
relaying in ad hoc networks. To date, however, the lack of
datasets and the ability to test sequential team formation al-
gorithms in such domains means that there is no real-world
validation of such algorithms. In this paper, we introduce
and solve the sequential team formation problem posed by
a popular online Fantasy Football game known as Fantasy
Premier League (FPL), where a participant’s task (as man-
ager) is to repeatedly select highly-constrained sets of play-
ers in order to maximise a score reflecting the real-world
performances of those selected players in the English Pre-
mier League. Given the uncertainty in each player’s perfor-
mance (e.g., due to injury, morale loss, or facing a stronger
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team) and the cost of exchanging players with previously
unselected ones, it is important to properly consider future
events in order to maximise the final score at the end of the
season. The task is particularly challenging from a com-
putational perspective as there are more than 500 possible
footballers, selectable in over 1025 ways, and competitors
must make 38 such selections over the season.

This problem is reminiscent of work within the multi-
agent systems literature on determining in a sequentially op-
timal manner a team of service providing agents (Teacy et
al. 2008), or the appropriate set of agents to work with in
a coalition formation problem (Chalkiadakis and Boutilier
2010). Both of these approaches employ Bayesian rein-
forcement learning techniques to identify the most reward-
ing decisions over time. Bayesian agents maintain a prior
over their uncertainty, representing their beliefs about the
world, and are able to explore optimally (Bellman 1961).
By being Bayesian, the approaches of (Teacy et al. 2008;
Chalkiadakis and Boutilier 2010) are thus able to make op-
timal team formation decisions over time. However, they
both operate on (essentially) synthetic problems, of a rela-
tively small size. Naturally, it is fundamental to assess the
usefulness of such techniques in large real-world problems.

Against this background, in this paper we develop an au-
tomated FPL manager by modelling the FPL game dynamics
and building principled solutions to the sequential team for-
mation problem it poses. More specifically, we model the
manager’s decision problem as a belief-state Markov deci-
sion process1 and attempt to efficiently approximate its solu-
tion. This paper makes the following contributions. First, we
provide the first real-world benchmark for the Fantasy Foot-
ball problem which allows us to pitch an automated player
against human players. We consider the fact that our man-
ager achieves around the top percentile when facing 2.5M
human players to be particularly encouraging. Second, we
present progressively more principled methods in terms of
their handling of uncertainty and demonstrate how exploit-
ing model uncertainty can guide the search over the space of
selectable teams. Finally, we compare the performance of
different solution approaches and draw conclusions as to the
applicability of such techniques in large real-world domains.

1Often known as a partially-observable Markov decision pro-
cess.
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The rest of the paper is structured as follows. Section
2 gives a brief high-level outline of the dynamics of FPL
and Section 3 goes on to model this environment formally in
terms of a belief-state Markov decision process. Section 4
then outlines techniques to solve the problem and these are
empirically evaluated in Section 5. Section 6 concludes.

2 Background on Fantasy Football

Our automated player operates according to the rules and
datasets of the official English Premier League (EPL) Fan-
tasy Football game available at fantasy.premierleague.com
(FPL). This is primarily due to the large number of competi-
tors it attracts (around 2.5M) and the availability of relevant
data. FPL operates as follows: before the football season
commences, its 380 fixtures are split into a set of 38 chrono-
logical gameweeks, each gameweek typically consisting of
10 matches and featuring each of the EPL’s twenty teams
once. All matches within a gameweek are usually con-
tested within a period of three to four days. Furthermore,
the FPL organisers appraise each of the footballers in the
EPL with a numerical ‘purchase price’ chosen to reflect his
point-scoring potential, and assign each footballer to one of
four positional categories depending on his real-world play-
ing position.

Prior to each gameweek, a competing FPL manager is re-
quired to select a team of fifteen players from the more than
500 available. The total purchase price of the team must not
exceed a given budget (equal for all managers), and must
feature exactly two goalkeepers, five defenders, five mid-
fielders, and three strikers, with no more than three players
permitted from any one club. Eleven of these fifteen play-
ers must be designated as constituting the team’s ‘starting
line-up’. These eleven players earn points for the team de-
pending on their contributions during the gameweek2 – if
they do not play they are replaced by one of the four players
not in the starting line-up. Figure 2 depicts (part of) the view
that managers use to pick players for their team (or squad)
on the FPL website.

Crucially, managers are penalised for selecting too many
players who they did not select in the previous gameweek —
typically only one unpenalised exchange is permitted, with
extra exchanges subject to a four point penalty. This requires
managers to select players who will perform well over mul-
tiple forthcoming gameweeks rather than just the next one.
The overall aim is thus to maximise the total points obtained
over the 38 gameweeks by selecting players likely to make
key contributions during matches, in the face of numerous
selection constraints, uncertainty in player and club abili-
ties, and the unpredictability of the dynamic football envi-
ronment. In the next section we formalise the framework
given above and set out the design of an agent able to per-
form effectively within it.

2For more details on the FPL rules see http://fantasy.
premierleague.com/rules/. Other (trivial) caveats exist within the
FPL rules which, for simplicity, have been omitted from the above
description but are handled in our model.

Figure 1: Partial snapshot of the team selection view for
gameweek 35 in the 2011-2012 season. Note the costs for
the players and the total score (TS) they have achieved so far
in the right hand column.

3 Modelling FPL
Here we develop a model of the FPL as a sequential team
formation problem. We first formalise the problem as a
Markov decision process (MDP) and then adapt it to incor-
porate uncertainty by phrasing it in terms of a belief-state
MDP using a Bayesian belief model of player abilities.

3.1 Basic Definitions
For each forthcoming gameweek a manager must select a
team of players that obeys all the constraints imposed by the
FPL rules. Formally, for the ith gameweek, the manager is
aware of the set of matches to be playedMi, the set of play-
ers available for selection Pi, and the set of performable ac-
tionsAi, where an action is defined as the selection of a valid
team such that each a ∈ Ai is a subset of Pi and obeys all
team selection constraints. Each player p ∈ Pi is associated
with its FPL-designated position and purchase price (both
the subject of team selection constraints) and τp ∈ τ , a sys-
tem of distributions representing their influence on match-
play. The set of possible outcomes ofMi is denoted as Oi,
with each outcome o ∈ Oi taken to consist of the result of
the matches in Mi as well as player-specific contributions
that are influenced by τ (such as goals scored). As these
contributions (and the match result) are related to the player
characteristics, the probability of each o ∈ Oi is dependent
in some way on τ , Pr(o|τ ). From this we may also define
our immediate reward function R(o, aprev, a) that, given an
outcome o, a selected team a ∈ Ai, and the previously se-
lected team aprev ∈ Ai−1, returns the point score of a (as
defined by the FPL rules) according to what events occurred
in o. aprev is supplied so that the selection may be penalised
for any player exchanges beyond those permitted.

3.2 Formulation as an MDP
We now formulate the above as an MDP with a set of states,
set of actions, transition dynamics, and reward function.
The MDP state for gameweek i encapsulatesMi,··· ,38, the
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set of upcoming fixtures, Pi, the set of selectable players,
o ∈ Oi−1, the outcome of the previous gameweek, and τ ,
representing player abilities. The MDP action set is Ai, the
set of teams selectable at gameweek i, withR corresponding
to the MDP reward function.

However, the state transition function is dependent on the
distribution Pr(o|τ ) (where o ∈ Oi), which is unknown due
to our uncertainty of both the player abilities represented by
τ and the dynamics influencing the conditional distribution
of o. We may instead adopt a reinforcement learning ap-
proach, operating under uncertainty regarding the underly-
ing MDP dynamics and learning a Markovian policy which
maximises performance based on the results of interactions
with the environment. To this end, in the next section we for-
malise our uncertainty over τ by defining a statistical model
representing our beliefs, where those beliefs are refined and
updated in response to gameweek outcome observations. We
then use this model as the basis for a belief-state MDP for-
mulation in Section 3.4.

3.3 Belief model
Here we introduce a generative belief model allowing us to
represent our uncertainty over player abilities and, in turn,
to generate τ samples from the distribution Pr(τ |b).

Previous statistical models of football have mainly fo-
cused at a level of resolution necessary to model full-time
match scorelines rather than modelling the individual player
contributions required in our case. As statistical modelling
is not the focus of our work, we choose to build a sim-
ple player-based model based upon an existing team-based
framework (Dixon and Robinson 1998). We use this as the
basis of our belief model because of its flexible treatment
of football matchplay as a dynamic situation-dependent pro-
cess that has been shown to return good results in football
betting applications. The model works by estimating each
club’s attacking and defending abilities from past results and
then using these estimates to derive the probabilities of ei-
ther side scoring a goal at any point within a given match.

There are a number of different point-scoring categories
defined in the FPL rules but for simplicity we focus on the
most significant ones: appearances, goal scoring, and goal
creating. Furthermore, a player’s propensity to concede
goals and to keep clean sheets may be derived entirely from
the scoreline distributions produced by the underlying team-
focused model and so requires no special player-specific at-
tention. To this end, we define each player p’s τp as consist-
ing of three distributions:
• A three-state categorical distribution, ρp which can take

values start, sub, or unused, describing player p’s prob-
ability of starting a match, being substituted into the
match, and being completely unused respectively.

• A Bernoulli distribution (or, equivalently, a Binomial dis-
tribution over a single trial), ωp, describing player p’s
probability of scoring a goal given that he was playing
at the time.

• Another Bernoulli distribution, ψp, describing player p’s
probability of creating a goal for a teammate given that he
was playing at the time.

To account for uncertainty in these quantities we define prior
distributions over the parameters, updating these priors as
observations arrive in order to obtain new posterior distribu-
tions incorporating the new knowledge. For categorical and
Bernoulli distributions such as those above, the updates can
be performed via simple closed-form equations using Beta
and Dirichlet (a generalisation of the Beta) conjugate pri-
ors (Gelman 2004). Sampling from these conjugate distribu-
tions thus allows us to obtain instantiations of τp. We define
the hyperparameters uniformly across all players such that
ωp ∼ Beta(0, 5), ψp ∼ Beta(0, 5), and ρp ∼ Dir( 14 ,

1
4 ,

1
2 ).

However, for many players we may also use performance
data from previous seasons to define the priors, and in Sec-
tion 5 we evaluate the effect of using this more informative
approach.

We also define four global multinomial distributions (one
for each of the four FPL-defined playing positions) Spos that
describe the distribution of minutes players who occupy po-
sition pos are observed to leave the match, given that they
started it. A value of 90 in any of these distributions cor-
responds to instances of players finishing a match without
being substituted. In using these distributions we adopt the
simplifying assumption that all players occupying the same
position have the same patterns of minutes in which they
leave the match.

Now, players may also be suddenly unavailable to play
for temporary, well-reported reasons, such as injury, dis-
ciplinary suspension, or international duty. For this rea-
son we encode a list of roughly one thousand player ab-
sences recorded in media publications over the 2009/10 and
2010/11 seasons. During a period of absence for player i, we
enforce that Pr(ρi = start) and Pr(ρi = sub) equal zero,
and suppress updates to ρi. Finally, we introduce ϕ to de-
scribe the proportion of goals that are associated with an as-
sist. On the datasets at our disposal we calculate ϕ = 0.866.

We show how this model may be used as the basis for a
belief-state MDP in the next section.

3.4 Formulation as a Belief-state MDP
In formulating the FPL problem as a belief-state MDP we
adopt an approach similar to (Teacy et al. 2008), maintain-
ing prior distributions over the characteristics held in τ . This
is done using the belief model introduced in the previous
section. Our belief state at gameweek i, bi is then an in-
stantiation of the model updated with all outcome observa-
tions prior to gameweek i. On updating the belief state to
bi+1 in response to an outcome o ∈ Oi, the posterior player
characteristics may be obtained by application of Bayes rule:
Pr(τ |bi+1) ∝ Pr(o|τ ) Pr(τ |bi). The manager can then per-
form optimally, based on its current belief of player charac-
teristics bi, by maximising the value of the Bellman (1957)
equations:

V (bi) = max
a∈Ai

Q(bi, a) (1)

Q(bi, a) =

∫
τ

Pr(τ |bi)
∫

o∈Oi

Pr(o|τ )[ri + γVi(bi+1)] do dτ

(2)

where γ ∈ [0, 1) is a discount factor influencing the ex-
tent to which the manager should consider long-term effects
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of team selection, and ri represents the immediate reward
yielded by R(o, aprev, a). Equation (2) thus returns the long-
term discounted cumulative reward of performing a, a quan-
tity known as a’s Q-value.

In summary, a manager may perform optimally over a sea-
son by iteratively performing the following procedure for
each gameweek i = 1, . . . , 38:

• Receive observation tuple: 〈Pi,Mi,··· ,38, o ∈
Oi−1, ai−1〉.

• Update bi−1 to obtain bi and Pr(τ |bi), using Bayes rule.

• Select a ∈ Ai that maximises (2).

Exact solutions to equations (1) and (2) are often in practice
intractable. In our particular case this is due to the size of the
outcome set |Oi|, the size of the action set |Ai| (comprised
of over 1025 actions), and the need to consider up to 38
gameweeks in order to calculate Q-values exactly. The latter
issue may be solved without greatly sacrificing optimality by
imposing a maximum recursion depth beyond which (1) is
defined to return zero. The first two issues may be alleviated
through the use of sampling procedures: in the next section
we outline a simple procedure for sampling fromOi by sim-
ulating match outcomes, and in Section 3.6 we detail how
high-quality actions can be generated from Ai by treating
team formation as a constraint optimisation problem.

3.5 Sampling outcomes
The following routine describes a simple match process
model able to sample outcomes for gameweek i from
Pr(Oi|τ ). We then combine this routine with the be-
lief model described in Section 3.3 in order to sample
from the joint distribution of observations and abilities,
Pr(Oi|τ ) Pr(τ |bi), thus treating uncertainty in player abil-
ities in a Bayesian manner. The routine described below
focuses on simulating the outcome of a single match, but
extends naturally to sampling the outcomes of a gameweek
by applying the process in turn to each match within that
gameweek. We use PH and PA to represent the set of play-
ers available for the home and away sides respectively. The
routine below focuses on PH , but applies identically to PA.

First, we sample τp for each p ∈ PH from Pr(τp|bi).
Next, eleven players from PH are randomly selected in pro-
portion to Pr(ρp = start). These players constitute LH ,
the home side’s starting line-up. Furthermore, the minute
at which each of these players leaves the pitch is sampled
from the S distribution corresponding to that player’s posi-
tion. All players in PH that are not in LH are consigned
to another set UH , representing the club’s unselected play-
ers. We then proceed as per the match process of (Dixon and
Robinson 1998) with two differences:

• At the start of each minute we check if any player in LH

is scheduled to leave the pitch in that minute. If so, we
remove this player from LH and randomly select a re-
placement p ∈ UH in proportion to Pr(ρp = sub). The
replacement is added to LH and removed from UH . We
also assume that players are never substituted off after be-
ing substituted on – a suitably rare event to not justify
explicit consideration.

• If a goal is scored according to the underlying team-based
model then it is allocated to a player p ∈ LH in proportion
to Pr(ωp = 1) while an assist is allocated in proportion
to Pr(ψp = 1) (with the restriction that a player may not
assist his own goal).

Despite the simplicity of the method above (there is no at-
tempt to capture at a deeper level the many considerations
influencing line-up and substitution selection) it provides a
reasonable estimate of the point-scoring dynamics for a sin-
gle match.3 These point estimates may then be used in com-
bination with the MDP reward function R to approximate
the immediate expected reward from performing any action,
as well as to guide exploration of high-quality regions of the
action space, as we show in the next section.

3.6 Generating actions
Using the outcome sampling procedure defined in the previ-
ous section we are able to approximate the expected points
score of each player within the dataset. By treating team se-
lection as an optimisation problem we may use these expec-
tations to generate high-quality actions, thus avoiding an ex-
pensive search over the vast action space. This section out-
lines a means of doing this by phrasing the problem of team
selection in terms of a multi-dimensional knapsack packing
problem (MKP). The general form for an MKP problem is
given as per (Kellerer, Pferschy, and Pisinger 2004):

maximise
n∑

i=1

vixi,

subject to
n∑

i=1

wijxi ≤ cj , j = 1, . . . ,m,

xi ∈ {0, 1}, i = 1, . . . , n.

MKPs require selecting some subset of n items that attains
the maximum total value across all possible subsets, where
each item i = 1, . . . , n is associated with a value vi and m
costs (wi). The total for each of the m costs of the items
packed must not exceed corresponding capacities c1,...,m.
Applied to team selection, the ‘items’ in the definition above
are equivalent to the players available for selection. v then
corresponds to the expectation of the point total for each
player derived from outcomes generated using the sampling
procedure in Section 3.5. Our capacities — in accordance
with the FPL rules — are as follows:

• The team must be formed of exactly fifteen players.

• The fifteen players must comprise of two goalkeepers,
five defenders, five midfielders, and three strikers.

• The total purchase price of the selected players must not
exceed the available budget.

• Up to three players from any one club may be selected.

• Only a restricted number of unpenalised exchanges are
permitted. The ability to selectively perform extra ex-
changes is implemented by introducing negative-weight

3After training the model on data from the 2009/10 EPL sea-
son the normalised root mean square error between observed point
scores and expected point scores (calculated over 5000 match sim-
ulation samples) for the 2010/11 season is 0.09.
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‘dummy’ items with v = −4, allowing an extra player se-
lection. Selecting these items permits an extra exchange
at the expense of a four point penalty, as per the FPL rules.

The resulting MKP can be solved using Integer Program-
ming solvers such as IBM ILOG’s CPLEX 12.3. The re-
sulting selection can then be formed into a team by greedily
filling the starting line-up with the selected players accord-
ing to v and the FPL formation criteria.

As the generated selection is dependent on v (and the
number of outcome samples ns used to approximate the ex-
pectations held in v) then as ns → ∞ we will generate the
selection consisting of the fifteen players with the highest
summed points expectation. However, due to tenets of the
FPL game not captured within the MKP formulation, such
as substitution rules, this generated selection does not nec-
essarily correspond to the team in the action space with the
highest immediate reward. Furthermore the generated selec-
tion is only myopically optimal (which we evaluate in Sec-
tion 5) and not necessarily the best selection across multiple
gameweeks. For these reasons it is desirable for us to ex-
plore more of the variability of the action space so as to pos-
sibly generate better quality long-term selections; this can be
done by generating teams using lower values of ns. Hence,
in the next section we outline techniques that may be used
to solve the FPL MDP using the belief model and sampling
procedures described.

4 Solving the Belief-state MDP
Using the techniques described in the previous section we
are able to sample good-quality actions and approximate
their associated immediate reward. However, solving equa-
tion (1) in Section 3.4 still presents a challenge due to the
computational cost of calculating each action’s long-term re-
ward, i.e., its Q-value. We may consider a naive depth-first
search (DFS) approach where we solve (1) by walking down
the recursive structure of the equation up to some fixed depth
d, generating only n teams at each step (we evaluate such an
approach in Section 5). However, DFS has time complex-
ity O(nd), and so we can expect even modest search depths
to be computationally unsatisfactory. Hence, in what fol-
lows, we provide an outline of a well-known reinforcement
learning technique known as Q-learning in order to remove
this exponential growth in d. An improvement to better han-
dle uncertainty is presented in Section 4.2, and we adapt the
techniques to FPL in Section 4.3

4.1 Basics of Q-Learning
Q-Learning is a technique for discovering the highest-
quality action by iteratively learning the Q-values of actions
in the action space and focusing exploration on actions with
the highest Q-value estimates (Watkins 1989). Q-learning
approaches run inO(ηd), where η is the number of episodes.
Each episode proceeds (shown in Algorithm 1) by iterating
through belief-states up to the maximum depth d. In each
state an action is selected from the action space based on cur-
rent Q-value estimates (line 4), an outcome from performing
the action is sampled (line 5), and a reward associated with
that outcome is determined (line 6). The Q-value estimate

Algorithm 1 Q-Learning algorithm to determine the best ac-
tion performable in belief state b0

function Q-LEARN(b0 , d)

1 for e = 1→ η
2 b = b0
3 for i = 1→ d
4 a = SELECTACTION(b, i)
5 o = SAMPLEOUTCOME(b, a)
6 r = REWARD(a, o)

7 Q̂(b, a) = Q-UPDATE(b, a, r)
8 b = UPDATEBELIEF(b, o)
9 next

10 next
11 return argmaxa[Q̂(b0 , a)]

is then updated using the reward (line 7) (often using a sim-
ple exponential smoothing technique), and the belief-state
updated based on the outcome (line 8).

Exploration in such techniques is not particularly princi-
pled and Q-value convergence can be slow: it is possible
for outcomes to be explored despite the fact that doing so
is unlikely to reveal new information, or for promising ac-
tions to be starved out by ‘unlucky’ outcome sampling. The
next section introduces a Bayesian variation of Q-learning
designed to remedy these shortcomings.

4.2 Bayesian Q-Learning
A Bayesian approach to Q-learning incorporates uncertainty
around Q-values into action selection. (Dearden, Friedman,
and Russell 1998) represent the knowledge regarding each
Q-value as a normal distribution updated as reward observa-
tions arrive using a normal-gamma conjugate prior. Explo-
ration using these distributions is handled elegantly through
the concept of value of perfect information (VPI), where the
VPI of performing action a with belief b is the extent by
which learning its true Q-value, q∗a, is expected to change
our knowledge of V (b). For the best known action a1, we
only learn anything from performing it if q∗a1

is now lower
than the currently estimated Q-value of a2, q̂a2

, the second-
best action. Likewise, for all a 6= a1, we only learn anything
from performing a if q∗a is now greater than q̂a1

. The extent
by which q∗a is greater than q̂a1

represents the gain in knowl-
edge (and vice-versa for a1). In general for any a the gain of
learning q∗a is:

Gaina(q
∗
a) =

{
max[q̂a2 − q∗a, 0] if a = a1
max[q∗a − q̂a1 , 0] if a 6= a1

(3)

VPI is then defined as the expected gain from performing a:

V PI(a) =

∫ ∞
−∞

Gaina(x) Pr(q
∗
a = x) dx (4)

which may be calculated exactly using the marginal cumula-
tive distribution over the normal-gamma mean (Teacy et al.
2012).

Now, Bayesian Q-learning can be implemented using
the same framework shown in Algorithm 1 with two ad-
justments: SELECTACTION is modified for Bayesian Q-
learning by returning the action with the highest value of
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Q̂(b, a)+VPI (a); and Q-UPDATE is modified to implement
the moment updating procedure of (Dearden, Friedman, and
Russell 1998).

4.3 Adapting Q-learning to FPL
Q-learning techniques often assume the availability of the
entire action set during operation but the size of this set in
FPL means this is not feasible. We instead choose to operate
on only a promising subset of the available actions at any one
time, denoted Ab: a size of just three was sufficient in ex-
perimentation, with further increases not leading to any cor-
responding performance benefit. We then intermittently re-
place weak members of Ab with newly generated members
of the unexplored action space. For traditional Q-learning
this can be done simply by replacing the weakest member of
Ab with a newly generated member at each decision point.

For Bayesian Q-learning we instead use VPI as an indi-
cator of how much worth there is in continuing to explore
action a ∈ Ab, such that when q̂a + V PI(a) < q̂a1 we
choose to replace a with a newly-generated action. In so
doing, we are able to avoid wasteful execution of actions
unlikely to provide us with more information beyond that
which is already known, and are able to explore more of the
ungenerated action space.

We initialise a given action’s Bayesian Q-learning
normal-gamma hyperparameters (µ, λ, α, β) such that α =
2, λ = 1, and µ is chosen to equal a sampled approximation
of the reward obtained by performing the action unchanged
up to the search depth. β is set to θ2M2 where M2 is the
value of the second moment used in the moment updating
procedure. This defines the initial normal-gamma variance
to equal some proportion θ of its initial mean µ, where θ is
selected to provide a trade-off between over-exploration and
neglect of newly-generated actions.

Having described different techniques to solve the belief-
state MDP posed by FPL, we next proceed to evaluate
these approaches empirically to determine their performance
against human players of FPL.

5 Evaluation
Here we pitch different approaches to solving the sequen-
tial decision problem presented by the FPL game against
each other and against human players. Model parameters
are trained on datasets covering the 2009/10 EPL season and
each approach is evaluated over between 30 and 50 iterations
of the 2010/11 EPL season and its average end-of-season
score recorded. Where scores are shown, standard errors and
the approximate corresponding rank are displayed in brack-
ets. In order to compete with humans on a level playing field
we provide each manager with the ability to play a wild-
card in the 8th and 23rd gameweeks, a benefit available to
human competitors that absolves them of exchange penal-
ties for that gameweek (that is, they may replace their whole
team unpenalised if they so wish).

5.1 Effect of player type priors
We first consider a baseline manager (M1) that is naive in
three different respects: it acts myopically, only consider-

ing the forthcoming gameweek; its player ability distribu-
tions are uniformly defined across the dataset (as per Section
3.3); and it always selects a team according to the expecta-
tion of these distributions (approximated with ns = 5000),
without taking into account the uncertainty therein. M1
achieves a score of 1981.3 (SE: 8.0, Rank: 113,921). We
also create a manager M2 which defines the player ability
priors to reflect the occurrences of the previous season (i.e.,
2009/2010 EPL). Although this still leaves many players
who did not appear that season with uniform priors, perfor-
mance is generally greatly improved, yielding a mean end-
of-season score of 2021.8 (SE: 8.3, Rank: 60,633). achiev-
ing the 2.5th ranking percentile compared to 4.6 for M1.

5.2 Variability of the action space
We hypothesised in Section 3.6 that a further score boost
may be realised by generating multiple teams sampled to
capture more of the variability of the action space. Thus we
define manager M3 that generates 40 candidate teams at each
gameweek with ns = 20, instead of just a single team with
ns = 5000 as for M1 and M2. In this way a score of 2034.4
(SE: 8.5, Rank: 50,076) is achieved, approximately the 2nd
ranking percentile.

5.3 Long-term uncertainty
We then investigate the effect of increasing search depth on
the resulting score by assessing managers that consider fu-
ture effects of their actions (i.e. using DFS) as discussed in
Section 4. The best discount factor for such managers is de-
termined to be around γ = 0.5. For a DFSmanager conduct-
ing depth-first search with d = 2, 40 candidates generated
at each search node, and ns = 20, a mean score of 2049.8
(SE: 11.1, Rank: 37,137) is obtained, near the 1.5th ranking
percentile. However, further increases in search depth lead
to exponential increases in computation time: a search depth
of three results in the manager taking around forty minutes
per decision, so we do not evaluate deeper depths for the
depth-first search manager.

To combat this we use the linear complexity Q-learning
(QL) algorithms detailed in Section 4. Updates are per-
formed using the mean across 100 simulation samples and
initially are limited to just one minute running time per
gameweek. QL is assessed with smoothing parameter δ =
0.1 and selects actions using a ε-Greedy selection strat-
egy (Sutton and Barto 1998) with ε = 0.5. The best
parametrisations of both approaches were for d = 3 with
team generation performed with ns = 20. Both give similar
scores: traditional QL (QL-60) averaging 2046.9 (SE: 12.6,
Rank: 39,574), Bayesian QL (BQL-60) reaching 2056.7
(SE: 8.6, Rank: 31,924). Performance deteriorated for
d ≥ 4, most probably because the time constraints imposed
hindered exploration. Finally, the best QL parametrisations
were re-assessed with a more generous time limit of three
minutes and further small increases in mean score were ob-
tained: 2049.9 (SE: 9.5, Rank: 37,053) for QL (QL-180);
and 2068.5 (SE: 9.0, Rank: 26,065) for Bayesian Q-learning
(BQL-180), corresponding to percentile ranks around the
1.5th and 1.1st percentiles respectively. Scores for each
of the implementations above are summarised in Table 5.3
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Figure 2: Boxplots for all manager types with whiskers from
minimum to maximum.

d nt ns Score Rank Time (s)
M1 1 1 5000 1981.3 113,921 3
M2 1 1 5000 2021.8 60,633 3
M3 1 40 20 2034.4 50,076 7
DFS 2 40 20 2049.8 37,137 61
QL-60 3 - 20 2046.9 39,574 60
BQL-60 3 - 20 2056.7 31,924 60
QL-180 3 - 20 2049.9 37,053 180
BQL-180 3 - 20 2068.5 26,065 180

Table 1: Summary of mean end-of-season score, corre-
sponding rank, and deliberation time per decision point for
managers. d: search depth, nt: teams generated per search
node, ns: number of samples per generated team.

and a boxplot illustrating point spread is shown in Figure
5.3. This provides some insight into the only modest per-
formance increase for QL-180 and BQL-180 over QL-60
and BQL-60 despite being permitted three times the pre-
vious deliberation time: whilst the central tendency of the
scores is not particularly influenced, there appears to be a
reduced chance of performing poorly as evidenced by the
position of the lower quartiles. This effect is further ex-
aggerated in the score spread of DFS which also obtains a
similar median score, but is far more erratic in its spread,
achieving low scores fairly often.

6 Conclusion
In this paper, we developed a competitive and fully-
automated agent for the FPL. Specifically, we modelled the
FPL sequential team formation problem as a belief-state
MDP which captures the uncertainty in player contributions.
Moreover, given the complexity of the domain, we provide
a computationally tractable and principled approach to han-
dling such uncertainty in this domain with a Bayesian Q-
learning (BQL) algorithm. Our evaluation of BQL against
other uncertainty-agnostic approaches on a dataset cover-
ing the 2010/11 season of the FPL, shows that BQL outper-
forms other approaches in terms of mean final score, reach-
ing around the top percentile on average, and in its best
case where 2222 points were obtained, within the top 500

players. When taken together, our results establish the first
benchmarks for the FPL and more importantly, the first real-
world benchmarks for sequential team formation algorithms
in general. Future work will look at developing other algo-
rithms and improving parameter selection to improve scores
and computation time.
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