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Abstract

We introduce the Bayes-Adaptive Interactive Partially Ob-
servable Markov Decision Process (BA-IPOMDP), the first
multiagent decision model that explicitly incorporates model
learning. As in I-POMDPs, the BA-IPOMDP agent maintains
beliefs over interactive states, which include the physical
states as well as the other agents’ models. The BA-IPOMDP
assumes that the state transition and observation probabilities
are unknown, and augments the interactive states to include
these parameters. Beliefs are maintained over this augmented
interactive state space. This (necessary) state expansion ex-
acerbates the curse of dimensionality, especially since each
I-POMDP belief update is already a recursive procedure (be-
cause an agent invokes belief updates from other agents’ per-
spectives as part of its own belief update, in order to anticipate
other agents’ actions). We extend the interactive particle filter
to perform approximate belief update on BA-IPOMDPs. We
present our findings on the multiagent Tiger problem.

1 Introduction
Within the last decade, the body of work in multiagent se-
quential decision-making methods has grown substantially,
both in terms of theory and practical feasibility. For these
methods to be applicable in real-world settings, we must
account for the fact that agents usually lack perfect knowl-
edge about their environments, with regard to (1) the state of
the world, and (2) the consequences of their interactions, in
terms of model parameters such as transition and observa-
tion probabilities. Thus, agents must infer their state from
the history of actions and observations, and concurrently
learn their model parameters via trial and error. The devel-
opment of such a framework is the objective of this paper.

Our particular focus is on adversarial agents that are intel-
ligent, and actively seek to “game” against each other during
the course of repeated interactions. In such a setting, each
agent must anticipate its adversary’s responses to its actions,
which entails also anticipating the adversary’s observations
and beliefs about the state of the world. We feel that this
type of study is highly relevant to realistic security prob-
lems, since these intelligent agents abound in the form of
cyber intruders, money launderers, material smugglers, etc.
While each “attack” might be launched by one individual, it
is reasonable to treat an entire class of attackers as a single
adversary, as similar tactics are adopted by multiple individ-
uals to exploit the vulnerabilities of the target agent.
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Many sequential multiagent decision-making frameworks
are extensions of the single-agent Partially Observable
Markov Decision Process (POMDP) model. In a POMDP,
a single agent with limited knowledge of its environment
attempts to optimize a discrete sequence of actions to maxi-
mize its expected rewards. Because the agent does not fully
know the state of the environment, it infers a state distribu-
tion through a series of noisy observations. Solution algo-
rithms for POMDPs have been studied extensively (Kael-
bling, Littman, and Cassandra 1998), and POMDPs have
been applied to real-world problems including the assistance
of patients with dementia (Hoey et al. 2007).

Among the multiagent frameworks that have been stud-
ied, the largest body of literature has been on decentralized
POMDPs (DEC-POMDPs) (Bernstein et al. 2002), which
generalize POMDPs to multiple decentralized agents and
are used to model multiagent teams (Seuken and Zilberstein
2008). While algorithms have been developed to solve such
problems (Seuken and Zilberstein 2008), DEC-POMDPs
are not suitable for modeling adversarial agents because
the framework assumes common rewards among agents.
The related framework of Markov Team Decision Problems
(MTDPs) (Pynadath and Tambe 2002) has the same issue.
Partially Observable Stochastic Games (POSGs) (Hansen,
Bernstein, and Zilberstein 2004) avoid this problem by al-
lowing for different agent rewards, but exact POSG algo-
rithms have been so far limited to small problems (Guo
and Lesser 2006), and approximate POSG algorithms have
only been developed for the common rewards case (Emery-
Montemerlo et al. 2004).

A suitable framework for modeling multiagent adversar-
ial interactions is that of interactive POMDPs (I-POMDPs)
(Doshi and Gmytrasiewicz 2005). The I-POMDP is a multi-
agent extension of the POMDP, in which each agent main-
tains beliefs about both the physical states of the world
and the decision process models of the other agents. An I-
POMDP incorporates nested intent into agent beliefs, which
potentially allows for modeling of “gaming” agents. There
are approximate algorithms for solving I-POMDPs that do
not impose common agent rewards. (Ng et al. 2010) demon-
strates an attempt to apply I-POMDPs to money laundering.

Although I-POMDPs can be used to model adversarial
agents, they are not amenable to real-world applications be-
cause transition and observation probabilities need to be
specified as part of the model. In most cases, these parame-
ters are not known exactly, and must be approximated a pri-
ori or learned during the interaction. Reinforcement learning
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(Kaelbling, Littman, and Moore 1996) provides a methodol-
ogy by which these parameters may be estimated sequen-
tially, thus avoiding potentially non-optimal solutions asso-
ciated with poor a priori approximations.

Bayes-Adaptive POMDPs (BA-POMDPs) (Ross, Chaib-
draa, and Pineau 2007) enable parameter learning in
POMDPs. In a BA-POMDP, the agent’s state is augmented
to include the agent’s counts of state transitions and obser-
vations, and these counts are used to estimate parameters
in the transition and observation functions. Parameter esti-
mates are improved through interactions with the environ-
ment, and optimal actions converge over time to the true op-
timal solution.

To date, work in multiagent learning has been focused
mainly on fully observable domains (Busoniu, Babuska,
and Schutter 2008; Melo and Ribeiro 2010) or cooper-
ative, partially observable domains (Peshkin et al. 2000;
Zhang and Lesser 2011; Oliehoek 2012), where policy learn-
ing is emphasized over model learning.

The contribution of this work is the Bayes-Adaptive I-
POMDP (BA-IPOMDP), that incorporates elements of I-
POMDPs and BA-POMDPs, to achieve the first multiagent
adversarial learning framework that explicitly learns model
parameters. The BA-IPOMDP allows for imperfect knowl-
edge of both the world state and the agents’ transition and
observation probabilities, thus bringing theory closer to hu-
man agent modeling. Our preliminary results show that the
BA-IPOMDP learning agent achieves better rewards than
the I-POMDP static agent, when the two start from the same
prior model. We cover technical background in Section 2,
explain our BA-IPOMDP model in Section 3 and our belief
update algorithm in Section 4. We present results in Section
5 and conclude in Section 6.

2 Preliminaries
2.1 Bayes-Adaptive POMDPs (BA-POMDPs)
In a BA-POMDP (Ross, Chaib-draa, and Pineau 2007), the
state, action, and observation spaces are assumed to be finite
and known, but the state transition and observation proba-
bilities are unknown and must be inferred. It extends the
POMDP 〈S,A, T,R,Z, O〉, by allowing uncertainty to be
associated with T (s, a, s′) and O(s′, a, z).

The uncertainties are parametrized by Dirichlet distribu-
tions defined over experience counts. The count φass′ denotes
the number of times that transition (s, a, s′) has occurred,
and the count ψas′z denotes the number of times observation
z was made in state s′ after performing action a. Given these
counts, the expected transition probabilities Tφ(s, a, s′) and
the expected observation probabilities Oψ(s′,a, z) are:

Tφ(s, a, s′) =
φass′∑

s′′∈S φ
a
ss′′

(1)

Oψ(s′,a, z) =
ψas′z∑

z′∈Z ψ
a
s′z′

(2)

The BA-POMDP incorporates the count vectors φ and ψ
as part of the state, so functions need to be augmented ac-
cordingly to capture the evolution of these vectors. Let δass′

be a vector of zeros with a 1 for the count φass′ , and δas′z be a
vector of zeros with a 1 for the count ψas′z . Formally, a BA-
POMDP is parametrized by 〈S ′,A, T ′,R′,Z, O′〉, where
the differences from a POMDP are:

• S ′ = S × T × O is the augmented state space, where
T = {φ ∈ N|S|2|A||∀(s, a),

∑
s′∈S φ

a
ss′ > 0}, and O =

{ψ ∈ N|S||A||Z||∀(s, a),
∑
z∈Z ψ

a
sz > 0};

• T ′ : S ′ × A × S ′ → [0, 1] is the (joint) state tran-
sition function, defined as T ′((s, φ, ψ),a,(s′, φ′, ψ′)) =
Tφ(s, a, s′)Oψ(s′, a, z) if φ′ = φ+δass′ and ψ′ = ψ+δas′z ,
and 0 otherwise;

• R′ : S ′ × A → R is the reward function, defined as
R′((s, φ, ψ), a) = R(s, a);

• O′ : S ′×A×S ′×Z → [0, 1] is the observation function,
defined as O′((s, φ, ψ), a, (s′, φ′, ψ′), z) = 1 if φ′ = φ+
δass′ and ψ′ = ψ + δas′z , and 0 otherwise.

The belief update in BA-POMDPs is analogous to that
of POMDPs, but inference is performed over a larger state
space, as beliefs are maintained over the (unobserved)
counts, φ and ψ, in addition to the physical states. Monte
Carlo sampling along with online look-ahead search have
been applied to solve BA-POMDPs.

2.2 Interactive POMDPs (I-POMDPs)
I-POMDPs (Doshi and Gmytrasiewicz 2005) generalize
POMDPs to multiple agents with different (and possibly
conflicting) objectives. In an I-POMDP, beliefs are main-
tained over interactive states, which include the physical
states and the models of other agents’ behaviors.

In the case of two intentional agents, i and j, agent i’s
I-POMDP with l levels of nesting is specified by:

〈ISi,l,A, Ti,Ri,Zi, Oi〉

where:

• ISi,l = S×Θj,l−1 is the finite set of i’s interactive states,
with ISi,0 = S; Θj,l−1 as the set of intentional models of
j, where each model θj,l−1 ∈ Θj,l−1 consists of j’s belief
bj,l−1 and frame θ̂j = 〈A, Tj ,Rj ,Zj , Oj〉;

• A = Ai ×Aj is the finite set of joint actions;
• Ti : S×A×S → [0, 1] is i’s model of the joint transition

function;
• Ri : ISi ×A → R is i’s reward function;
• Zi is the finite set of i’s observations; and
• Oi : S ×A×Zi → [0, 1] is i’s observation function.

At each time step, agent i maintains a belief state:

bti,l(is
t) = β

∑
ist−1 b

t−1
i,l (ist−1)∑

at−1
j

P (at−1j |θ
t−1
j,l−1)Ti(s

t−1, at−1, st)Oi(s
t, at−1, zti)∑

ztj
P (btj,l−1|b

t−1
j,l−1, a

t−1
j , ztj)Oj(s

t, at−1, ztj)

(3)
where β is a normalizing factor and P (at−1j |θ

t−1
j,l−1) is the

probability that at−1j is Bayes rational for an agent mod-
eled by θt−1j,l−1. Let OPT (θj) denote the set of j’s optimal
actions computed from a planning algorithm that maximizes
rewards accrued over an infinite horizon (i.e.,E(

∑∞
t=0 γ

trt)
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where 0 < γ < 1 is the discount factor and rt is the reward
achieved at time t. P (at−1j |θ

t−1
j,l−1) is set to 1

|OPT (θt−1
j,l−1)|

if

at−1j ∈ OPT (θt−1j,l−1) and 0 otherwise.
The belief update procedure for I-POMDPs is more com-

plicated than that of POMDPs, because physical state tran-
sitions depend on both agents’ actions. To predict the next
physical state, i must update its beliefs about j’s behavior
based on its anticipation of how j updates its belief (note
P (btj,l−1|b

t−1
j,l−1, a

t−1
j , ztj) in the belief update equation). This

can lead to infinite nesting of beliefs, for which a finite level
of nesting l is imposed in practice. (Doshi et al. 2010) has
shown that most humans act using up to two levels of rea-
soning in general-sum strategic games, suggesting the nest-
ing level of l = 2 as an upper bound for modeling human
agents.

A popular method for solving I-POMDPs is the interac-
tive particle filter (I-PF) in conjunction with reachability tree
sampling (RTS). Other methods include dynamic influence
diagrams (Doshi, Zeng, and Chen 2009) and generalized
point-based value iteration (Doshi and Perez 2008).

3 Bayes-Adaptive I-POMDPs
While other cooperative multiagent frameworks can exploit
common rewards to simplify the learning problem into mul-
tiple parallel instances of single-agent learning, the learn-
ing process in an adversarial multiagent framework is in-
trinsically more coupled. This is because each agent can no
longer rely on its own model as a baseline for modeling oth-
ers; each agent is less informed about the other (adversarial)
agents because agents have different rewards and potentially
different dynamics stemming from their own actions and ob-
servations.

Since state transitions depend on joint actions from all
agents, it is imperative that the adversarial agent con-
sider other agents’ perspectives before taking action. The I-
POMDP offers a vehicle for recursive modeling to address
this, which the BA-IPOMDP augments with the additional
capability for learning. Thus, the BA-IPOMDP can model
learning about self, learning about other agents, and learn-
ing about other agents learning about self, etc.

Like the BA-POMDP, the BA-IPOMDP assumes that the
state, action, and observation spaces are finite and known a
priori. Each agent is trying to learn a |S| × |A| × |S| matrix
T of state transition probabilities, where T (st−1, at−1, st) =
P (st|st−1, at−1), and a |S| × |A| × |Zi| matrix O of obser-
vation probabilities, where O(st, at, zti) = P (zti |st, at).

Each agent’s physical state is augmented to include the
transition counts and all agents’ observation counts. We de-
note this state as s′ = (s, φ, ψi, ψj) ∈ S ′ = S×T ×Oi×Oj ,
where s is the physical state, φ is the transition counts (over
S), ψi is agent i’s observation counts (over Zi), and ψj is
agent j’s observation counts (over Zj). Note that this does
not require access to other agents’ observations. We treat the
other agent’s observations like the physical states, as par-
tially observable and maintain beliefs over them. (If each
agent only maintained its individual observation counts,
there would be insufficient information to infer the joint

transition function.) Given φ, ψi, and ψj , the expected prob-

abilities, T s
t−1at−1st

φt−1 , Os
tat−1zti
ψt−1

i

and O
stat−1ztj

ψt−1
j

are defined

similarly as in BA-POMDPs (cf. Equations (1) and (2)).
We construct the BA-IPOMDP 〈IS ′i,l,A, T ′i ,R′i,Zi, O′i〉

from the I-POMDP 〈ISi,l,A, Ti,Ri,Zi, Oi〉 as fol-
lows. Agent i’s augmented interactive state, is

′t
i,l =

{(st, φt, ψti , ψtj), θtj,l−1}, combines the augmented state,
s
′t = (st, φt, ψti , ψ

t
j), and its knowledge of agent j’s model,

θtj,l−1 = {btj,l−1, θ̂j}, which consists of j’s belief btj,l−1 and
frame θ̂j = 〈Aj , T ′j ,R′j ,Zj , O′j〉. Let [φ] denote {φt−1 :

φt = φt−1 + δa
t−1

st−1st} and [ψk] denote {ψt−1k : ψtk =

ψt−1k + δa
t−1

stztk
} for k ∈ {i, j}. Recall that δa

t−1

st−1st and δa
t−1

stztk
are each a vector of zeros with a 1 for the counts that cor-
respond to the “st−1 → st” transition and the “st → ztk”
observation respectively. The conditions [φ] and [ψk] ensure
that φ and ψk are properly incremented by the state transi-
tion or observation that manifests after each action. Subse-
quently:

T ′i (s
′t−1, at−1, s

′t) = T s
t−1at−1st

φ O
stat−1zti
ψi

O
stat−1ztj
ψj

(4)

O′i(s
′t−1, at−1, s

′t, zt−1i ) = 1 (5)

O′j(s
′t−1, at−1, s

′t, zt−1j ) = 1 (6)

if conditions [φ], [ψi], [ψj ] hold, and 0 otherwise. As in I-
POMDPs, the joint transition function T ′ can differ between
agents, reflecting different degrees of knowledge about the
environment. In contrast, the individual observation func-
tion O′ is deterministic; it is parametrized by the previous
and current augmented states. Lastly, the individual reward
function isR′i((st, φt, ψti , ψtj), at) = Ri(st, at).

At each time step, agent i maintains beliefs over the aug-
mented interactive states, which include agent j’s beliefs
(btj,l−1) and frame (θ̂j). As part of the l-th level belief up-
date, i invokes j’s (l − 1)-th level belief update:

τθtj,l−1
(bt−1j,l−1, a

t−1
j , ztj , b

t
j,l−1) = P (btj,l−1|bt−1j,l−1, a

t−1
j , ztj)

inducing recursion. The recursion ends at l = 0 when the
BA-IPOMDP reduces to a BA-POMDP. Unlike the usual I-
POMDP assumption of static frames, the BA-IPOMDP can
estimate components of these frames, so they need not be
completely fixed.
Theorem 1. The belief update for the BA-IPOMDP

〈IS ′i,l,A, T ′i ,R′i,Zi, O′i〉
is:

bti,l(is
′t
i,l) = β

∑
∗∗
bt−1i,l (is

′t−1
i,l )

∑
at−1
j

P (at−1j |θ
t−1
j,l−1)

T s
t−1at−1st

φt−1 O
stat−1zti
ψt−1

i

O
stat−1ztj

ψt−1
j

τθtj,l−1
(bt−1j,l−1, a

t−1
j , ztj , b

t
j,l−1)

(7)

where ∗∗ represents the set of interactive states is
′t−1
i,l such

that [φ], [ψi], [ψj ] hold.
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Proof. (Sketch) Start with Bayes’ theorem and expand:

bti,l(is
′t
i,l) = P (is

′t
i,l|zti , at−1

i , bt−1
i,l ) =

P (is
′t
i,l, z

t
i |at−1

i , bt−1
i,l )

P (zti |a
t−1
i , bt−1

i,l )

= β
∑
is
′t−1
i,l

bt−1
i,l (is

′t−1
i,l )P (is

′t
i,l, z

t
i |at−1

i , is
′t−1
i,l )

= β
∑
is
′t−1
i,l

bt−1
i,l (is

′t−1
i,l )

∑
at−1
j

P (at−1
j |θt−1

j,l−1)

P (zti |is
′t
i,l, a

t−1, is
′t−1
i,l )P (is

′t
i,l|at−1, is

′t−1
i,l )

From is
′t
i,l and is

′t−1
i,l , the count vectors, (ψt−1i , ψt−1j ) and

(ψti , ψ
t
j), determine the agents’ observations (thus eliminat-

ing the need to marginalize over ztj as is traditionally done
in the I-POMDP belief update procedure).

Under [φ], [ψi] and [ψj ], the following terms simplify:

P (zti |is
′t
i,l, a

t−1, is
′t−1
i,l ) = 1

P (is
′t
i,l|at−1, is

′t−1
i,l ) =

P (btj,l−1|s
′t, θ̂tj , a

t−1, is
′t−1
i,l )T ′i (s

′t−1, at−1, s
′t)

P (btj,l−1|s
′t, θ̂tj , a

t−1, is
′t−1
i,l ) = τθt

j,l−1
(bt−1
j,l−1, a

t−1
j , ztj , b

t
j,l−1)

Furthermore, T ′i (s
′t−1, at−1, s

′t) can be simplified by
Equation (4), where the constituent expected probabilities
Tφ and Oψk

can be computed from the counts in the same
fashion as Equations (1) and (2).

4 Solving BA-IPOMDPs
For a problem with |S| physical states and |Z| observa-
tions, an I-POMDP formulation for two symmetric agents
will contain up to |S|2 (non-interactive) states, and a single-
agent BA-POMDP formulation will contain |S|

(|z|+|Z|−1
|Z|−1

)
possible augmented states, where |z| is the total number
of observations received during the episode. The corre-
sponding (one-level) BA-IPOMDP formulation will contain
up to |S|2

(|zi|+|Zi|−1
|Zi|−1

)2
augmented (non-interactive) states,

which is exponentially larger than either of the previous
quantities. Thus, the extension from either BA-POMDPs or
I-POMDPs to BA-IPOMDPs is nontrivial.

4.1 Bayes Adaptive Interactive Particle Filter
To perform inference on BA-IPOMDPs, we approximate the
belief as a set of samples over the augmented interactive
states, and update the agent’s beliefs via an extension of the
interactive particle filter (I-PF) (Doshi and Gmytrasiewicz
2005). Our algorithm, the Bayes-Adaptive interactive parti-
cle filter (BA-IPF), is presented in Figure 1. Each sample is
a possible interactive state. For each sample, an approximate
value iteration algorithm, using a sparse reachability tree (to
be explained in the next subsection), is applied to compute
the set of approximately optimal actions for the opposing
agent. Each action in this set is then uniformly weighted so
each of these actions is equally likely to be sampled. Then,
enumerating over physical states from the next time step, we

sample the opposing agent’s action and, for all possible op-
posing agent’s observations, we apply this action to update
the model of the opposing agent and the counts in the sam-
ple. As part of updating the opposing agent’s model, which
includes its belief, the procedure recurses until level one is
reached, when the standard BA-POMDP update is invoked
instead. After the samples are propagated forward in time
as prescribed, we weigh the samples and normalize them so
their weights sum to one. Lastly, the samples are resampled
with replacement to avoid sample degeneracy.

Function BA-IPF(b̃t−1k,l , a
t−1
k , ztk, l > 0)

returns b̃tk,l
1: b̃tmpk,l ← ∅, b̃

t
k,l ← ∅

Importance Sampling

2: for all is(n),t−1
k =

〈(st−1, φt−1, ψt−1
k , ψt−1

−k )(n), θ
(n),t−1
−k 〉 ∈ b̃t−1

k,l do
3: P (A−k|θ(n),t−1−k )←APPROXPOLICY(θ(n),t−1−k , l − 1)

4: for all st ∈ S do
5: Sample at−1

−k ∼ P (A−k|θ(n),t−1
−k )

6: for all zt−k ∈ Z−k do
7: if l = 1 then
8: b̃

(n),t
−k,0 ←

BAPOMDP-UPDATE(b̃(n),t−1
−k,0 , at−1

−k , z
t
−k)

9: θ
(n),t
−k ← 〈b̃(n),t−k,0, θ̂

(n)
−k 〉

10: is
(n),t
k ← 〈(st, φt−1+ δa

t−1

st−1st ,

ψt−1
k +δa

t−1

stzt
k
, ψt−1
−k+δ

at−1

stzt−k
)(n),θ

(n),t
−k 〉

11: else
12: b̃

(n),t
−k,l−1 ←BA-IPF(b̃(n),t−1

−k,l−1 , a
t−1
−k , z

t
−k, l−1)

13: θ
(n),t
−k ← 〈b̃(n),t−k,l , θ̂

(n)
−k 〉

14: is
(n),t
k ← 〈(st, φt−1+ δa

t−1

st−1st ,

ψt−1
k +δa

t−1

stzt
k
, ψt−1
−k+δ

at−1

stzt−k
)(n),θ

(n),t
−k 〉

15: end if
16: w

(n)
t ←T s

t−1at−1st

φt−1 O
stat−1ztk
ψt−1
k

O
stat−1zt−k

ψt−1
−k

17: b̃tmpk,l

∪← (is
(n),t
k , w

(n)
t )

18: end for
19: end for
20: end for
21: Normalize all w(n)

t so that
∑N×|S|×|Z−k|
n=1 w

(n)
t = 1

Selection
22: Resample with replacement N particles from the set

b̃tmpk,l according to the importance weights; store these

(unweighted) samples as is(n),tk , n = 1, . . . , N

23: b̃tk,l ← is
(n),t
k , n = 1, . . . , N

24: return b̃tk,l

Figure 1: The BA-IPF algorithm for approximate BA-
IPOMDP belief update. n is the particle index and k is the
agent index. If k denotes i, then −k denotes j, and vice
versa.

Compared to I-PF, the BA-IPF consists of additional steps
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to update the counts (Lines 10 and 14). We have also cho-
sen to enumerate the physical states (Line 4) instead of
sampling, to achieve higher accuracy for our test problem
where the small number of physical states allowed this to
be feasible. As a result, our samples of interactive states are
weighted by the BA-IPOMDP transition function (Line 16)
instead of the uniform weighting suggested in (Ross, Chaib-
draa, and Pineau 2007) in which physical states were sam-
pled rather than enumerated.

4.2 Reachability Tree Sampling

While I-PF addresses the curse of dimensionality due to
the complexity of the belief state, the curse of history can
also be problematic, because the search space for policies
increases with the horizon length. To perform this policy
search, a reachability tree is constructed, and with increas-
ing horizons, this tree grows exponentially to account for
every possible sequence of actions and observations. To ad-
dress this issue, (Doshi and Gmytrasiewicz 2005) proposed
reachability tree sampling (RTS) as a way to reduce the tree
branching factor. In RTS, observations are sampled accord-
ing to ztk ∼ P (Zk|at−1k , b̃t−1k,l ) and a partial reachability tree
is built based on the sampled observations and the complete
set of actions.

In solving BA-IPOMDPs, the curse of history requires ap-
proximations beyond the standard RTS to address an ad-
ditional computational bottleneck: the construction of the
opposing agent’s reachability tree. In order for agent k to
behave optimally, it must anticipate what action −k might
take; thus, in solving for k’s optimal policy, it must also
construct −k’s reachability tree and use it to find −k’s op-
timal action. As the tree size grows as O((|A−k||Z−k|)l),
it becomes large quickly. Consequently, we follow (Ng et
al. 2010) to prune the opposing agent’s reachability tree in
addition to the agent’s reachability tree.

5 Empirical Results

In our evaluation, we are interested in (1) the effect of the ap-
proximate belief update from BA-IPF, and (2) the effect of
learning. We applied the multiagent Tiger problem (Doshi
and Gmytrasiewicz 2009) to study these effects. In our ex-
periments, we limit the nesting to one level and the planning
horizon to two. For each scenario, we solved both agents as
level-1 BA-IPOMDPs (since each models the other agent)
independently and present results obtained from simulating
their behaviors against each other. Our experiments were
performed on a 2.53GHz dual quad core Intel Xeon proces-
sor with 24GB of RAM.

In what follows, Sections 5.1 and 5.2 present results for
learning the observation probabilities, which entails estimat-
ing the 12 observation probabilities associated with the joint
action of 〈Listen,Listen〉 (six for TigerLeft and six for Tiger-
Right). Section 5.3 briefly discusses the results for learn-
ing the transition probabilities concurrently. This involves
estimating the 32 probabilities associated with either agent
opening either door (16 for TigerLeft and 16 for TigerRight).

# Particles Avg. Reward Final KL Div. Avg. Time (s)
4 -15.9 1.21 0.22
8 -6.3 0.52 1.09
16 -1.8 0.26 4.53

Table 1: Comparison of average rewards, final KL divergence, and
average overall time, for varying numbers of particles.

Scenario Agent 0 Agent 1
Self Opp. Self Opp.

1 Learn Correct Correct Correct
2 Learn Learn Correct Correct
3 Learn Correct Learn Correct
4 Learn Incorrect Learn Incorrect
5 Learn Learn Learn Learn

Table 2: Parameter learning scenarios. The uniform distribu-
tion is used as (1) the prior for when the agent is learning,
and (2) the static incorrect parameter for when the agent is
not learning.

5.1 Analysis of BA-IPF
The quality of approximation in BA-IPF is parametrized by
the number of particles. Table 1 shows, as a function of par-
ticle number, Agent 0’s (1) average reward per episode; (2)
KL divergence between the actual and estimated observation
distributions at the end of each episode; and (3) average time
for planning and execution per episode. The results are aver-
aged over 200 simulations of 100 episodes each. In this sce-
nario, Agent 1 is using the correct observation probabilities
and both agents are using the correct observation probabil-
ities for their respective opponent models. Hence, Agent 0
is only learning its own observation probabilities. The prior
for Agent 0’s observation probabilities is set to uniform.
In general, as the number of particles increases, reward and
time increase while KL divergence decreases. For subse-
quent experiments, the number of particles is set to 16.

5.2 Analysis of Observation Parameter Learning
In a given simulation of the two-agent Tiger game, param-
eter learning can occur for each agent and/or the agent’s
model of its opponent. Furthermore, when an agent is not
learning, parameter values can be set correctly to the ac-
tual values or incorrectly to the uniform distribution. We ex-
plored a variety of simulation scenarios and report on the
select ones that show interesting trends (cf. Table 2). In each
scenario, we have two agents, each of which could either
be (1) not learning and using correct model parameters; (2)
learning its own parameters while assuming correct or in-
correct values for its opponent’s parameters; or (3) learning
both its own and the opponent’s parameters. In these scenar-
ios, learning takes place only over the observation probabil-
ities, which uses the uniform distribution as the prior.

One notable trend is that agents accrue less rewards when
they are both learning compared to when only when one is
learning. This is shown by comparing Scenario 1, in which
only Agent 0 is learning, with Scenario 3, where both agents
are learning. Figure 2 shows the results for these two scenar-
ios, averaged over 500 simulations of 100 episodes each. It
also shows the “baseline” static performance, for when the
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(a) Scenario 1: Rewards (b) Scenario 3: Rewards (c) Scenario 1: KL div (d) Scenario 3: KL div

Figure 2: Plots comparing agent rewards (Figures 2(a) and 2(b)) and KL divergences (Figures 2(c) and 2(d)) in Scenarios 1 and 3.
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Figure 3: Plots of agent rewards and observation/transition KL divergences for a case of biased doors.
agents are not learning, but are using either the correct or in-
correct observation probabilities. Each baseline is averaged
over 50,000 simulations (here episodes have no significance
as no learning occurs).

For Scenario 1, Figure 2(a) shows the learning agent—
Agent 0—to be initially at a disadvantage, accruing smaller
returns than its opponent. This gap in performance is nar-
rowed over time, reflecting the positive effects of successful
learning. This is further supported by Figure 2(c), which re-
veals a dramatic reduction in KL divergence for the learning
agent.

For Scenario 3, when Agent 1 is also learning, it too yields
improved rewards over time, as evidenced in Figure 2(b).
The average reward obtained for the two agents is less than
the correct parameter baseline, but is still higher than the in-
correct parameter baseline, showing benefits provided by the
BA-IPOMDP over the I-POMDP with static incorrect pa-
rameters. When both agents are learning, each agent’s learn-
ing success is reduced, as reflected in the KL divergence in
Figure 2(d). Only one agent’s KL divergence is shown since
both exhibited similar convergence. Nonetheless, as shown
in the percentile plots, most of the simulations are still in
close convergence to the correct parameters.

Figure 4 summarizes the results for all five scenarios from
Table 2. First, we see that the boxplots confirm the trend
in reward reductions evident in Scenarios 1 and 3. Inter-
estingly, in the case of Scenario 2, this phenomenon man-
ifests itself in a different way. Here, Agent 0 both learns and
models its opponent as learning; Agent 1, in contrast, is us-
ing the correct parameters for both itself and its opponent
model. The result is that Agent 0 experiences a substantial
relative reward reduction. This highlights another interesting
trend we have observed in our various scenario analyses: a
“stronger” opponent model leads to higher rewards.

This trend may be explained as follows. In Scenario 1,
Agent 0’s opponent model possesses the correct parameter
values and thus represents a strong opponent. A strong op-

ponent will typically pursue exploitation over exploration,
adopting a more aggressive strategy. Thus, Agent 0 will
utilize a exploitation-dominant strategy, and will conse-
quently reap higher rewards on average. Contrast this with
the “weaker” learning opponent model in Scenario 2, in
which Agent 0 opts more for exploration, performing the
listening action more frequently to improve parameter esti-
mates (assuming its opponent is likely to do the same). The
ultimate result is that Agent 0’s average accrued reward is
reduced in Scenario 2 compared to Scenario 1.

The boxplot results for Scenarios 4 and 5 illustrate the ef-
fect of fixed incorrect parameters versus learned parameters
for the opponent model. At least for Agent 0, the compari-
son between the two scenarios suggests that, for the specific
choice of prior (i.e., uniform), an opponent model whose pa-
rameters are fixed incorrectly to the prior yields comparable
rewards to an opponent model that starts with the prior and
evolves with learning.

5.3 Analysis of Joint Parameter Learning
Unfortunately, the multiagent Tiger problem is not very
well-suited for analyzing the learning of transition proba-
bilities, because the only state transition is the resetting of
the tiger’s location to the left or right door with equal prob-
ability, triggered by the door opening action. To investigate
the impact of learning both transition and observation prob-
abilities, we considered an alternative version of the Tiger
problem, one with biased doors, in which the tiger resets to
the left door with a probability of 0.75 and the right with a
probability of 0.25.

Figure 3 presents our results for Scenario 3. (Like before,
only one agent’s KL divergence is shown since both exhib-
ited similar convergence.) Under this biased-door version of
the problem, concurrent learning (of observation and tran-
sition probabilities) leads to rewards comparable to the cor-
rect parameter baseline. Compared to the learning agent in
the unbiased multiagent Tiger problem, this learning agent
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Figure 4: Boxplots of rewards in an episode for each agent
and across all 100 simulation episodes. Each boxplot pair
represents one of the five scenarios in Table 2.

accrues higher rewards. However, the reduction in observa-
tion KL divergence is somewhat less than in the unbiased
problem. The transition KL divergence also reflects the fact
that this problem does not offer sufficient information to ad-
equately learn the transition probabilities, since the true state
is revealed only after a door is opened.

6 Discussion
Our results demonstrate that the BA-IPOMDP framework
can successfully be used to model multiple agents with un-
certainties about (1) the current state of the world, and (2)
their associated transition and observation probabilities. In
particular, we observe that the reward for agents employ-
ing learning strategies improves over time, suggesting that
learning is beneficial (Figure 2); moreover, the speed of this
convergence is heavily affected by whether one or more
agents are learning. Generally, scenarios in which more
learning takes place (see Table 2) take longer to converge
than scenarios with less learning, and consequently the av-
erage rewards over the same timespan are lower (Figure 4).
This effect is also impacted by whether non-learning agents
have a fixed and incorrect model of their opponent.

Finally, we note that recent work (Doshi-Velez 2009) has
addressed learning in POMDP models where the state space
itself is not fully known. This approach uses infinite hidden
Markov models in learning the size of the state space. Incor-
porating such a framework within the BA-IPOMDP would
produce more computational challenges, but it might have
the benefit of broadening BA-IPOMDP’s applicability.
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