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Abstract

The current state-of-the-art algorithm for optimal coalition
structure generation is IDP-IP—an algorithm that combines
IDP (a dynamic programming algorithm due to Rahwan and
Jennings, 2008b) with IP (a tree-search algorithm due to Rah-
wan et al., 2009). In this paper we analyse IDP-IP, highlight
its limitations, and then develop a new approach for combin-
ing IDP with IP that overcomes these limitations.

1 Introduction
Coalition formation, the process by which groups of agents
cooperate to improve their performance, is an important
form of interaction in multi-agent systems. Sample applica-
tions of coalition formation include distributed vehicle rout-
ing (Sandholm and Lesser 1997), sensor networks (Dang et
al. 2006), and e-commerce (Tsvetovat et al. 2000). Coali-
tional games provide a formal model of coalition formation
scenarios. A class of these games that received a lot of atten-
tion in the literature is characteristic function games, where,
given a set of agentsA, a characteristic function v : 2A → R
assigns to every subset (or coalition) of agents a real value
that reflects its performance. Since in many realistic setting
multiple coalitions can co-exist, we often talk about a coali-
tion structure which is a partition of the set of agents into
disjoint and exhaustive coalitions. An important research
question is how to find an optimal coalition structure, i.e.
one in which the total value of all the coalitions is maxi-
mal. This problem, which is widely known as the Coalition
Structure Generation (CSG) problem, received considerable
attention in recent years, and has been shown to be compu-
tationally hard (Sandholm et al. 1999). A number of algo-
rithms have been developed to try and combat this complex-
ity, and the focus of this paper is on exact algorithms (i.e.,
algorithms that are guaranteed to eventually find an optimal
solution). The two main classes of these algorithms are:

1. Dynamic programming algorithms: The basic idea of
dynamic programming is to break the optimization prob-
lem into sub-problems that can be solved recursively, and
then combine the results of those subproblems to pro-
duce a solution to the original problem. The state-of-the-
art CSG algorithm in this class is IDP (Rahwan and Jen-
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nings 2008b) and its other version proposed by Service
and Adams (2011).

2. Tree-search algorithms: In this class, the state-of-the-
art algorithm is IP (Rahwan et al. 2009), which divides
the search space into subspaces that are searched us-
ing depth-first searched combined with branch-and-bound
techniques.

The main difference between IDP and IP is that the perfor-
mance of IDP is independent of the values of the character-
istic function; it depends solely on the number of agents. On
the other hand, the performance of IP, given a fixed number
of agents, may change dramatically depending on the char-
acteristic function values. Thus, in the worst case, IP can be
significantly slower than IDP. To be more precise, IP runs
in O(nn), while IDP runs in O(3n), where n is the number
of agents. In practice, however, IP has been shown to signif-
icantly outperform IDP for many popular test distributions
of coalition values (see Section 4 for more details).

Another important difference between IDP and IP is that
the latter is an anytime algorithm, i.e., its solution quality im-
proves monotonically as computation time increases. This
implies that it can return a solution even if it is stopped
prematurely. IDP, on the other hand, only returns a solution
once it runs to completion. Recently, an anytime version of
IDP was proposed by Service and Adams (2011).1

Since each of IP and IDP has its own advantages over
the other, there is scope to combine the two in the hope
of obtaining the best features of both. To this end, Rahwan
and Jennings (2008a) introduced a novel representation of
the space of possible coalition structures (see Section 2.2
for more details). This representation provided a deeper un-
derstanding of how both algorithms (IDP and IP) worked,
and provided insight into how they could be merged to-
gether. Based on this, the authors developed an algorithm,
called IDP-IP, which initially starts by running IDP, and then
switches to IP to continue the search. The moment in time at
which the switch occurs can be controlled by a single integer
parameter, called m. On one extreme, setting m to 1 means
that the algorithm will switch to IP right from the start, and
so IDP will never be used. On the other extreme, by setting
m to

⌊
2×n

3

⌋
, IDP will run to completion, and the switch to

1We postpone the discussion on this version of IDP until Sec-
tion 4 to enhance the readability of the paper.
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IP will never occur. By setting m anywhere between these
two extremes, the user can control the number of operations
that will be carried out by IDP before making the switch to
IP.

While the idea of combining IDP and IP has a lot poten-
tial, we argue that the way Rahwan and Jennings combined
them suffers from two major limitations:

• As we show in this paper, the effect that different values
of m have on the performance of IDP-IP can be very dif-
ferent from one coalition-value distribution to another. In
other words, without prior knowledge of the distribution,
it is unknown how m should be determined in order to
optimize the performance. We show that, by choosing the
wrong m, the performance can deteriorate dramatically.

• The way IDP and IP were combined in IDP-IP makes it
impossible to return a solution before IDP finishes the pre-
processing. This implies that, for a relatively large value
ofm, the anytime property of IP deteriorates significantly.

Against this background, the contributions of this paper
can be summarized as follows:

• We develop IDP-IP∗—an algorithm that combines IDP
and IP without any control parameters. Instead, it auto-
matically adjusts itself between its two parts (IDP and IP)
so as to reflect the relative strength of each part with re-
gards to the problem instance at hand (i.e., the more ef-
fective a part is, compared to the other, the more search
operations will be assigned to that part). This adjustment
is done without any prior knowledge of the coalition value
distribution.

• IDP-IP∗ does not use IDP for preprocessing and, thus,
avoids the need to wait until IDP terminates. This way,
the combination of IDP and IP retains the desirable any-
time property of IP.

• We show that, for the majority of distributions considered
in this paper, IDP-IP∗ outperforms IDP-IP even if the lat-
ter was adjusted to its optimal setting (i.e., even if the
optimal value ofmwas known). As for the remaining dis-
tributions, we show that IDP-IP∗ is relatively close to the
optimal setting of IDP-IP.

The remainder of the paper is organized as follows. Section 2
describes the IDP and IP algorithms, as well as IDP-IP. Our
algorithm is presented in Section 3 and evaluated in Sec-
tion 4. Related work is discussed in Section 5. Finally, Sec-
tion 6 concludes the paper and outlines future work.

2 Explaining IDP, IP and IDP-IP
In this section we describe the IDP, IP and IDP-IP algo-
rithms. However, before we do that, we need to present a
particular representation of the space of the possible coali-
tion structures, since this representation will provide insight
into the way these algorithms work. In particular, this rep-
resentation is known as the coalition structure graph (Sand-
holm et al. 1999), which is an undirected graph where ev-
ery node represents a coalition structure. The nodes (i.e.,
coalition structures) are categorized into levels according the
number of coalitions in each node. An edge connects two

Figure 1: The coalition structure graph of 4 agents.

coalition structures iff: (1) they belong to two consecutive
levels, and (2) one of the coalition structures can be obtained
from the other by splitting one coalition into two. An exam-
ple is shown in Figure 1.2

When explaining the algorithms, we will use the follow-
ing notations. LetA be the set of agents, and n be the number
of agents. Also, let ΠA be the set of possible coalition struc-
tures (i.e., partitions over A) and, for any coalition structure
CS , let V (CS ) denote the value of CS , where: V (CS ) =∑

C∈CS v(C). Furthermore, let CS∗ denote an optimal
coalition structure. That is, CS∗ ∈ arg maxCS∈ΠA V (CS ).
Finally, let CS∗∗ denote the best coalition structure found
by an algorithm at any point in time.

2.1 IDP
IDP is an improved version of a previous algorithm, called
DP (Yeh 1986). Hence, to better understand IDP, we need
to first give a brief description of DP. To this end, for any
coalition C ⊆ A, let ΠC be the set of possible parti-
tions of C, where a partition P = {P1, · · · , P|P |} ∈ ΠC

is a set of disjoint coalitions of which the union equals
C. Moreover, let V (P ) be the value of partition P , where
V (P ) =

∑
Pi∈P v(Pi). Finally, let f(C) be the value of the

optimal partition of C, i.e., f(C) = maxP∈ΠC V (P ). Then,
DP is based on the following recursive formula to compute
f(C):

f(C) =


v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)}
otherwise

(1)
In more detail, DP iterates over all the coalitions of size
1, and then over all those of size 2, and then size 3, and
so on until size n. For every such coalition C, it com-
putes f(C) using equation (1). As can be seen, when-
ever |C| > 1, the equation requires comparing v(C) with
max{C′,C′′}∈ΠC f(C ′)+f(C ′′). The result of this compari-
son is stored in a table, t, which has an entry for every coali-
tion. In particular, if v(C) was greater, then the algorithm
sets t[C] = C so that it can later on remember that it is not
beneficial to split C into two coalitions. Otherwise, it sets
t[C] = arg max{C′,C′′}∈ΠC f(C ′) + f(C ′′) to remember
the best way of splitting C into two coalitions. By the end of
this process, f(A) will be computed, which is by definition

2The reason for highlighting some of the edges will be made
clear in the following sub-section.
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equal to V (CS∗). What remains is to compute CS∗ itself.
This is done recursively using the t table, e.g.:

Example 1. Given A = {a1, a2, a3, a4}, suppose that
t[A] = {{a1, a2}{a3, a4}}, i.e., it is most beneficial to
split A into {a1, a2} and {a3, a4}. Moreover, suppose
that t[{a1, a2}] = {{a1}, {a2}}, while t[{a3, a4}] =
{a3, a4}, i.e., it is most beneficial to split {a1, a2}, but it
is not beneficial to split {a3, a4}. In this case, CS∗ =
{{a1}, {a2}, {a3, a4}}.

Rahwan and Jennings (2008b) showed how the operation
of DP can be visualized on the coalition structure graph. To
this end, observe that every movement upwards in the graph
corresponds to the splitting of one coalition into two. The
way DP works is by determining, for every coalitionC ⊆ A,
whether it is beneficial to split C, and if so what is the best
such split (the answer to this question is stored in t[C]). This
way, every time the algorithm reaches a node (i.e., a coali-
tion structure) that contains C, it can determine (based on
t[C]) whether it is beneficial to make a movement that in-
volves splitting C. Once the possible movements have been
evaluated (by computing t[C] for all C ⊆ A), the algorithm
moves upwards in the graph through a series of connected
nodes (called a “path”) until an optimal node is reached, af-
ter which no movement is beneficial. For instance, the way
DP reached {{a1}, {a2}, {a3, a4}} in Example 1 can be vi-
sualized as movements through the dashed path in Figure 1,
where the first movement involved splitting {a1, a2, a3, a4}
into {a1, a2} and {a3, a4}, and the second movement in-
volved splitting {a1, a2} into {a1} and {a2}.

Now, given three fixed integers values i1, i2, i3, where
1 ≤ i1 ≤ i2 < i3 < n, and i1 + i2 = i3, Rahwan and Jen-
nings asked the following question: what if, for every coali-
tion C : |C| = i3, DP did not evaluate the possible ways of
splitting C into two coalitions C1, C2 where |C1| = i1 and
|C2| = i2? They showed that this corresponds to the removal
of every edge that represents the splitting of one coalition of
size i3 into two coalitions of sizes i1 and i2. More impor-
tantly, they showed that DP will still be able to find the best
of all the nodes that are still reachable from the bottom one.
Based on this, they identified a subset of edges, called E∗,
that is sufficient to have a path from any node in the graph to
the bottom one, and they developed IDP, which is very simi-
lar to DP except it only evaluated the edges in E∗ instead of
evaluating all edges.

2.2 IP
The IP algorithm is based on the integer partition-based rep-
resentation (Rahwan et al. 2007a) of the space of possible
coalition structures. This representation divides the space
into subspaces that are each represented by an integer par-
tition of n.3 For example, given n = 4, the possible inte-
ger partitions are {4}, {1, 3}, {2, 2}, {1, 1, 2}, {1, 1, 1, 1},
and each one of these represents a subspace consisting of
all the coalition structures within which the coalition sizes
match the parts of the integer partition. For instance, if we

3An integer partition of n is a multiset of positive integers, or
parts, of which the sum equals n (Andrews and Eriksson 2004).

Figure 2: The integer partition graph of 4 agents.

denote by In the set of integer partitions of n, and by ΠA
I

the subspace that corresponds to I ∈ In, then ΠA
{1,1,2} is

the subspace containing all the coalition structures within
which two coalitions are of size 1, and one coalition is of
size 2. A different version of this representation was later
on proposed where every subspace is represented by a node
in an undirected graph called the integer partition graph
(Rahwan and Jennings 2008a). In this graph, two nodes
representing I, I ′ ∈ In, where |I| > |I ′|, are connected
via an edge iff there exists two parts i, j ∈ I such that
I ′ = (I \ {i, j}) ] {i + j}. Given 4 agents, for example,
Figure 2 shows the integer partition graph and the subspace
that corresponds to every node in the graph.

With this representation, it is possible to compute upper
and lower bounds on the value of the best coalition structure
that can be found in each subspace. To this end, for every
coalition size s ∈ {1, 2, . . . , n}, let Ls denote the list of all
the possible coalitions of size s. Moreover, let Maxs and
Avgs be the maximum and average values of the coalitions
in Ls, respectively. Then, for all I ∈ In, it is possible to
compute an upper bound UBI on the value of the best coali-
tion structure in ΠA

I as follows: UBI =
∑

s∈I I(s) ·Maxs,
where I(s) is the multiplicity of s in I . Similarly, a lower
bound LBI on the value of the best coalition structure in
ΠA

I can be computed as follows: LBI =
∑

s∈I I(s) ·Avgs.
These bounds are then used to establish worst-case guar-
antees on the quality of CS∗∗, and to prune the subspaces
that have no potential of containing a solution better than
CS∗∗. As for the remaining subspaces, IP searches them
one at a time, unless a coalition structure is found that
has a value greater than, or equal to, the upper bound of
some subspace, in which case that subspace no longer needs
to be searched. The process of searching a subspace, say
ΠA

I : I = {i1, . . . , i|I|}, is done in a depth-first manner:
the algorithm iterates over the coalitions in Li1 and, for ev-
ery C1 ∈ Li1 that the algorithm encounters, it iterates over
the coalitions in LA

i2
that do not overlap with C1. Similarly,

for every C2 ∈ LA
i2

that the algorithm encounters, it iterates
over the coalitions in LA

i3
that do not overlap with C1 ∪ C2,

and so on. This process is repeated until the last list, LA
i|I|

, is
reached. For every C|I| ∈ LA

i|I|
that the algorithm encoun-

ters, it would have selected a combination of |I| coalitions,
namely {C1, C2, . . . , C|I|}, that is guaranteed to be a coali-
tion structure in ΠA

I . Eventually, all the coalition structures
in ΠA

I are examined.
To speed up the search, IP applies a branch-and-bound

technique at every depth d < |I|. Specifically, after fixing
d coalitions, C1 ∈ Li1 , . . . , Cd ∈ Lid , and before iterat-
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ing over the relevant coalitions in Lid+1
, . . . , Li|I| , it checks

whether:

d∑
j=1

v(Cj) +

|I|∑
j=k+1

Maxij < V (CS∗∗) (2)

Now if the inequality in (2) holds, then this means none of
the coalition structures that contain C1, . . . , Cd can improve
upon the quality of the best solution found so far, and so
these coalition structures can be skipped during the search.

2.3 IDP-IP
As discussed earlier in Section 2.1, the operation of IDP can
be visualized as movements through edges in the coalition
structure graph, and if certain splittings were not evaluated,
then this can be visualized by removing the corresponding
edges from that graph. Importantly, however, the way IDP
works can also be visualized on the integer partition graph.
Basically, by making a movement from one coalition struc-
ture CS ′ to another CS ′′, IDP is actually making a move-
ment (in the integer partition graph) from one integer parti-
tion I ′ : ΠA

I′ 3 CS ′ to another I ′′ : ΠA
I′′ 3 CS ′′. Moreover,

by removing all the edges that correspond to the splitting
of a coalition of size s into two coalitions of sizes s′ and s′′,
we are actually removing every edge that connects an integer
partition I : I 3 s to another I ′ = (I \ {s})] {s′, s′′}. This
visualization provides the link between IDP and IP since the
latter deals with subspaces that are represented by integer
partitions.

Having presented the link between IDP and IP, we now
show how they are combined in IDP-IP. Basically, instead
of setting IDP to evaluate the possible splittings of the
coalitions of size s ∈ {1, 2, . . . , n}, we can set it to s ∈
{1, 2, . . . ,m, n}, where m < n. As for the coalitions of the
remaining sizes, we simply set f [C] = v(C) and t[C] = C.
This corresponds to the removal of the edges (in the integer
partition graph) that involve replacing an integer i : m <
i < n with two smaller ones. Recall that IDP knows how
to make the best movements through the remaining edges.
Unfortunately, however, those movements are always made
starting from the bottom node, i.e., ΠA

{n}. Thus, while IDP
can still find the best solution in any of the subspaces that are
reachable from ΠA

{n}, the part of the graph that is now dis-
connected from ΠA

{n} will no longer be searched. To search
this part, Rahwan and Jennings use a modified version of IP.
This is based on the observation that, for any CS , one can
compute the value of the best coalition structure reachable
from CS as follows:

∑
C∈CS f(C). Now since IP can search

any subspace and find the coalition structure that maximizes∑
C∈CS v(C), then by simply replacing v with f we can use

IP to determine, for every subspace, the coalition structure
from which the best movements can be made. IDP can then
be used to make those movements using the t table. Simi-
larly, every subspace that has no edge leading to it must be
searched by IP, followed by IDP.

When m is set to 1, every subspace will have no edge
leading to it, and so must be searched by IP. Thus, IDP-IP
become identical to IP. On the other hand, when m is set

to
⌊

2×n
3

⌋
, every subspace would have an edge leading to

it. Thus, IP will not be used, and IDP-IP becomes identical
to IDP. More importantly, by setting m anywhere between
those two extremes, one can determine how much of IDP,
and how much of IP, to have in the performance of IDP-IP.

3 Introducing IDP-IP∗

The way IDP and IP were combined in IDP-IP was in a se-
quential manner; IDP operates first while IP stands idle, and
then IP starts operating, at which point IDP becomes idle.
As we will show in Section 4.1, such a combination can end
up performing significantly worse than its constituent parts.
Furthermore, the only way to determine when to switch from
IDP to IP is by experimenting with all possible settings of
the m parameter. The optimal moment in time to make this
switch can be very different from one value distribution to
another.

To overcome this limitation, we developed IDP-IP∗—an
algorithm that combines IDP and IP in such a way that
allows them to work in a more interactive manner. More
specifically, it runs IDP and IP simultaneously, and enables
each one of them to enhance the performance of the other
without ever delaying it. This way, IDP-IP∗ always adjusts
itself such that the proportion of search assigned to each of
its two constituent parts (IDP and IP) reflects the relative
strength of that part with respect to the problem instance at
hand. This adjustments happens automatically, without the
need for any a priori knowledge of the coalition value dis-
tribution.

The remainder of this section describes IDP-IP∗ in more
detail. We first show how IDP enhances the performance of
IP, and then show how IP enhances IDP’s performance.

3.1 Improving IP with IDP
As mentioned earlier in Section 2.2, every time IP reaches a
certain depth d in the search tree of a subspace ΠA

I , it adds a
coalition Cd to a set of disjoint coalitions {C1, · · · , Cd−1}.
The way IP prunes the branch {C1, . . . , Cd} is by deter-
mining whether Cd+1, . . . , C|I| are promising (see equation
(2)). However, we show how to modify IP such that, even if
this is not the case, IP may still be able to prune the branch.
The basic idea is to keep, as much as possible, track of the
value of the best partition that has been encountered for any
subset of agents (let us denote this value as v′(C) for coali-
tion C). This way, before IP adds the coalition Cd, it checks
whether:

• v′(Cd) > v(Cd): If this holds, then the branch
{C1, · · · , Cd} can be pruned. This is because we are in-
terested in finding the optimal coalition structure CS∗,
and we know that CS∗ cannot contain a coalition of which
a better partition exists.

• v′(∪dj=1Cj) >
∑d

j=1 v(Cj): If this holds, then IP can
prune the branch {C1, · · · , Cd} (following the same ra-
tionale).

Note that, for any subset of agents C ⊆ A, if v′(C) is found
to be smaller than v(C), then v′(C) is updated by simply
setting v′(C) = v(C).
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In order to use the above pruning technique, IP needs a ta-
ble in which to store v′ for every subset of agents. However,
with the help of IDP, this can be done without the need for
any extra memory requirements, since v′(C) can be stored
in f(C). To be more precise, IDP initially sets f(C) = v(C)
for every C ⊆ A. After that, IP stores in f the values of the
best partitions that it had encountered so far, and uses those
values to prune branches of the search tree whenever possi-
ble. Meanwhile, IDP enhances the values in f (since IDP is
very effective at computing the values of the best partitions
of coalitions, especially the small ones). This way, for any
C ⊆ A, if IDP hasn’t yet computed f(C), then v′(C) will
be the value of the best partition encountered, and stored,
by IP. As soon as IDP computes f(C), v′(C) becomes the
value of the best possible partition of C.

To better understand the effect that IDP has on our pro-
posed branch-and-bound technique, let us consider an exam-
ple of 19 agents. In this example, since we have 19 agents,
our results show that IDP can compute the value of the
best partition of all coalitions of size s ∈ {1, . . . , 9} in
less than one second (see Section 4). Now, suppose that,
after one second from the start time, IP reached the fol-
lowing branch: {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9}.
By this time, IDP has already computed the optimal parti-
tion of each of the following subsets of agents: {a1, a2},
{a3, a4}, {a5, a6}, {a7, a8}, {a1, . . . , a4}, {a1, . . . , a6},
{a1, . . . , a8}, {a1, . . . , a9}. Now since we modify IP such
that it checks the aforementioned conditions at every depth,
then the branch will be pruned unless every one of those
subsets has a value that is equal to its optimal partition. This
is less likely to happen when the number of possible parti-
tions is large. For instance, there is a total of 21147 possible
partitions of {a1, . . . , a9}. Therefore, if at least one of those
partitions has a value greater than that of {a1, . . . , a9}, then
the entire branch will be pruned. Similarly, there is a total of
4140 possible partitions of {a1, . . . , a8}, and so the branch
will be pruned if one of those partitions has a value greater
than that of {a1, . . . , a8}.

Having presented a new branch-and-bound technique, we
will now present another technique that we use to enhance
IP with the help of IDP. To this end, without loss of general-
ity, let us assume that the integers in I are ordered. Further-
more, let us denote by m∗ the maximum size of coalitions
for which IDP has finished computing the f values. Now, for
any integer partition I = {i1, · · · , i|I|}, we will show how
IP can avoid going in the search tree of ΠA

I beyond depth
d∗, where:

d∗ = max
k∈{1,...,|I|}:

∑|I|
j=k ij>m∗

k

Basically, IP searches ΠA
I as usual, but as soon as it

reaches the depth d∗, it does not try to construct all
the possible coalition structures in ΠA

I that start with
C1, . . . , Cd∗ . Instead, it simply selects the coalition struc-
ture {C1, . . . , Cd∗ ,∪|I|j=d∗+1Cj}, and evaluates it as follows:

v(C1) + · · ·+ v(Cd∗) + f(∪|I|j=d∗+1Cj).
Unlike IDP-IP, which groups as many integer as possible

in I into bigger integers (that are smaller than, or equal to,

m∗), we only group the integers at the end of I . This ensures
that the effectiveness of applying branch-and-bound based
on equation (2) is not influenced negatively (see Section 4.1
for a detailed discussion on how such a negative influence
is created in IDP-IP). Avoiding the search beyond a certain
depth of the tree is very promising, especially since the size
of the tree drops exponentially as the tree becomes shorter.

3.2 Improving IDP with IP
In this subsection, we show how IP can be modified so as to
help IDP. This is done by simply changing the order through
which IP searches the subspaces. Recall that, of all remain-
ing subspaces, IP typically starts with the one that has the
highest upper bound. As for IDP, recall that after it com-
putes the f values of all coalitions of size m∗, it can find the
optimal solution among all subspaces that are still reachable
from the bottom node, where the edges represent a split of
an integer i ≤ m∗ into two smaller integers. Furthermore,
as m∗ increases, more subspaces become reachable from
the bottom node, i.e., IDP covers more subspaces. Against
this background, we modify IP such that it starts with the
subspaces that IDP would cover last, i.e., the subspaces that
can only be covered by IDP once m∗ =

⌊
2×n

3

⌋
. Once IP

finishes searching those subspaces, IDP has no need to con-
tinue with its search until m∗ =

⌊
2×n

3

⌋
. Instead, it can ter-

minate oncem∗ =
⌊

2×n
3

⌋
−1. The same process is repeated,

i.e., IP searches the subspaces that would only be covered by
IDP when m∗ =

⌊
2×n

3

⌋
− 1, and then those covered when

m∗ =
⌊

2×n
3

⌋
− 2 and so on. This way, even if IDP hap-

pens to be more effective than IP for a certain distribution,
IP can still take some of the burden off IDP. This also gives
IDP-IP∗ the ability to calibrate itself automatically such that
the amount of search assigned to each of its two constituent
parts (IDP and IP) reflects the relative strength of that part
with respect to the value distribution at hand.

4 Performance evaluation
In this section we evaluate IDP-IP (Section 4.1) and IDP-
IP∗ (Section 4.2) with the following coalition value distribu-
tions:
• Uniform, as studied in (Larson and Sandholm 2000):
v(C) ∼ U(a, b) where a = 0 and b = |C|;
• Normal, as studied in (Rahwan et al. 2007b): v(C) ∼
N(µ, σ2) where µ = 10× |C| and σ = 0.1;

• Modified Uniform, as studied in (Service and Adams
2010): v(C) ∼ U(0, 10 × |C|), and every v(C) is in-
creased by a random number r ∼ U(0, 50) with probabil-
ity 20%;

• Modified Normal, introduced in this paper: v(C) ∼
N(10 × |C| , (0.1)2), and every v(C) is increased by a
random number r ∼ U(0, 50) with probability 20%;

• NDCS (Normally Distributed Coalition Structures), as
studied in (Rahwan et al. 2009): v(C) ∼ N(µ, σ2), where
µ = |C| and σ =

√
|C|;

• Agent-based, introduced in this paper: Each agent ai is
given a random power pi ∼ U(0, 10) reflecting its aver-
age performance over all coalitions. The agent’s power in
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Figure 3: IDP-IP given n = 20 and different values of m (log
scale).

any particular coalition C is denoted as pCi ∼ U(0, 2pi).
Then, the value of a coalition is the sum of the powers of
its member. That is, v(C) =

∑
ai∈C p

C
i ;

Time is plotted on a log scale, and measured as in millisec-
onds on a PC with an Intel i7 (3.40GHz) and 12GB of RAM.

4.1 Evaluating IDP-IP

Observe that, when running IP alone, the only information
available to IP are the values of the coalitions. However, by
running IDP for every coalition of size 1, . . . ,m, IP obtains
extra information; it knows the value of the best partition of
each of these coalitions. The only cost to obtain this extra in-
formation is that IP has to wait for IDP to terminate. It is im-
portant to underline the fact that this cost is insignificant for
relatively small values of m; e.g., given n = 20 it takes only
0.05 seconds to obtain the best partition of every coalition up
to size m = 6. Surprisingly, however, with this extra infor-
mation IP becomes significantly slower for certain distribu-
tions. To demonstrate this point, we tested IDP-IP with dif-
ferent distributions and different values of m, and that is for
n = 20 (see Figure 3). As can be seen, given NDCS, Modi-
fied Unifrom, and Modified Normal, IDP-IP is significantly
slower withm = 6 compared to the case where IP has no ex-
tra information, i.e., the case where m = 1. This raises the
following question: how can IP underperform given extra
information? The answer is that, in IDP-IP, the extra infor-
mation is used to help IP avoid searching as many subspaces
as possible. However, as a result of this process, the effort
that IP has to put when searching the remaining subspaces
increases (compared to the effort that it would have put to
search those subspaces without any extra information). The
reason behind this increase can be found in equation (2)—
the equation based on which IP applies branch-and-bound
(see Section 2.2 for more details). Specifically, the branch
that starts with C1, . . . , Cd is deemed unpromising by IP if
the inequality in (2) holds. In IDP-IP, however, a different
version of this equation is used, where f is used instead of v.
More specifically, v(Cj) is replaced with f(Cj), andMaxij
is calculated as maxC∈Lij

f(C) instead of maxC∈Lij
v(C).

Now since f(C) ≥ v(C) for all C ⊆ A, using f makes the
left-hand side of (2) larger, which decreases the probability
of satisfying the inequality. In fact, this decrease can be so
significant that the overall performance becomes slower by
orders of magnitude (as is the case, for instance, with NCSG
and Modified Uniform).

Figure 4: IDP-IP∗ vs. IDP-IP and Service&Adams (log scale).

4.2 Evaluating IDP-IP∗

For every distribution, and for every number of agents be-
tween 15 and 25, we benchmark IDP-IP∗ against IDP-IP
with the best choice of m, the worst choice, and the aver-
age choice (see Figure 4).4 Here, by the average choice we
mean the performance of IDP-IP averaged over all possi-
ble values of m. Such a comparison is particularly relevant
when the optimal value of m is unknown in advance. As
can be seen, for NDCS, Modified Uniform, Modified Nor-
mal, and Agent-based Uniform, IDP-IP∗ outperforms IDP-
IP even when the latter is configured with the best possible
choice of m. As for the Normal and Uniform, IDP-IP∗ is
close to IDP-IP for the best choice of m, but is consistently
faster than IDP-IP averaged over all possible choices of m.
The Figure also shows that, without knowing how to best set
m, the user can end up with an extremely poor performance
when running IDP-IP instead of IDP-IP∗ (see how IDP-IP∗
is faster than the worst setting of IDP-IP by orders of mag-
nitude for all distributions).

Finally, we benchmark IDP-IP∗ against an anytime ver-
sion of IDP that was proposed by Service and Adams (2011).
The basic idea of this algorithm is to add a preprocessing
stage to IDP such that, if it is interrupted before completion,
then the extra information obtain from preprocessing would
be sufficient to construct a coalition structure that is guar-
anteed to be within a finite bound from CS∗. However, this
algorithm requires 4 time as much memory compared to IDP
or to IDP-IP∗. Furthermore, as Figure 4 shows, IDP-IP∗ is
significantly faster for all distributions.

4Results that require more than 24h to run were extrapolated.
Error bars were omitted to enhance the readability of the figure.
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5 Related Work
Our focus in this paper was on exact, anytime, CSG al-
gorithms. Several anytime algorithms, other than the ones
explained in this paper, were developed in the literature
(see, e.g., (Sandholm et al. 1999; Dang and Jennings 2004;
Rahwan, Michalak, and Jennings 2011)). These algorithms
focus on (1) proposing a criteria based on which to divide
the search space into subsets, and (2) a sequence in which
these subsets are searched, such that the worst case bound
on solution quality is guaranteed to improve after each sub-
sets. In practice, however, the bounds generated by IP were
shown to be significantly better.

Another class of CSG algorithms are metaheuristics
which do not guarantee that an optimal solution is ever
found, nor do they provide any guarantees on the quality
of their solutions. However, they can usually be applied
for very large problems (see, e.g., (Sen and Dutta 2000;
Keinänen 2009; Shehory and Kraus 1998; Mauro et al.
2010)).

For completion, we refer to work on the CSG prob-
lem under compact representations of coalitional games.
Ueda et al. (2010) considered the CSG problem under the
DCOP (Distributed Constraint Optimization Problem) rep-
resentation, while Ohta et al. (2009) considered it under
the Marginal Contribution-net representation of Ieong and
Shoham (2005). The skill-game settings were studied by
Ohta et al. (2006) and Bachrach and Rosenschein (2008).

6 Conclusions
We presented IDP-IP∗—a new combination of IDP and IP.
Compared to the previous combination, i.e., IDP-IP, our al-
gorithm is often faster, does not need prior knowledge of the
value distribution, and does not hinder the anytime property
of IP. Future work will focus on analysing the worst-case
complexity of IDP-IP∗, and on combining IP with the ver-
sion of IDP that was proposed by Service and Adams (2011).
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