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Abstract

In many mechanisms (especially online mechanisms), a
strategic agent can influence the outcome by creating mul-
tiple false identities. We consider voting settings where the
mechanism designer cannot completely prevent false-name
manipulation, but may use false-name-limiting methods such
as CAPTCHAs to influence the amount and characteristics
of such manipulation. Such a designer would prefer, first, a
high probability of obtaining the “correct” outcome, and sec-
ond, a statistical method for evaluating the correctness of the
outcome. In this paper, we focus on settings with two alter-
natives. We model voters as independently drawing a number
of identities from a distribution that may be influenced by the
choice of the false-name-limiting method. We give a crite-
rion for the evaluation and comparison of these distributions.
Then, given the results of an election in which false-name
manipulation may have occurred, we propose and justify a
statistical test for evaluating the outcome.

Introduction
A commonly studied method of manipulating mechanisms,
particularly those run on the Internet, is through the cre-
ation of false identities. In the systems literature, this is
known as a “Sybil attack” (Douceur 2002). False-name
manipulations have also been studied by AI researchers,
from the perspective of incentives and mechanism design.
This literature has focused on designing mechanisms that
are false-name-proof (Yokoo, Sakurai, and Matsubara 2001;
2004), meaning that even if participating in the mechanism
under multiple identities were possible, an agent would de-
rive no benefit from doing so. An overview of this line of
work is given by Conitzer and Yokoo (2010). They empha-
size the mostly negative nature so far of results on mecha-
nisms that are false-name-proof in the strict sense, though
they hold out more hope for extended models, such as ones
that can use social-network structure (Conitzer et al. 2010).
Meanwhile, however, mechanisms that are vulnerable to
false-name manipulation continue to be used in practice.

In this paper, we take a different approach and address
the implications of operating mechanisms in which false-
name manipulation may take place. We focus on voting set-
tings, which are particularly challenging for the design of
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mechanisms that are completely false-name-proof; for ex-
ample, with two alternatives, the best possible false-name-
proof voting rule simply flips a fair coin to decide the winner
if there is even the slightest disagreement among the vot-
ers (Conitzer 2008a). Restricting to single-peaked prefer-
ences may give a small improvement (Todo, Iwasaki, and
Yokoo 2011). If the cost of voting is taken into account,
somewhat more positive results can be obtained (Wagman
and Conitzer 2008).

While it has proven difficult to prevent false-name manip-
ulation from a traditional mechanism design point of view
by incentivizing voters not to create false identities, a more
commonly used method for preventing false-name manipu-
lations in real life is to restrict voters’ ability to create false
identities. One prominent method is to use a CAPTCHA,
which prevents automated voting and may reduce (but still
allows) the casting of many votes by a single agent. The
designer may use additional false-name-limiting methods in
an attempt to prevent such manipulation: allowing only one
vote from each IP address; requiring voter registration with
a confirmed e-mail address, phone number, or credit card
number; using a memory test (Conitzer 2008b); and perhaps
(as an extreme example) charging a small fee to vote.

These methods might be effective in limiting the number
of false identities created by a strategic voter, but unless we
know that each voter will cast the same number of votes, we
do not know for sure how much influence these false identi-
ties will have on the outcome of the election. Therefore, it is
important to be able to assess the reliability of such an elec-
tion’s outcome. We would like to be able to answer, e.g., the
following questions. Is a false-name-limiting method where
a voter creates 1 identity 80% of the time and 2 identities
20% of the time better than another method where a voter
creates 1 identity 90% of the time and 3 identities 10% of
the time? If we run an election using one of these false-
name-limiting methods and observe 100 votes for alterna-
tive A and 94 votes for B, how surely can we say that A
would have won if no voter had created false identities? To
the best of our knowledge, the question of how to approach
and evaluate an election in which false-name manipulation
may occur has not yet been addressed theoretically in the
literature.
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Our contributions. In this paper, we take a first step to-
wards addressing these questions. A premise of this paper is
that each of these false-name-limiting methods is character-
ized by a probability distribution (which we call the individ-
ual vote distribution) over the number of identities used (or
votes cast) by each voter, and each voter generates a number
of identities i.i.d. from this distribution. This distribution can
be estimated from experiments, e.g., on Mechanical Turk.

We focus on single-peaked preferences, and for conve-
nience present our results in the case of two alternatives;
these results extend naturally to the single-peaked prefer-
ences setting. Let A and B denote the two alternatives, and
suppose the majority rule is used to select the winner. Let
nA (respectively, nB) denote the number of voters who sup-
port A (respectively, B).

First, we present a criterion by which to compare two
individual vote distributions. Suppose we have two false-
name-limiting methods (e.g., using CAPTCHAs and using
memory tests) that are characterized by two individual vote
distributions π1 and π2. Suppose w.l.o.g. that nA > nB (if
nA = nB , then we do not have a basis to compare the two
false-name-limiting methods). We say that an election out-
come is “correct” if A receives more votes than B. The first
question we address, therefore, is how to evaluate these two
distributions and select the one that is more likely to produce
a correct outcome. We show that in large and relatively close
elections, the method whose individual vote distribution has
a higher [mean/standard deviation] ratio is more likely to
produce a correct outcome. (If the election is not close, then
any method gives a correct outcome with high probability,
which trivializes the question.)

Second, we consider the analysis of the results of an elec-
tion involving false-name manipulation. Given the individ-
ual vote distribution of the method, we assume that the only
data we can observe is the number of votes cast for each al-
ternative. That is, we know neither the actual numbers of
supporters nA and nB nor their prior distributions. Because
of this, and the fact that only one data point (election out-
come) is observed, we are unable to apply standard statis-
tical significance tests to this setting. Instead, we propose
a novel, to our knowledge, statistical test for obtaining a p-
value for these election results. To do so, we give a formula
for computing a test statistic (referred to as the adjusted mar-
gin of victory) from the votes cast and derive the best choice
of the parameter. Our simulations show that our proposed
adjusted margin of victory formula is indeed a good mea-
surement in this context.

Preliminaries
We focus on the case of two alternatives, denoted by A and
B. Let nA and nB denote the number of supporters (“true”
identities) for A and B, respectively; we refer to (nA, nB)
as a supporter profile and let n = nA + nB . Each supporter
creates zero or more identities and uses them to cast votes.
(The creation of zero identities models the decision not to
participate in the election, possibly due to the cost or hassle
of participation.)

In this paper, a false-name-limiting method is character-
ized by a distribution π on the number of identities created

by each individual supporter. We assume that, given the
election mechanism, the number of identities created by any
given supporter is independent and identically distributed
according to π. We call π an individual vote distribution.

Throughout this paper, we will consider only individual
vote distributions π which have mean µ > 0, variance
σ2 > 0, and absolute third moment ρ < ∞. If µ = 0,
then no participant ever casts any votes. If σ2 = 0, each
individual casts the same number of votes, and the outcome
always exactly reflects the supporter profile. Finally, a dis-
tribution with an infinite absolute third moment would seem
to be unlikely in the voting setting: It must not only have no
bounds on the number of votes that can be cast by a single
individual, but must moreover be heavy-tailed.

Given an individual vote distribution π, we let VA and
VB denote two random variables representing the number
of votes received by A and B respectively. Let V = VA +
VB , the total number of votes cast, and let D = VA − VB ,
the number of votes by which A exceeds B. (D may be
negative.) We use vA and vB to denote realizations of VA
and VB .

By the Central Limit Theorem, as nA grows large, the
distribution of VA (resp., VB) approaches that of a Gaussian
V ′A (resp., V ′B) with mean µnA (resp., µnB) and variance
σ2nA (resp., σ2nB). In the same way, the distribution of V
approaches that of a Gaussian V ′ with mean µ(nA + nB)
and variance σ2(nA + nB). Finally, the distribution of D
approaches that of a Gaussian D′ with mean µ (nA − nB)
and variance σ2 (nA + nB).

Evaluation of Individual Vote Distributions
In this section, we consider the comparison of two false-
name-limiting methods. Consider individual vote distribu-
tions π1 and π2 corresponding to two different methods. π1
and π2 have respective means µ1, µ2, variances σ2

1 , σ
2
2 , and

absolute third moments ρ1, ρ2. Suppose that the supporter
profile is fixed and without loss of generality that nA > nB ;
therefore, a “correct” outcome is one in which A receives
more votes (D > 0). Under π1, we denote the random vari-
able for the difference in votes VA−VB byD1; under π2, we
denote it by D2. Similarly, define the corresponding Gaus-
sian variables D′1 and D′2. Recall that Pr[D1 > 0] is the
probability of a correct outcome under π1.

We show that for close elections, as the total number of
supporters grows large, these distributions may be effec-
tively evaluated on the basis of a single statistic: the ra-
tio of the mean to the standard deviation. To do so, we
consider a sequence of elections in which the total num-
ber of supporters n is strictly monotonically increasing, and
in each of which nA > nB . We will be concerned with
such sequences in which the outcomes are close (nA − nB
is O(

√
n)), though not “dead even” (nA−nB is ω(1)), as n

increases.

Theorem 1 Suppose that, as n →∞, nA−nB is ω(1) and
O(
√
n). If µ1

σ1
> µ2

σ2
, then there exists N ∈ N such that for

all n ≥ N,Pr[D1 > 0] > Pr[D2 > 0].

That is, for any sequence of increasingly large, close elec-
tions, a higher ratio of mean to standard deviation is sufficent
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to imply that, eventually, π1 will be more likely to produce
a correct outcome than π2.
Proof: First, we note the following consequence of the
Berry-Esséen Theorem (Durrett 1991):∣∣∣Pr[D > 0]− Pr[D′ > 0]

∣∣∣ ≤ cρ

σ3
√
n

(1)

for a constant c. That is, given an individual vote distribution
and supporter profile, we can bound the difference between
the true probability of a correct outcome and its Gaussian
approximation; morever, this bound is proportional to one
over the square root of the number of supporters. This im-
plies that

Pr[D1 > 0]− Pr[D2 > 0] ≥ Pr[D′1 > 0]− Pr[D′2 > 0]

− c
√
n

(
ρ1
σ3
1

+
ρ2
σ3
2

)
. (2)

We wish to show that there exists an N so that, whenever
n ≥ N , Pr[D1 > 0] > Pr[D2 > 0]. Therefore, by Equa-
tion (2), it suffices to exhibit an N for which n ≥ N implies

Pr[D′1 > 0]− Pr[D′2 > 0] >
c
√
n

(
ρ1
σ3
1

+
ρ2
σ3
2

)
. (3)

D′1 ∼ N(µ1(nA − nB)), σ1
√
n), and similarly for D′2. So

for the left side of this inequality, we substitute

Φ

(
µ1

σ1
· nA − nB√

n

)
− Φ

(
µ2

σ2
· nA − nB√

n

)
(4)

=
1√
2π

∫ (
µ1
σ1

)
nA−nB√

n(
µ2
σ2

)
nA−nB√

n

e−t
2

dt (5)

>

(
µ1

σ1
− µ2

σ2

)
nA − nB√

2πn
e
−
(
µ1
σ1

nA−nB√
n

)2

. (6)

We can think of Expression (6) as a Riemann rectangle
lower-bound on Expression (5). Since nA − nB is O(

√
n),

there exists an N1 so that, for all n ≥ N1, for some constant

k1, e−
(
µ1
σ1

nA−nB√
n

)2

≥ e−
(
k1

µ1
σ1

)2

and so, for some constant
k2 > 0, Expression (6) becomes ≥ k2

nA−nB√
n . Now, we

have k2 nA−nB√
n ≥ c√

n

(
ρ1
σ3
1

+ ρ2
σ3
2

)
whenever

nA − nB ≥
c

k2
(
ρ1
σ3
1

+
ρ2
σ3
2

) . (7)

Since nA − nB is ω(1), there must exist an N2 such that In-
equality (7) holds for all n ≥ N2. Thus, we have that, when-
ever n ≥ max{N1, N2}, Inequality (3) holds and therefore
Pr[D1 > 0] > Pr[D2 > 0]. �
Discussion. This result is significant because it gives a de-
signer a simple criterion for evaluating an individual vote
distribution: taking the ratio of the mean to the standard de-
viation.

Excluded by Theorem 1’s assumptions are two cases. The
first consists of extremely (or “unnaturally”) close elections:
those in which the difference in votes received by the two
alternatives remains constant (or even shrinks!) as the num-
ber of supporters diverges. The second consists of elections

which are not close at all, in which any choice of π is likely
to produce a correct outcome.

If we look again at the Gaussian approximation to the
probability of a correct outcome, it is immediately clear why
the statistic µ

σ is so significant:

Pr[D′ > 0] = Φ
(
µ
σ ·

nA−nB√
n

)
.

We can interpret the term µ
σ ·

nA−nB√
n as a measurement of

the probability of the correct outcome occurring (VA > VB).
The statistic µ

σ has intuitively appealing behavior. For in-
stance, as σ approaches 0, leaving µ fixed, the correct out-
come becomes certain regardless of the value of µ. As an-
other example, suppose we change π so that every realiza-
tion is doubled—i.e., everyone gets twice as many votes as
before. This change in units does not affect the voting out-
come; and indeed, it does not affect µσ , either.

On the other hand, µ
σ also gives us some idea what

changes to the distribution would improve the chances of
a correct outcome. For example, it will be beneficial, if pos-
sible, to increase the mean number of identities while hold-
ing the standard deviation fixed. Such intuition may lead to
novel false-name-limiting methods for voting mechanisms.

Evaluation of Election Results
In this section, we focus on evaluating the confidence that an
observed election outcome (vA and vB) accurately reflects
the preferences of the voters (nA and nB). Throughout the
entire section, we assume that the election is run with a par-
ticular false-name-limiting method that has a fixed, known
individual vote distribution π. But even though π is known,
it is not obvious how to evaluate an election outcome such
as, for example, 92 votes cast for A and 80 votes cast for B.
In general, it is impossible to know how many of these votes
were cast by false identities.

In such situations, we identify two possible tools that may
be used to establish a confidence level: Bayesian analysis
and statistical hypothesis testing. In our setting, Bayesian
analysis, although a potentially natural approach, was ulti-
mately rejected for the following reasons.

In a Bayesian analysis, the designer would explicitly state
a prior distribution over supporter profiles (nA, nB), then
use the observed votes (vA, vB) to update to a posterior.
Then some method must be specified that selects a winning
alternative and confidence level based on the posterior.

The first difficulty with such an approach is that formu-
lating a prior distribution may be difficult. In some settings,
information about the number of voters and their preferences
may be costly or impossible to obtain. We prefer not to as-
sume access to this information.

Additionally, relying upon a prior introduces the possi-
bility of manipulating the outcome (or confidence level) by
manipulating the prior. Especially in a voting setting where
the election designer is supposed to be neutral, but the prior
must necessarily be mostly subjective, this may be unaccept-
able.

Instead, we evaluate the election outcome using statistical
hypothesis testing. The idea is this. First, we observe an
outcome. In our case, this is the number of votes (vA, vB).
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This suggests that there is a difference in parameters; here,
for instance, vA > vB suggests that nA > nB . However, an
alternative explanation is that the outcome is due to chance
rather than a difference in parameters. We test this explana-
tion by fomulating a null hypothesis that is neutral between
parameters and compute the probability of observing a re-
sult as extreme as (vA, vB). In our case, this null hypothesis
is that nA = nB .1

When applied to voting, a statistical hypothesis test will
take the form outlined in Algorithm 1. Each outcome
(vA, vB) we might observe is associated with a test statis-
tic β that summarizes the outcome; more extreme outcomes
are associated with larger values of β. Suppose that the out-
come we actually observe is associated with the value β̂.
Then we term p-value the probability, given a neutral null
hypothesis nA = nB , of observing some result associated
with a β > β̂. If this probability is high, then we cannot
reject the null hypothesis, and so our election outcome is in-
conclusive. If, on the other hand, this p-value is very low –
lower, say, than some confidence level R – then our results
would be very unlikely to arise due to chance. In this case,
we may reject the null hypothesis and have confidence in our
election results.

Algorithm 1 Statistical hypothesis test for elections

1. Select a significance level R (e.g., 0.05).
2. Observe the election outcome (vA, vB); WLOG suppose
vA > vB .

3. Compute a test statistic β(vA, vB).
4. Assume as a null hypothesis that nA = nB .
5. Compute a p-value for observing a test statistic≥ β given

the null hypothesis.
6. If the p-value is below R, reject the null hypothesis. That

is, accept alternative A as the winner of the election.

To apply Algorithm 1 in our specific setting, we must se-
lect, first, a formula for computing our test statistic β (step
3); and second, a procedure for computing a p-value (step 5).
Our setting has several properties that differentiate it from
those in which common statistical tests such as the t-test are
used. The most important is that we observe only one data
point (that is, we only operate the election and collect votes
once).

Another important property of our setting is that we actu-
ally have many null hypotheses. Simply stating that nA =
nB is not specific enough; we get a different p-value for each
possible assignment nA = nB = 1, 2, · · · .

In the absence of a specific prior on the number of voters
(some difficulties of which are mentioned above), we would

1An alternative approach is to attempt to rule out all other pa-
rameters; in this case, letting the null hypothesis be nA ≤ nB and
computing the probability of a result as extreme as (vA, vB). We
decided against this hypothesis because it seems less informative
when used with our approach: If we reject nA = nB , then we
will also reject nA ≤ nB ; however, it seems difficult to say any-
thing about when to accept the latter, whereas we will see a natural
condition for accepting the former.

prefer to be as neutral as possible when selecting a p-value.
We consider two natural options as follows:
• The max-p option. For any β, its max-p value is the

supremum p-value taken over all possible scenarios satisfy-
ing the null hypothesis (that is, nA = nB = 1, 2, · · · ).
• The min-p option. For any β, its min-p value is the

infimum p-value taken over all possible scenarios satisfying
the null hypothesis.

These two values can be used in combination in the fol-
lowing way. Let β̂ denote the observed β value computed
from an election outcome (vA, vB). If max-p(β̂) is smaller
than a preset significance level R (e.g., 5%), then we know
that for every prior distribution over the supporter profile
(nA, nB), the p-value of β̂ is smaller than R. In this case,
we can safely reject the null hypothesis, asserting that the
election outcome is “correct” with high confidence. Simi-
larly, if min-p(β) is larger than R, then for every possible
prior, we would have low confidence; we should assert that
the election results are inconclusive.

This procedure provides an approach for executing Step 5
in Algorithm 1. In what follows, we propose a formula for
completing Step 3 (computing a test statistic β), and prove
theoretically that it is optimal among a natural family of
test statistic formulae for elections. Then, we demonstrate
through simulated elections that our statistical test seems to
have in practice the nice intuitive behavior suggested by the
theory. We shall see that, although the max-p and min-p
phases of the test are each extreme-case analyses, our simu-
lation results suggest that the gap between the max-p value
and the min-p is quite small, making it potentially practical
as a statistical hypothesis test of election outcomes.

To illustrate the statistical hypothesis testing procedure
and motivate our choice of test statistic formula, we first
consider the following example of an election.

Example 1 Suppose we set a significance level of 0.05 and
we observe 92 votes for A and 80 for B. For our test statis-
tic formula, let us simply take the difference in votes, so that
β̂ = 92 − 80 = 12. Our null hypothesis is that alternative
B has the same number of supporters as A; if we can safely
reject this hypothesis, we will be confident that A is the cor-
rect winner. Let us begin by computing the max-p-value: the
supremum, over all possible scenarios in which nB = nA,
of obtaining a test statistic≥ 12. We can easily imagine such
a scenario. For example, suppose that nB = nA = 100000.
Since votes are being drawn probabilistically, we would ex-
pect close to a 50% probability that A wins by 12 or more.
Therefore, the max-p value will be far above the significance
level of 0.05. So we can already see that we will not reject
the null hypothesis, and thus we will not state that the out-
come is correct with high confidence.

We could also have defined the test statistic to be β =
vA−vB
vA+vB

. In the observed election, A won by 12 votes out of
the 172 cast, so β̂ ≈ 0.07. This time, let us consider the
min-p value. If we again consider nA = nB = 100000,
we can tell that we would need a very extreme outcome to
obtain a ratio higher than 0.07, and the min-p value will be
lower than the significance level of 0.05. So in this case, we
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can already see that we will not accept the null hypothesis,
so we will not state that the outcome is inconclusive. �

Both of the above formulae are commonly known as the
margin of victory in elections. Both are special cases of the
following form, which we refer to as an adjusted margin of
victory and is parameterized by a number α:

βα =
vA − vB
vα

, (8)

where v = vA + vB is the total number of votes cast. In this
paper, we consider the family of test statistics of this form.
Although we are not aware of a statistical significance test
which fits the requirements of our setting, the adjusted mar-
gin of victory formula is similar in form to other known test
statistics. Here, our goal is to find the optimal choice of for-
mula among this family, and then evaluate its performance
as a statistical hypothesis test.

Optimal Adjusted Margin of Victory
In this section, we show that, when using the max-p and
min-p approach, the optimal choice of α is 0.5. More pre-
cisely, we will show that for any α < 0.5, the max-p value
is always very high, so we will never reject the null hypoth-
esis regardless of the the state of the world (leading to what
is called a Type II error in statistical hypothesis testing). On
the other hand, for any α > 0.5, the min-p value will be very
low, so we will never accept the null hypothesis (leading to
a Type I error).

Theorem 2 For any α < 0.5, any observed adjusted margin
of victory β̂ > 0, and any δ > 0, there exists a supporter
profile with nA = nB such that Pr[VA−VBV α ≥ β̂] ≥ 0.5− δ.

That is, when we use βα (with α < 0.5) as the test statis-
tic, whatever its value β̂ for the actual election outcome, the
max-p value is always arbitrarily close to 0.5. This means
that Algorithm 1 never rejects the null hypothesis. There-
fore, we are prone to Type II errors.
Proof: Let n be the total number of voters, and select a
profile in which nA = nB = n/2. Recall that the total
number of votes is V = VA +VB and the difference in votes
is D = VA − VB . We are to show that there exists an n for
which Pr[ DV α ≥ β̂] ≥ 0.5 − δ. Verbally, we will exhibit a
total number of voters n such that, when exactly half support
each candidate, there is close to 50% probability thatAwins
with an adjusted margin of victory of at least β̂.

We will use the following two lemmas. The first lemma
directly follows from the Central Limit Theorem.
Lemma 1 For any ε, δ1 > 0, there exists an N s.t. for all
n ≥ N , V ∈ [(1− ε)µn, (1 + ε)µn] with probability at
least 1− δ1.

Lemma 2 For any k > 0, α < 0.5, and δ2 > 0, there exists
an N s.t. for all n ≥ N , D ≥ knα with probability at least
0.5− δ2.

Proof: Using the Berry-Esséen Theorem, for a given posi-
tive value such as δ2/2, we can select an N1 so that, for all
n ≥ N1, |Pr[D ≥ knα]− Pr[D′ ≥ knα]| ≤ δ2/2.

Recalling thatD′ is a Gaussian with mean µ(nA−nB) =
0 and variance σ2n, we have that Pr[D′ ≥ knα] = 1 −
Φ(

knα

σ
√
n ) = 1−Φ( k

σn0.5−α ). Since k and σ are constant, and
α < 0.5, there exists an N2 for which, whenever n ≥ N2,
Φ
(

k
σn0.5−α

)
≤ 0.5 + δ2/2, and so Pr[D′ ≥ knα] ≥ 0.5 −

δ2/2. Thus, when n ≥ max{N1, N2}, Pr[D ≥ knα] ≥
0.5− δ2. �

We can now apply these lemmas to prove our result: that
there exists an n for which Pr[ DV α ≥ β̂] ≥ 0.5 − δ. First,
fix some small ε. By Lemma 1, we know there is an N1 so
that, when n ≥ N1, there is at most a δ/2 probability that V
is outside the range [(1− ε)µn, (1 + ε)µn].

Conditional on V being in the range, we can assert that

D

V α
≥ β̂ (9)

is true if D ≥ β̂(1 + ε)αµαnα . (10)

By Lemma 2, we know there is anN2 so that, when n ≥ N2,
Equation (10) holds with probability at least 0.5− δ/2.

Now select some n ≥ max{N1, N2}. We have shown
that V falls outside the range given above with probability
no more that δ/2 and that Equation (10) fails to hold with
probability no more than 0.5 + δ/2. Therefore, by a union
bound, the probability that at least one of these events occurs
is at most 0.5 + δ. Thus, the complement – that V falls
within the given range and that Equation (10) holds – occurs
with probability at least 0.5− δ. But both of these occurring
implies that Equation (9) holds, so the proof is complete. �

We now state the corresponding result for the min-p value.
Now, the issue is that for any βα (with α > 0.5), no matter
what its value β̂ for the actual election outcome is, the min-
p is always 0, which means that we never accept the null
hypothesis. Therefore, we are prone to Type I errors. The
proof is analogous and is omitted.
Theorem 3 For any α > 0.5, any observed adjusted margin
of victory β̂ > 0, and any δ > 0, there exists a supporter
profile with nA = nB such that Pr[VA−VBV α ≥ β̂] ≤ δ.

These results show that values strictly above or below α =
0.5 are poor choices in at least some settings. On the other
hand, we now show that α = 0.5 is a good choice in that it is
susceptible to neither Type I nor Type II errors in the limit.

Theorem 4 For any significance level R, there exists b > 0

such that, for any observed adjusted margin of victory β̂ ≥
b, supnA=nB Pr[VA−VBV 0.5 ≥ β̂] ≤ R.

Proof: Let the significance level R be given. To prove the
inequality holds for the supremum p-value over all n =
nA = nB , we prove that the inequality holds for every n.
To do so, we find some N and show the following: First, we
find a b1 so that, taking β̂ ≥ b1, the inequality holds for all
n ≥ N ; and second, we find a b2 so that, taking β̂ ≥ b2, the
inequality holds for each n < N . Taking b = max{b1, b2}
will complete the proof.

First, we fix some small ε and use Lemma 1 to select an
N1 such that, for all n ≥ N1, V ∈ [(1− ε)µn, (1 + ε)µn]
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with probability 1 − R/3. When V is in this range,
we wish to show for all large enough n that Pr[D ≥
β̂
√

(1 + ε)µn] ≤ 2
3R.

Using the Berry-Esséen Theorem, we can select an N2

such that, for all n ≥ N2, |Pr[D ≥ x]− Pr[D′ ≥ x]| ≤ 1
3R

for all x. We also have that

Pr[D′ ≥ β̂
√

(1 + ε)µn] = Φ

(
−
β̂
√

(1 + ε)µn

σ
√
n

)

= Φ

(
−
β̂
√

(1 + ε)µ

σ

)
. (11)

There exists a b1 such that, for all β̂ ≥ b1, Expression (11)
is ≤ 1

3R. Therefore, when n ≥ max{N1, N2} and β̂ ≥ b1,
Pr[VA−VBV 0.5 ≥ β̂] ≤ R.

Now, we consider the case of n < max{N1, N2}. For
each n, Pr[VA−VBV 0.5 ≥ β̂] is strictly decreasing in β̂, so

for each n, there exists a bn such that, for all β̂ ≥ bn ,
Pr[VA−VBV 0.5 ≥ β̂] ≤ R. Take b2 to be the maximum over
these finitely many bn , and the proof is complete. �

Thus, β0.5 is not susceptible to Type II errors in the limit.
As the adjusted margin of victory grows large, the computed
max-p-value goes to zero, so the null hypothesis will be
eventually rejected. We now give the complementary result:
that as the adjusted margin of victory goes to zero, the min-p
value goes to 1

2 , which implies that β0.5 is not susceptible to
Type I errors in the limit. Again, the proof is similar and is
omitted.

Theorem 5 For any significance level R < 0.5, there exists
b > 0 such that, for any observed adjusted margin of victory
β̂ ≤ b, infnA=nB Pr[VA−VBV 0.5 ≥ β̂] ≥ R.

Experimental Results
In the previous section we have shown that if we use both
max-p and min-p values to test the null hypothesis nA =
nB , then β0.5 is the only useful choice. However, this does
not necessarily mean that β0.5 is a good choice by itself.
Our experimental studies in this section confirm that other
choices are poor and support the conclusion that β0.5 is a
good choice for the max-p/min-p test, because the gap be-
tween the max-p and min-p values is small.

We provide results from two sets of simulations. In
each of them, the individual vote distribution was π(0) =
0.1, π(1) = 0.5, π(2) = 0.2, and π(3) = 0.2. We have
also tested other configurations, and have observed similar
results.
• In Figure 1, we consider an election in which alternative

A received 41 votes and B received 35. We plot, for each
of the three choices of α (0.2, 0.5, and 0.8), the p-value at
each number n = 2nA = 2nB of total voters. Figure 1 pro-
vides an intuition for what happens when we select a value
of α, compute the p-value w.r.t. βα for each n, and then
use the max-p value or min-p value to test the null hypoth-
esis nA = nB . The same intuition underlies the proofs of
Theorems 2 and 3. As n grows larger, we observe trending

Figure 1: On the x-axis are null hypotheses given by n = nA +
nB . For each α, the y-axis represents the p-value: the probability,
given n, that a randomly generated election outcome has βα value
greater than the observed β̂α.

toward an extreme for values of α < 0.5 or α > 0.5; further-
more, these trends occur not only for extremely large values
of n, but also at relatively small values as well. Figure 1 also
suggests that, when α = 0.5, the p-value is stable w.r.t. n,
meaning that the max-p and min-p approaches produce very
similar results. This point is further illustrated in Figure 2.
• In Figure 2, we compare the behavior of the adjusted

margin of victory βα for the three different values of α (0.2,
0.5, and 0.8). For each α, we plot the max-p and min-p val-
ues. All choices of α < 0.5 will exhibit a max-p value of
0.5; all choices of α > 0.5 will exhibit a min-p value of 0.
Thus, as seen in the plot, these values of α have widely dif-
fering results. For α = 0.5, however, the max-p and min-p
values are very similar. This shows that β0.5 is quite dis-
criminative if we combine the result of hypothesis tests us-
ing max-p and min-p.

Recall that if the max-p value for the observed β̂ is smaller
than the significance levelR, then for every prior distribution
over the total number of supporters n, we should reject the
null hypothesis nA = nB ; therefore, we should assert that
the election outcome is “correct” with high confidence. If,
on the other hand, the min-p value for β̂ is greater than the
significance levelR, then for every prior distribution over n,
we cannot reject the null hypothesis; therefore, we should
assert that we do not have enough confidence to say that the
election outcome is “correct”. Finally, if the max-p value
for β̂ is larger than R and the min-p value for β̂ is smaller
than R, then our test cannot make any assertion. In our ex-
periments, we observe that the last case seems to be rare
for α = 0.5. For example, in Figure 2, it happens only for
β̂ ∈ [1.24, 1.39] for R = 5%.

Finally, we show a running example of Algorithm 1 com-
bined with our max-p and min-p analyses.

Example 2 Suppose the individual vote distribution π is the
one defined in the beginning of this section. Suppose we ob-
serve that B gets 100 votes. If A gets at least 121 votes,
then β̂0.5 ≥ 121−100√

121+100
= 1.41. From Figure 2 we can see
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Figure 2: On the x-axis lie values for the adjusted margin of vic-
tory, from less extreme to more. For each α, we plot two lines:
the minimum and maximum p-value at a given β. The maximum
p-value of α = 0.2 is always 1

2
; similarly, the minimum p-value of

α = 0.8 is always 0. The maxima and minima of α = 0.5 lie close
together.

that the max-p value for β̂0.5 = 1.41 is smaller than 5%. In
this case we should assert that A is the “correct” winner at
the 5% significance level. If A gets at most 118 votes, then
β̂0.5 ≤ 1.22, and the min-p value for β̂0.5 = 1.22 is larger
than 5%. In this case we cannot reject the null hypothesis
and should declare the election outcome inconclusive at the
5% significance level. The above two claims hold for any
prior distribution over the number of supporters. Only when
A gets 119 or 120 votes are we unable to make any asser-
tion.

Future Work
We have extended these results to the setting of single-
peaked preferences with more than two alternatives. The
intuition for this extension can be gained by grouping to-
gether an alternative and all those to its left as alternative A,
and grouping together all those to its right as alternative B.

Many directions remain unexplored in the domain of
mechanisms that are susceptible to false-name manipulation.
One way to build on our work will be to investigate how spe-
cific false-name-limiting methods produce individual vote
distributions. This work could proceed by means of experi-
ments in online elections; it could also model agents with in-
centives for achieving certain results and mechanisms which
impose a cost ci for creating i different identities. Another
direction to consider is a more sophisticated voter model in
which numbers of votes are not necessarily drawn i.i.d.

An intriguing but potentially difficult open question is
how to design false-name-resistant mechanisms in more
general domains. This question may be most interesting in
domains where strategic manipulation is also a concern; for
example, when preferences are not single-peaked and there
may be many alternatives. Analysis of results in such a case
may be correspondingly difficult.

Pragmatically, we believe that our results can be applied
to gain insight into a variety of practical voting settings.
For instance, the voter turnout problem, in which support-
ers vote either once or zero times, is a special case of this
work. These results may also be applied in various settings
involving voting on the Internet.
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